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Abstract

Moduli spaces of vector bundles on families of non-singular curves are usually
compactified by considering (slope)semistable bundles on stable curves. Alter-
natively, one could consider Hilbert-stable curves in Grassmannians. We study
some properties of the latter and compare them with similar properties of curves
coming from the former compactification. This leads to a new interpretation of
the moduli space of (semi)stable torsion-free sheaves on a fixed nodal curve.
One can present it as a quotient of a moduli space of torsion-free sheaves on a
variable curve in such a way that each class has a locally-free representative.

Introduction

Consider a projective non-singular curve C of a fixed genus g defined over an al-
gebraically closed field. The set of isomorphism classes of line bundles on C is
parametrised by the Jacobian which is an abelian variety. For higher rank, one can
also construct moduli spaces for vector bundles so long as one restricts attention
to some reasonably well-behaved bundles. The most widespread model for such a
moduli space is obtained by considering slope (semi)-stable bundles. The notion
of slope stability was first introduced by Mumford for vector bundles. It was later
generalised by Newstead and Seshadri to torsion-free sheaves. The introduction of
torsion-free sheaves is necessary if one wants to obtain a compact moduli space for
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a singular curve. On the other hand, working with torsion-free sheaves is often awk-
ward and it would be more convenient for many problems to have a compact moduli
space consisting entirely of vector bundles. This apparently utopic dream has in fact
come true for rank two in the case of a curve with a unique node (cf. [4], [2]). The
construction is as follows: A vector bundle of rank two and high degree together
with a space of its sections gives a map from the curve to a Grassmannian (in the
same way that a line bundle gives a map to projective space). One can then start
from the other end. Consider the Hilbert scheme of curves in the Grassmannian
and restrict to those curves that have a fixed stable model. The drawback then is
that, while one always has a vector bundle, the curve itself varies. But the variation
is bounded: In the case of a nodal curve and a rank two bundle Gieseker showed
(cf. [2]) that the only new models one should consider are those obtained by adding
either one or two rational components separating the node. In fact, this variation
of the curve might be an advantage if one wants to deal not with a single curve
but with a family of them. Caporaso (cf. [1]) used this point of view to obtain a
compactification of the Jacobian over the moduli space of curves of a given genus,
avoiding torsion-free sheaves altogether.

Consider now slope-stability. In the case of a reducible curve, this concept
depends on the choice of a polarisation. The only polarisation that is canonically
defined on a generic family of stable curves is the one associated with the dualising
sheaf. Pandharipande (cf. [6]) used it to give a compactification of the moduli space
of torsion-free sheaves over stable (rather than just semistable) curves. We shall
refer to his construction as the slope stable compactification.

One would like to use the Hilbert scheme point of view to give a compactifica-
tion over M̄g of the moduli space of (semi)-stable vector bundles. In view of the
construction for rank one and for rank two and fixed nodal curve, one would expect
this to be feasible. Let us call such a (hypothetic) construction a Hilbert-stable
compactification. In order for such a compactification to be useful, its points should
have a clear geometric meaning and it should be well related to the slope stable com-
pactification. More precisely, one would expect its point to correspond to semistable
curves with not too many unstable components. The immersion in the Grassman-
nian should be given by a vector bundle that comes close to being (semi)stable by the
canonical polarisation. One would then hope to have a map from the Hilbert-stable
compactification to the slope stable compactification. The image of a Hilbert-stable
curve should be the semistable model of the curve. The restriction of the torsion-free
sheaf to the complement of the new nodes should coincide with the restriction of the
original vector bundle to the complement of the chains of rational curves and the
gluing at the new nodes should provide some (but not all of the) information about
the restriction of the vector bundles on these chains.
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Notice that the assumptions above impose some conditions on Hilbert-semista-
ble curves. For example, such curves should be semistable of a bounded number of
types and the distribution of degrees among the different components should be one
(of the finite number) possible for (semi)stability by the canonical polarisation.

In section two of this work, we show that some of these necessary conditions
are in fact satisfied. We first extend some of the result of Gieseker and Morrison to
rank greater than two. We obtain again that the number of new models one should
consider in the case of vector bundles of given rank n is bounded. One can add
chains of at most n rational curves between every pair of points corresponding to
a node. Moreover, the restriction of the vector bundles to these chains must fall
into a finite series of patterns. We also check that the distribution of degrees among
components is compatible with the canonical polarisation.

Consider now the fibers of the map between a Hilbert-stable compactification
and a slope-stable compactification. In order to study them more easily, we shall
consider a larger family that has torsion-free sheaves on semistable not necessarily
stable curves. The usual notion of slope stability for the canonical polarisation does
not make sense in this case. We need to give an extension of this definition (cf.
(1.2),(1.4)). We then study (in section 3) the properties of torsion-free sheaves that
are stable by the canonical polarisation. We find some striking similarities with the
analogous properties of vector bundles on curves coming from the Hilbert scheme.
In particular the distribution of degrees among the components is the same and so
is the structure of the vector bundle on the rational chains.

Finally in section 4 we define an equivalence relation between torsion-free
sheaves on a family of curves that differ from each other in addition or deletion
of rational components. This equivalence relation would identify all point in a fiber
of the map from the Hilbert-stable compactification to the slope-stable compactifi-
cation (although we define it in fact in the larger family that we used in section 3).
Each equivalence class has a unique representative on the stable model of the curve
and it has representatives that are vector bundles on some suitable models.

1. Some definitions

By a semistable curve, we mean a projective reduced and connected curve with only
nodes as singularities.

We first review a few basic notions. Seshadri introduced the notion of stability
for a reducible curve as follows: For a curve C with components C(i), a polarisation
is the choice of rational weights

λ(i), 0 < λ(i) < 1,
∑

λ(i) = 1.



530 Teixidor

A depth one sheaf E of rank n on C is said to be (semi)stable for the given polari-
sation if for every subsheaf G of E with rank n(i) on the component C(i),

χ(G)/
( ∑

λ(i)n(i)
)
(≤) < χ(E)/n.

Seshadri showed the existence of a moduli space parametrizing (equivalence classes
of semi)stable torsion free sheaves on C.

For a given semistable curve C, define d(i) as the degree of the canonical sheaf
of C restricted to the component C(i). We want to use the following weights

(1.1) λ(i) =
d(i)

2g − 2
.

This presents a problem when C(i) is a rational curve which meets the rest of
the curve at less than three points. We will not need to deal with rational curves
meeting the rest at one point. When the number of points of intersection is two,
then λ(i) = 0. We need a slight generalization of Seshadri’s definition:

Definition 1.2. Let C be a semistable curve with irreducible components C(i), i ∈
I. Choose a polarization λ(i), 0 ≤ λ(i),

∑
λ(i) = 1 and if λ(i) = 0 then C(i) is a

smooth rational component meeting the rest of the curve at exactly two points. A
sheaf E of depth one and constant rank n on C is said to be Seshadri (semi)stable for
the polarization λ if and only if for every subsheaf G such that rank G|C(i) = n(i),

χ(G)/
∑

λ(i)n(i)(≤) < χ(E)/n when
∑

λ(i)n(i) �= 0, n,

χ(G) ≤ 0 when
∑

λ(i)n(i) = 0

and
χ(G) < χ(E) when

∑
λ(i)n(i) = n,G �= E.

Let us check first that we are not so far off from Seshadri’s original definition.

Lemma 1.3

Let C be a curve which has a rational component R intersecting the rest in

exactly two points. Let λ = (λ(i)) be a polarization of C of the type introduced in

(1.2) (i.e. with weight zero on the component R). For a given ε, 0 < ε < 1 consider

a new polarization λ′ = (λ′(i)) such that λ′(i) = λ(i)(1 − ε) for C(i) �= R and the

λ′ weight on R is ε. If a sheaf E is stable for the polarization λ, then it is stable for

the polarization λ′ for sufficiently small ε. If a sheaf E is stable for the polarization

λ′ for sufficiently small ε, then it is semistable for the polarization λ. In particular,

if the rank and Euler-Poincare characteristic are relatively prime, λ′ and λ stability

are equivalent.
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Proof. The condition for λ stability for a sheaf E means that for every subsheaf G
of E,

(1.3.1) χ(G) <
( ∑

λ(i)n(i)
)
χ(E)/n

where the n(i) are the ranks of G on the components C(i). Note that χ(G) is an
integer and the n(i) can take only a finite number of values. Therefore, if ε is small
enough, the inequality

(1.3.2) χ(G) <
( ∑

λ(i)(1 − ε)n(i) + εn′
)
χ(E)/n

will be satisfied too with n′ the rank of G on R. Therefore, E is also λ′-stable.
Conversely, if (1.3.2) holds for sufficiently small ε, then

χ(G) ≤
( ∑

λ(i)n(i)
)
χ(E)/n

and hence E is semistable. �

Definition 1.4. Let C be a semistable curve without rational components attached
at a single point. The canonical polarisation on C is a polarisation as above with
weight λ(i) = degω|C(i)

degω . Here ω denotes the dualising sheaf

Recall 1.5. We review the condition of Hilbert stability: Choose a d >> 0 and
m >> 0. Let C be a curve of genus g. Let V be a vector space of dimension
α = d+ n(1− g). Denote by G the Grassmannian of subspaces of codimension n of
V and E the universal rank n subbundle of V ⊗OG. Assume that C is a subscheme
of G and let E be the restriction of E to C. Then, V gives rise to a subspace of
H0(E). Consider the map from Sm(

∧n
V ) → H0((

∧n
E)⊗m). The triple (C,E, V )

is m-Hilbert-(semi)-stable if this map is (semi)-stable by the action of the linear
group.

The condition for m-Hilbert (semi)-stability has a numerical interpretation as
follows: consider any one parameter subgroup λ of the general linear group of the
vector space V . Take a basis B of V diagonalizing the action of λ. Denote by ri
the weights of the elements of such a basis. Let wB(m) be the minimum among the
sums of the weights of the elements of basis of H0((

∧n
E)⊗m) obtained as images

of elements of Sm(
∧n

H0(E)). Write P (m) = χ((detE)⊗m) = md+ 1 − g. Then,

(1.5.1) wB(m) < (≤)nmP (m)
∑

ri/α .
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2. Some properties of Hilbert stable curves

In this section we consider a reduced semistable curve in the Grassmannian embed-
ded by a complete linear system. We study some properties of either the curve or
the vector bundle that are a consequence of m-Hilbert stability (for large m) of the
corresponding point in the Hilbert scheme.

We first prove that, if the curve is non-singular, (semi)stability of the Hilbert
point implies slope (semi)stability. The converse of this was proved for rank two in
[4] but is still open for larger rank. In [11], we provided an alternative proof in the
case of rank two.

We show next that if the curve is reducible, the distribution of the degrees of
the vector bundles among the different components is in fact one of the possible
distributions of degrees allowed by slope stability with the canonical polarisation
(cf. (1.4)).

Finally we study the structure of rational components. Our results generalise
those of Gieseker (compare our (2.4),(2.5) and (2.6) with [2]). On the other hand,
this structure is analogous to what is obtained in the case of slope stability (compare
with section 3).

For ranks one and two, it has been proved (cf. [3] Theorem 1.0.1 and [4]
Theorem 1.2) that any point of the Hilbert scheme that is m-Hilbert stable for
arbitrarily large m corresponds to a semistable curve embedded by a complete linear
system. It seems likely that this is also the case for higher rank and then some of
our assumptions are redundant. We plan to consider this question in the future.

Notations 2.1. In this paragraph, we use the notations wB(m), P (m), α intro-
duced above. We often write w(m) = wB(m) when the basis is clear.We shall be
defining several one parameter subgroups with specified weights ri. Denote by bi the
dimension of the subspace of H0((

∧n
E)⊗m) whose elements have weight at most i.

Then,

wB(m) =
∑

i(bi − bi−1) = wmaxbwmax −
wmax−1∑

i=0

bi.

Here, wmax is the maximum weight of a section. Notice then that bwmax is the
dimension of H0((

∧n
E)⊗m) that we denoted by P (m) = md+ 1 − g. Hence,

(2.1.1) wB(m) = wmax(md+ 1 − g) −
wmax−1∑

i=0

bi.

We shall denote by O(m) a polynomial of degree at most one in m.
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Proposition 2.2

Let C be an irreducible non-singular curve embedded in the Grassmannian by

a complete linear system. Assume that C corresponds to an m-Hilbert (semi)stable

point in the Hilbert scheme of the Grassmannian for m large enough. Then, the

corresponding vector bundle E is (semi)stable.

Proof. Let E′ be a subsheaf of E of rank n′. Define a one parameter subgroup
by giving weight zero to the elements in a basis of H0(E′) and weight one to a
complement. Consider the morphism Sm(∧nV ) → H0((∧nE)⊗m). An element in
the image has weight i if it is the product of nm − i sections of E′ and i sections
of E not in H0(E′). As the rank of E′ is n′, the minimum weight of a section is
m(n− n′). So,

w(m) ≥ m(n− n′)
(
md+ n(1 − g)

)
.

By Hilbert (semi)stability (cf. (1.5.1))
(2.2.1)
w(m) ≤ (nm/α)

(
md+ n(1 − g)

)( ∑
ri

)
= (nm/α)

(
md+ n(1 − g)

)(
α− h0(E′)

)
.

Then, we get

m(n− n′) ≤ nm− (nm/α)h0(E′).

Hence,

h0(E′)/n′ ≤ α/n.

As χ(E′) ≤ h0(E′), this shows that E′ does not contradict semistability of E.
Assume now that the point is strictly m-Hilbert stable. If h0(E′)/n′ < α/n,

then E′ does not contradict stability of E. If h0(E′)/n′ = α/n, Hilbert stability
would imply that there is a strict inequality for the linear term in m in (2.2.1).
Using the condition h0(E′)/n′ = α/n, we see that this is impossible. �

Proposition 2.3

Let C be a semistable curve embedded in the Grassmannian by a complete

linear system (i.e V = H0(E)). Assume that (C,E, V ) is m-Hilbert semistable for

large enough m and sufficiently big d. Then the degrees of E on each component of

C are one of the sets of degrees allowed by the canonical polarisation.
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Proof. Let E′ be the sheaf of sections of E which vanish outside of a given union of
components C ′ of C. We want to show that the stability condition is satisfied for
this special E′.

Consider a basis X1, . . . , Xj of H0(E′) ∩ V . Complete it to a basis X1, . . . , Xα

of V . Define a one parameter subgroup of V by λ(t)(Xi) = Xi for i ≤ j and
λ(t)(Xi) = tXi for i ≥ j + 1. For this special one parameter subgroup, the ri are
zero and one. The weights of a basis in H0((∧nE)⊗m) obtained as images of elements
in Sm(∧nV ) vary between 0 and mn. Write C ′′ for the union of all components of
C not contained in C ′. Denote by D the divisor of intersection of C ′ and C ′′ and let
k be its degree. Any section of ∧n(E) with weights less than nm vanishes on C ′′.
Then, bi ≤ h0((∧nE)⊗m

|C′ (−(nm− i)D)). Let g′ be the genus of C ′ and d′ the degree
of E′. Then, either h0((∧nE)⊗m

|C′ (−(nm− i)D)) = 0 or

h0
(
(∧nE)⊗m

|C′ (−(nm− i)D)
)

= md′ − (nm− i)k + 1 − g′

+ h1
(
(∧nE)⊗m

|C′ (−(nm− i)D)
)

≤ md′ − (nm− i)k + 1.

If md′ − (nm− 1)k + 1 ≥ 0, the inequality above is valid for all values of i. Hence,
from (2.1.1)

wB ≥ nm(dm+ 1 − g) −
nm−1∑
i=0

(
md′ − (nm− i)k + 1

)

= m2(nd− nd′) + (mn− 1)mnk/2 +O(m)

= m2(nd− nd′ + n2k/2) +O(m).

On the other hand,

nmh0
(
(∧nE)⊗m)

) ∑
ri

h0(E)
≤ nm(md+ 1 − g)

α− h0(E′)
α

= nm(md+ 1 − g)
(
1 − h0(E′)

α

)
.

Therefore the Hilbert-stability condition gives rise to

nd− nd′ + n2k/2 ≤ nd
(
1 − h0(E′)

α

)
.

Hence,
h0(E′)
α

≤
(
d′ − n(k/2)

)
/d
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or equivalently

h0(E′) ≤
(
d′ − n(k/2)

)
α

d
.

Note that

h0(E′) ≥ χ(E′) = d′ − nk + n(1 − g′) = d′ − nk/2 − n(g′ − 1 + k/2).

Also, by definition

α = χ(E) = d+ n(1 − g) = d− n(g − 1).

Using these equations,we get

χ(E′)/χ(E) = χ(E′)/α ≤
(
d′−n(k/2)

)
/d = [χ(E′)+n(g′−1+k/2)]/[χ(E)+n(g−1)].

This condition can be rewritten as

(2.3.1) χ(E′) ≤ (g′ − 1 + k/2)
g − 1

χ(E).

This is exactly the condition that E′ does not contradict Seshadri stability for
the weights defined above (cf. (1.1)). As these conditions completely determine the
distribution of degrees (cf. [10] Proposition (1.2)), the degree of such an E is one of
the possible choices for bundles stable by the canonical polarization.

Note that if md′ − (nm − 1)k + 1 < 0 for large m, then d′ − nk < 0. So
χ(E′) < n(1− g′). If C ′ is not rational or if k ≥ 3, then g′ − 1 + k/2 > 0 and (2.3.1)
is also satisfied. The case C rational and k ≤ 2 is dealt with in (2.4)- (2.6) below. �

Proposition 2.4

Let C be a semistable curve embedded in the Grassmannian by a complete

linear system. Assume that C corresponds to an m-Hilbert stable point for large

enough m. Then C has no rational components attached at one point only.

Proof. Assume the opposite. Then, there is a rational component P of C attached at
one point Q only to the rest of the curve. Write the restriction of the vector bundle
to P as O(a1)⊕ . . .⊕O(an), a1 ≥ . . . ≥ an. As the vector bundle gives an immersion
of the curve in the Grassmannian, an ≥ 0 and a1 ≥ 1. Write d′ = a1 + . . .+ an.

Consider the subsheaf F of E whose restriction to P is O(a1(−Q)) and that
is zero outside P. Define a one parameter subgroup by giving weight zero to the
sections of F and weight one to the elements of a complement in V . Consider the
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weights induced on H0((
∧n

E)⊗m). These weights vary between m(n− 1) and mn.
The space of sections with weight at most k,m(n− 1) < k < nm has dimension at
most h0(P, (∧nE)⊗m(−(nm−k)Q)) = md′+1+(k−mn) if this number is positive.
As k ≥ m(n− 1) and d′ ≥ 1, md′ + 1 + k −mn ≥ 1. Then from (2.1.1)

w ≥ mnP (m) −
mn−1∑

k=m(n−1)

h0
(
P, (∧nE)⊗m

(
− (nm− k)Q

))

= m2(nd− d′ + 1/2) +O(m).

The Hilbert-stability condition gives

w(m) ≤ [nmP (m)/α]
∑

ri = [nmP (m)/α][α− h0(P,O(a1(−Q))]

= nmP (m)(1 − a1/α) = m2(nd− nda1/α) +O(m).

Hence, we get,
nd− d′ + 1/2 ≤ nd− nda1/α.

Equivalently,
a1 ≤ (α/dn)(d′ − 1/2) < d′/n.

This is not compatible with the definition of the ai. �

Proposition 2.5

Let C be a semistable curve embedded in the Grassmannian by a complete

linear system. Assume that it corresponds to an m- Hilbert stable point of the

Hilbert scheme for m sufficiently large. If P is a rational curve attached to the rest

at two points Q and R, then, E|P = Oa ⊕O(1)(n−a), n− a ≥ 1.

Proof. Write E|P = O(a1)⊕ . . .⊕O(an), a1 ≥ . . . ≥ an. Write d′ = a1 + ...+ an. As
the bundle gives an immersion of the curve in the Grassmannian, an ≥ 0, a1 ≥ 1. It
is then enough to show a1 ≤ 1. Let j be the last index such that aj ≥ 2. Assume
j ≥ 1. Define a subsheaf F of E by the condition F|P = E|P(−R −Q), F|C−P = 0.
Define a one parameter subgroup by giving weight 0 to the sections of H0(F ), weight
one to the sections of a complement. Notice that

H0(F ) ⊂ H0
(
(O(a1) ⊕ ...⊕O(aj)

)(
− P −Q)

)
.

The minimum weight of a section of H0((∧nE)⊗m) is m(n − j). The dimension of
the locus of sections with weight k, is bounded by

bk ≤ h0
(
(∧nE)⊗m

|P
(
− (nm− k)(R +Q)

))
, m(n− j) ≤ k ≤ mn− 1.
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Now h0((∧nE)⊗m
|P (−(nm − k)(R + Q)) = md′ + 1 − 2(nm − k) as this number is

positive. Hence from (2.1.1),

w ≥ nm(md+ 1− g)−
mn−1∑

k=m(n−j)

[md′ + 1− 2(nm− k)] = m2(nd− jd′ + j2) +O(m).

On the other hand, Hilbert stability implies that

w(m) ≤
(
nmP (m)/α

)( ∑
ri

)

= nm(md+ 1 − g)
[
1 − h0

(
P,O(a1) ⊕ . . .⊕O(aj)(−(P +Q))

)
α

]

= m2
[
nd− nd(a1 + . . .+ aj − j)

α

]
+O(m).

Hence,
nd(a1 + . . .+ aj − j)

α
≤ jd′ − j2.

Equivalently,
(a1 + . . .+ aj − j) ≤ α

nd
(jd′ − j2) .

From the definition of α, α/d < 1. From the definition of j, d′ ≤ a1 + ...+ aj +
n− j. Then

a1 + ...+ aj − j <
j

n
(d′ − j) <

j

n
(a1 + ...+ aj + n− 2j).

Hence
(n− j)(a1 + ...+ aj) < 2j(n− j).

Therefore
a1 + ...+ aj < 2j

contradicting the choice of j. �

Proposition 2.6

Let C be a semistable curve embedded in the Grassmannian by a complete

linear system. Assume that the point corresponding to C is m-Hilbert semistable

for m large enough. Assume that C contains a chain P of rational curves (i.e.

P = P1 ∪ . . . ∪ Pk each Pi intersects Pi−1 and Pi+1 at points Qi and Qi+1; P1

intersects the rest of C at Q1 and Pk intersects the rest of C at Qk+1). Then

k ≤ n. If C minus the chain is not connected and the bundle is strictly stable, then

k ≤ n − 1. Moreover, the restriction of E to any subchain is a direct sum of line

bundles of degrees zero and one.
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Proof. From [8] Proposition (3.1), the restriction of E to the chain is a direct sum of
line bundles. The proof of (2.5) can be generalized to show that these line bundles
must have degree zero or one. As C is a curve in the Grassmannian, E cannot be
trivial on any rational curve. Therefore, there are no more than n rational curves.

Assume now that the chain disconnects the curve into two components C1 and
C2. Denote by d1, d2 the degree of the restriction of E to C1, C2. We want to show
that there are then at most n − 1 rational curves in the chain. Assume that there
were n. Write the restriction of E to P as a direct sum of n line bundles L1⊕. . .⊕Ln.
We showed already that the restriction of each Li to each component Pj is of the
form O or O(1) with at least one O(1) and two O(1) cannot appear on the same
Lj . Hence, we can assume that Li is of the form O(1) on the component Pi and
is O on all other components. Consider the subsheaf E′ of E whose restriction to
P consists of the direct sum of the sheaf of sections of the Li vanishing at Qi+1,
the restriction to C1 coincides with the restriction of E to C1 and the restriction
to C2 is zero. Define a one parameter subgroup of E by giving weight zero to the
sections of H0(E′)∩V and weight one to the sections of a complement. An element
of H0((

∧n
E)m) has weight at most i if it includes a product of at least nm − i

sections of E′. Hence, for i ≥ 1 the dimension of the space of sections with weigh
at most i is at most

bi ≤ h0
(
(∧nE)m|P∪C1

(−(nm− i)Qn)
)

= md1 + i+ 1 − g1 + h1
(
(∧nE)m|P∪C1

(−(nm− i)Qn)
)

≤ md1 + i+ 1.

Therefore,

w(m) ≥ nm(md+ 1− g)−
nm−1∑
i=1

(md1 + i+ 1− g1) = m2(nd− nd1 − n2/2) +O(m).

From the condition for Hilbert stability,

nd− nd1 − n2/2 ≤ (nd/α)
∑

ri = nd(1 − h0(E′)/α).

Therefore, dh0(E′)/α ≤ d1 + n/2 or equivalently

h0(E′) ≤ α(d1 + n/2)/d.

Interchanging the roles of C1 and C2 and reversing the order of the Li, one gets

h0(E′′) ≤ α(d2 + n/2)/d.

We now use that d = d1 + d2 + n, g = g1 + g2. Then

α = d1 + n(1 − g1) + d2 + n(1 − g2) ≤ h0(E′) + h0(E′′) ≤ (d1 + d2 + n)α/d = α.

Therefore, these inequalities must in fact be equalities and the vector bundle is not
strictly stable. �
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3. Some consequences of Seshadri’s stability for the canonical polarization

In this paragraph, we study some properties of Seshadri semistable sheaves for the
canonical polarization when restricted to a chain of rational components. These are
analogous to the corresponding properties for m-Hilbert stability (cf. (2.4)-(2.6)).

Lemma 3.1

Let E be a Seshaderi semistable sheaf on a curve C and let Ci be a rational

component of C with corresponding weight λi = 0. Then E|Ci
= O(1)a ⊕On−a.

Proof. Write E|Ci
= O(a1) ⊕ . . .⊕O(an), a1 ≥ . . . ≥ an. Denote by P1 and P2 the

two nodes of Ci. Consider the subsheaf G1 of E which vanishes on every component
different from Ci and whose restriction to Ci is O(a1)(−P1 − P2). By the stability
condition for E,χ(G1) = a1 − 2 + 1 ≤ 0. So a1 ≤ 1.

Consider then the subsheaf G2 obtained by taking O(a1)⊕ . . .⊕O(an−1) on Ci

and the sections that glue with this subsheaf in the remaining components. Then
χ(G2) = χ(E) − χ(O(an)) = χ(E) − an − 1 < χ(E). Hence an > −1, so an ≥ 0. �

Lemma 3.2

Let E be a Seshadri-semistable sheaf for the canonical polarisation on a curve

C. Let P be a chain of rational components as in (2.6). Assume that the restriction

of E to the chain is locally free. Then, it is a direct sum of line bundles of degrees

0 and 1.

Proof. The fact that E is a direct sum of line bundles was proved in [8] Proposi-
tion 3.1. The fact that the degrees of these line bundles are 0 and 1 is similar to the
proof of (3.1). �

Lemma 3.3

Consider a chain of rational curves as in (2.6). Let E be a torsion-free sheaf on

the curve. Let V1 be a subspace in the fiber of Q1. Let F1 ⊂ . . . ⊂ Fn be a complete

flag at Qk+1. Then, there exists a decomposition of the sheaf as direct sum of n

rank one torsion free sheaves on the chain compatible with the subspace and the

flag. By this we mean that V1 is the direct sum of the fibers at Q1 of a few of these

torsion free sheaves and each Fi is the direct sum of a few fibers at Qk+1.
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Remark. This is a refinement of Lemma 3.2 in [8].

Proof. We use induction on k. Assume k = 1. Let E|P1
= O(a1)e

′
1 ⊕ . . .⊕O(at)e

′
t

with a1 > . . . > at. Define E1 as the unique subsheaf of O(a1)e
′
1 whose fiber at

Q1 coincides with V1 ∩ (O(a1)e
′
1)Q1 and has rank equal to the dimension of this

space. Define E2 = O(a1)e
′
1 . Define E3 as the sum of O(a1)e

′
1 and the subsheaf of

O(a1)e
′
1 ⊕O(a2)e

′
2 whose fiber at Q1 coincides with V1 ∩ (O(a1)e

′
1 ⊕O(a2)e

′
2)Q1 and

has rank equal to the dimension of V1 ∩ (O(a1)e
′
1 ⊕O(a2)e

′
2)Q1 + O(a1)e

′
1 ... Define

E2t as E |Q1 . Denote by ei the rank of Ei. Define a new filtration of EQ2 . One can
find e1 subspaces Fl, l = i(1) < . . . < i(e1) such that Fl ∩ (E1)Q2 �= Fl−1 ∩ (E1)Q2 .

This comes from the fact that (E1)Q2 = (E1)Q2 ∩ Fn and each Fi has codimension
one in Fi−1. Choose vlεFl ∩ (E1)Q2 − Fl−1 ∩ (E1)Q2 .

We proceed now by induction on j. One can find ej subspaces Fl, l = i(e1+. . .+
ej−1+1) < . . . < i(e1+. . .+ej) such that Fl∩(Ej)Q2 �= Fl−1∩(Ej)Q2+Fl∩(Ej−1)Q2 ,

choose vl in Fl∩(Ej)Q2−Fl−1∩(Ej)Q2−Fl∩(Ej−1)Q2 . For every l, there is a minimum
j for which Fl ∩ (Ej)Q2 �= Fl−1 ∩ (Ej)Q2 . The minimality implies automatically
Fl ∩ (Ej)Q2 �= Fl−1 ∩ (Ej)Q2 + Fl ∩ (Ej−1)Q2 and so i is a permutation of the set
{1, . . . , n}. It is clear then that there is a decomposition of E|C1 with directions at
Q2 in the directions of the basis chosen in that way.

Assume now the result for k = M−1 and prove it for M . Denote by Q1
i and Q2

i

the inverse images of the node Qi on the components Ci−1 and Ci obtained when
we normalize at Qi. There are subspaces V 1

i and V 2
i of (E|Ci

)Q1
i

and (E|Ci
)Q2

i
and

an isomorphism fi between (E|Ci
)Q1

i
/V 1

i and (E|Ci
)Q2

i
/V 2

i that defines E at Qi.
Define subsheaves Ei of E|CM

exactly as in the case k = 1 above by replacing
V1 by V 2

M . Define a permutation of the Fl exactly as in the case k = 1. Consider
the flag of EQM+1 given by

Fi(1) ∩ (E1)QM+1 ⊂ . . . ⊂ Fi(e1) ∩ (E1)QM+1 ⊂ (E1)QM+1 + Fi(e1+1) ∩ (E2)QM+1 ⊂

⊂ . . . ⊂ (Ee2t−1)QM+1 + Fi(n) .

There is a decomposition of E|PM
into a direct sum of line bundles whose

successive sums give rise to this flag at QM+1 and such that V 2
M is the direct sum

of the fibers of a few of these line bundles. Denote by v1, . . . , vn the basis that this
decomposition induces at the fiber at QM+1. Denote by w1, . . . , wn the basis that it
induces at Q2

M . Consider now the chain P1 ∪ . . .∪ PM−1. Consider the flag induced
at Q1

M by the inverse image by fM of the flag above. This flag has as first space V 1
M .

We can obtain a complete flag with n subspaces at Q1
M if we add a complete flag of

the subspace V 1
M . Applying the induction hypothesis, there is a decomposition of the
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restriction of E to P1 ∪ . . . ∪ PM−1 adjusted to this flag. Denote by w′
1, . . . , w

′
n the

basis that this decomposition induces at QM . Then, w′
i = wi +

∑
lijwj . Consider

the image of the w′
i by fM−1. Modify the decomposition of E|PM

to fit this basis. In
so doing, we can disregard the lij for either i or j between e(2k)+1 and e(2(k+1)).
Therefore, this modification is possible. �

Corollary 3.4 (Compare with (2.6))

With the notations of (2.6), (3.2), let a be the number of components on which

E is not trivial (i.e. of the form On). Let b be the number of nodes on which E is

not locally free. Then a+ b ≤ n.

Proof. From (3.3), we know that the restriction of E to the chain of rational com-
ponents is a direct sum of rank one torsion free sheaves. The proof of (3.1) can be
generalized to show that each of the rank one sheaves can fail to be either locally
free or trivial but not both on at most one component. From this, the fact that
a+ b ≤ n follows.

Assume now that the chain disconnects the curve into two components C1 and
C2. Write the restriction of E to the chain as L1

⊕
. . .

⊕
Ln where each Li is a

torsion-free sheaf of rank one on the chain. None of the Li can fail to be locally free
or trivial more than once. Assume there are n rational curves on the chain and the
sheaf is not locally free on any of them. Then, each of the Li is not trivial on one
component. Define the analogue of E′ in (2.6) Assume first that Li is of the form
O(1) on the component Pj .

Denote by L1
i the sheaf consisting of the sections of Li|P1∪...∪Pj

that vanish at
Qj+1. Denote by L2

i the sheaf consisting of the sections of Li|Cj∪...∪Cn
that vanish

at Qj .
Assume that Li fails to be locally free at the node Qj . Denote by L1

i the sheaf
consisting of the sections of Li|P1∪...∪Pj

. Denote by L2
i the sheaf consisting of the

sections of Li|Pj+1∪...∪Pn
.

Define E′ from the restriction of E to C1 and the L1
i extended by zero. Define

E′′ from the restriction of E to C2 and the L2
i extended by zero. Then, either E′ or

E′′ contradicts stability of E. �

4. The moduli space as a set of equivalence classes of vector bundles

We studied in section 2 Hilbert points in the Grassmannian. We saw that Hilbert
stability imposes restrictions on the possible semistable curves that can appear. We
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can consider the stable model of such a curve. Then, a torsion-free sheaf needs to
take the place of the vector bundle. On the other hand, given such a stable curve
and a torsion-free sheaf on it, one can consider in general many semistable curves
whose stable model is the curve given. Consider for example an irreducible curve
with just one node. Take a torsion-free sheaf of rank two. Assume that the fiber of
the sheaf at the node is a direct sum of two copies of the maximal ideal at the point.
This curve can have two admissible semistable models with a chain of either one or
two rational curves. In the case of one rational component, the vector bundle on it
is of the form O(1)2. In the case of two rational components, the vector bundle on
each of them is of the form O(1) ⊕O and the two O(1) don’t glue together.

The purpose of this section is to clarify the relationship between the different
semistable models that can give rise to the same stable curve with a fixed torsion-
free sheaf. In order to do so, we set up an equivalence relation between them. We
include, along with Hilbert-admissible vector bundles, some torsion-free sheaves on
partial normalisations of a nodal curve.

The main idea of the definition that follows is that one replaces some of the non
local-freeness at a node P in the original sheaf E by a summand of the form O(1)a

in an additional P1. The rest of the non local-freeness is divided between the two
nodes that appear on the new P1. The gluing on the locally free part must respect
the original gluing of E. All curves C are assumed to be semistable and have a
common stable model C0. Moreover they don’t have rational components attached
at one point only. Hence they differ from each other by addition or deletion of chains
of rational curves. The equivalence will be generated by the relation defined in (4.1).

(4.1). Assume that one of the curves C ′ is obtained from C by adding one single
rational component P1 at a node P of C. Denote by P1 P2 the two preimages of
P in the partial normalization of C at P . Denote by P 1

1 and P 1
2 the points of P1

that glue with P1 and P2 respectively. Consider the two pairs (C,E) and (C ′, E′)
of the curve and a torsion-free sheaf. For a vector bundle F and a point P , we shall
denote by FP the vector space fiber of F at P (rather than the stalk of the sheaf F
at the point P ). We recall that E is obtained from the following data
a) a torsion free sheaf F on the partial normalisation of C at P
b) Subspaces V1 and V2 of FP1 and FP2 (of the same dimension)
c) an isomorphism FP1/V1

ϕ−→ FP2/V2.

Similarly E′ is obtained from.
a’) a torsion free sheaf F ′ on the partial normalisation of C at P and a vector

bundle T on P1

b’) subspaces V ′
1 , V

1
1 of F ′

P1
and TP 1

1
and V ′

2 , V
1
2 of F ′

P2
and TP 1

2

c’) isomophisms ϕ1 : F ′
P1/V

′
1 → TP 1

1
/V 1

1 and ϕ2 : F ′
P2
/V ′

2 → TP 1
2
/V 1

2 .
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If the following conditions are satisfied, we’ll say that (C,E) and (C ′, E′) are
equivalent.

i) F ′ = F, T = O(1)a ⊕On−a. This latter condition implies that there is a cano-
nical isomorphism

ψ : (T/O(1)a)P 1
1
→ (T/O(1)a)P 1

2

ii)
V ′

1 ⊂ V1, V
′
2 ⊂ V2

V 1
1 ∩ (O(1)a)P 1

1
= 0, V 1

2 ∩ (O(1)a)P 1
2

= 0

ψ(V 1
1 ) ∩ V 1

2 = 0

where the last equality is understood in the quotient.
iii)

ϕ1(V1/V
′
1) = [O(1)aP 1

1
+ V 1

1 + ψ−1(V 1
2 )]/V 1

1

ϕ2(V2/V
′
2) = [O(1)aP 1

2
+ ψ(V 1

1 ) + V 1
2 ]/V 1

2

iv) Note that from the inclusions V ′
i ⊂ Vi in ii), one obtains isomorphisms

FP1/V1
∼= [FP1/V

′
1 ]/[V1/V

′
1 ]

and
FP2/V2

∼= [FP2/V
′
2 ]/[V2/V

′
2 ].

From condition iii), ϕ1, ϕ2 induce isomorphisms of the quotients

[FP1/V
′
1 ]/[V1/V

′
1 ] → [TP 1

1
/V 1

1 ]/[(O(1)aP 1
1

+ V 1
1 + ψ−1(V 1

2 ))/V 1
1 ]

and
[FP2/V

′
2 ]/[V2/V

′
2 ] → [TP 1

2
/V 1

2 ]/[(O(1)aP 1
2

+ ψ(V 1
1 ) + V 1

2 )/V 1
2 ].

The morphism ψ induces a map between the two target spaces above. We
require then that the following diagram commutes

[F ′
P1
/V ′

1 ]/[V1/V
′
1 ] ϕ̄1

→ [TP 1
1
/V 1

1 ]/[(O(1)a
P 1

1
+ V 1

1 + ψ−1(V 1
2 ))/V 1

1

↓ ϕ ↓ ψ̄
[F ′

P2
/V ′

2 ]/[V2/V
′
2 ] ϕ̄2

→ [(TP 1
2
/V 1

2 ]/[O(1)a
P 1

2
+ ψ(V 1

1 ) + V 1
2 )/V 1

2 ] .

Theorem 4.2

The moduli space of torsion-free (ai) semistable sheaves on C0 parametrizes
equivalence classes of torsion-free sheaves on the family of curves defined in (4.1)
semistable by the polarization that has weight ai in the components of C0 and
weight 0 in the additional components. Every element of the moduli space admits
representatives which are vector bundles on a suitable curve.



544 Teixidor

The last statement of the Theorem is easy to prove. Assume that the stalk of
the torsion-free at the node is isomorphic to a direct sum of a copies of the maximal
ideal and n− a copies of the local ring of the node. Introduce a rational component
separating the node. Take on this component O(1)a ⊕On−a. Glue [O(1)a]P 1

1
to V1

and [O(1)a]P 1
2

to V2. Glue then the rest so that mod O(1)a one obtains the original
gluing. With definition (4.1),this new vector bundle is equivalent to the torsion-free
sheaf we started with.

In order to prove the remaining statements in (4.2), we shall need a few pre-
liminary Lemmas.

Lemma 4.3

Let E and E′ be related as in (4.1). Then the space of sections of E can be

identified to the space of sections of E′ in a canonical way (by means of the restriction

map).

Proof. We follow the notations that we introduced in (4.1). Moreover, for a section
σ, we shall denote by σ̄ class in either FP1/V1 or FP2/V2. Then a section of the
bundle E is given by a section s of F such that ϕ(s̄1) = s̄2 . Let us show that we
can construct from s a unique section of E′. This amounts to saying that there is a
unique section t of O(1)a ⊕ On−a such that ϕ1(s̄′1) = t̄11 and ϕ2(s̄′2) = t̄12 where σ̄′

denotes class of a section σ in either FP1/V
′
1 or FP2/V

′
2 and σ̄1 denotes class in either

TP 1
1
/V 1

1 or TP 1
2
/V 1

2 . Define t1 = ϕ1(s̄′1) and t2 = ϕ2(s̄′2) in (O(1)a ⊕ On−a)P 1
1
/V 1

1

and (O(1)a ⊕On−a)P 1
2
/V 1

2 respectively. Consider now the natural map f from the
space of sections of the restriction of the torsion-free sheaf to the rational curve to
the quotients of the fibers at the two points. Consider the composition

H0(O(1)a ⊕On−a)
f−→(O(1)a ⊕On−a)P 1

1
/V 1

1 ⊕ (O(1)a ⊕On−a)P 1
2
/V 1

2
g−→FP1/V1 .

Here the map g has components (ϕπ1ϕ
−1
1 ,−π2ϕ

−1
2 ) where π1 and π2 are natural

projections. From the commutativity of the diagram in (4.1) gf = 0. Hence f factors
through a map f ′ with image in ker g. The condition ϕ(s̄1) = s̄2 is equivalent to
(t1, t2) being in the kernel of g. Then, the existence of t amounts to the surjectivity
of f ′.

Denote by v′1 and v′2 the dimensions of V ′
1 and V ′

2 respectively. From ii) and iii)
in (4.1), FP2/V2 is a vector space of dimension n−dimV2 = n−a−v′1−v′2. The vector
space (O(1)a⊕ On−a)P 1

1
/V 1

1 ⊕ (O(1)a ⊕ On−a)P 1
2
/V 1

2 has dimension 2n − v′1 − v′2.
Therefore, ker g is a vector space of dimension n + a = h0(O(1)a ⊕On−a). Hence,
f ′ is surjective if and only if it is injective.
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Write H0(O(1)a ⊕ On−a) = H0(O(1)a) ⊕ H0(On−a). A section of O(1)a is
completely determined by its fiber at two points. Hence, the map from H0(O(1)a)
to (O(1)a)P 1

1
⊕ (O(1)a)P 1

2
is injective.

Note also that a section of On−a is completely determined by the stalk at one
point. By assumption, V 1

1 and V 1
2 do not intersect O(1)a

P 1
1

and O(1)a
P 1

2
respectively

and ψ(V 1
1 ) does not intersect V 1

2 . Hence the map induced by f

H0(On−a) → [(O(1)a ⊕On−a)P 1
1
/(O(1)a)P 1

1
⊕ V 1

1 )]
⊕

[(O(1)a ⊕On−a)P 1
2
/(O(1)a)P 1

2
⊕ V 1

2 )]

is injective too. Therefore, f ′ is injective and this proves the lemma. �

Lemma 4.4

If E and E′ are related as in (4.1), then one of them is (semi)stable for a

polarisation ai if and only if the other is for the polarisation which coincides with

ai on the old components and is zero on the new rational component.

Proof. Assume E is stable. Let G′ be a subsheaf of E′. Then G′ is obtained from
subsheaves H of F and J of O(1)a⊕On−a by identifying the fibers at P1 and P2 by
means of the restrictions of the identifications in (4.1). From the commutativity of
the diagram in (4, 1)iv), HP1/V1 ∩HP1 is identified to HP2/V2 ∩HP2 . Hence it gives
rise to a subsheaf G of E. From the semistability of E,χ(G)/(

∑
aini)(≤) < χ(E)/n.

We can write

χ(G) = χ(H) − dimGP = χ(H) − (dimHP1 − dimV1 ∩HP1)

and

χ(G′) = χ(H) + χ(J) − dimG′
P1

− dimG′
P2

= χ(H) + χ(J) − (dimHP1 − dimV ′
1 ∩HP1) − (dimJP 1

2
− dimV 1

2 ∩ JP 1
2
).

Notice that J is a subsheaf of O(1)a ⊕On−a. Hence

χ(J) ≤ rk(J ∩ O(1)a)P 1
1

+ rkJP 1
2

+ dim[(J)P 1
1
∩ ψ−1(V 1

2 )] − dim[(J)P 1
2
∩ V 1

2 ].

Also

dimV1 ∩HP1 = dimϕ−1
1 (V 1

2 + O(1)aP 1
1
) ∩HP1

≥ dim((V ′
1 ∩HP1) + dimO(1)aP 1

1
∩ ϕ1(HP 1

1
) + dimψ−1(V 1

2 ) ∩ ϕ1(HP 1
1
) .
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Then,

χ(G′) ≤ χ(H) − dimHP1 + dimV ′
1 ∩HP1 + (rk(J ∩ O(1)a)P 1

1

− dimO(1)aP 1
1
∩ ϕ1(HP 1

1
)) + (dim(J)P 1

2
∩ ψ−1(V 1

2 )

− dimψ−1(V 1
2 ) ∩ ϕ1(HP 1

1
)) ≤ χ(H) − dimHP1 + dimV1 ∩HP1

= χ(G).

It remains to show (with the notations of (4.4)) that if
∑

aini = 1 and G′ �=
E′, χ(G′) < χ(E′). If G �= E, this follows from χ(G′) ≤ χ(G) and the semistability
of E. If G = E, then J �= O(1)a

⊕
On−a. Hence χ(J) < χ(O(1)a

⊕
On−a) and

χ(G′) < χ(E′).
Assume now that the sheaf E′ on the curve with a rational component is stable.

We want to show that E is stable too.
Let G be a subsheaf of E. Then G is obtained from a subsheaf H of F by means

of the identification of HP1/V1∩HP1 and HP2/V2∩HP2 induced by the identification
of the fibers of F . We now choose a subsheaf J of O(1)a

⊕
On−a in the following

way.
Choose dimHP1 −dimV1∩HP1 copies of O which glue with both HP1/V

′
1 ∩HP1

and HP2/V
′
2 ∩HP2 . This is possible because of the compatibility of the gluings in

(4.1) iv).
Choose

b = dimψ[ϕ1(HP1 ∩ (O(1)a)P 1
1
)] ∩ φ2(HP2) ∩ O(1)aP 1

2

copies of O(1) that glue with both φ1(HP1) ∩ O(1)a
P 1

1
and ϕ2(HP2) ∩ O(1)a

P 1
2
.

Choose dim(HP1) ∩ O(1)a
P 1

1
) − b copies of O(1)(−P 1

2 ) which together with the
above glue with ϕ1(HP1) ∩ O(1)a

P 1
1

and similarly choose dimϕ2(HP2) ∩ O(1)a
P 1

2
− b

copies of O(1)a(−P 1
1 ).

Consider the subspace of [ϕ1(HP1) ∩ ψ−1(V 1
2 )]/O(1)a. Choose a subbundle J1

of T made of copies of O that glues with this space at P 1
1 . Similarly, choose a

subbundle J2 of T made of copies of O that glues with [ϕ2(HP2)∩ψ(V 1
1 )]/O(1)a at

P 1
2 . Take on P1 the direct sum J of all the bundles chosen in this way.This can be

glued to H to produce a torsion-free subsheaf G of E′. One can check then that G′

has the same Euler-Poincaré characteristic as G. By the stability of E′, the result
follows. �

Lemma 4.5
There exists a d0 such that every sheaf E of depth one ai-semistable of

constant rank n such that µ(E) ≥ d0 satisfies E is generated by global sections and
h1(X,E) = 0.
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Proof. (Compare [7] p. 156, Proposition 16). Assume h1(E) �= 0. Then, there exists
a non-zero map from E to K. The Euler-Poincaré characteristic of the image is
bounded by an integer m which depends on K only. Denote by H the kernel of
this map. Then χ(H) > χ(E) − m. Let α = min{ai|ai �= 0}. If H differs from
E outside a component with ai �= 0

∑
airk(H|Ci) ≤ n − α. Then, by stability of

E, [χ(E) − m]/(n − α) ≤ χ(E)/n. So, χ(E) < nm/α and this is impossible if
χ(E) is large enough. Therefore H only differs from E on the union of the rational
components that have ai = 0. From Lemma (1.5), the restriction of E to such a
chain C̃ is a direct sum of line bundles of degree 0 and 1. Therefore, we have a
non-zero map L1 ⊕ . . . ⊕ Ln → w|∼C which vanishes at the two end points. As the
degree of w|∼C is zero, this is impossible.

The condition for E to be generated by global sections is that h1(E(−x)) = 0 for
every x. As before, we find that h1(E|C−C̃) = 0. Moreover, for a rational component,
the restriction of E(−x) is either a direct sum of copies of O and O(−1) or a direct
sum of copies of O and O(1) depending on whether the point belongs or not to the
component. Hence h1 is zero. �
Proof of (4.2). Fix a curve C0 and a polarisation a as in (4.2). Fix a rank n and
an Euler-Poincare characteristic χ. Consider the set of curves C obtained from C0

by adding a few chains of rational components separating a node in C0. Consider
a polarisation in C as in (4.4). Choose an invertible sheaf O(1) on C such that
degO(1)|Ci

/degO(1) = ai. Define the polynomial P (m) = χ(E(m)). Let Q(C) be
Grothendieck’s scheme of quotients of O ⊗ kχ with Hilbert polynomial P . Let F
be the universal sheaf on Q. Denote by R the open set of points q such that Fq is
torsion free and the map from kχ to H0(Fq) is an isomorphism. Denote by Rs and
Rss the subset of R consisting of semistable and stable points.

For each component Ci of C, choose an integer Ni >> 0 such that Ni/
∑

Ni =
ai. Choose Ni points on Ci in general position.

Denote by G(a, χ) the Grassmannian of quotients of dimension a of kχ. Let

Z =
∏
i

G(n, χ)Ni .

Consider the map t : R → Z given by sending a sheaf Fq to its fibers at the
chosen points on each component. From Lemma (4.3) above, t identifies all the
point in an equivalence class by the relation (4.1). From [7] Theorem 19 i) p. 158,
the map from the set of equivalence classes is injective. From Lemma (4.4) above
and Theorem 19 ii) and iii) in [7], the set of stable (semistable) points in R coincides
with the inverse image of the set of stable (semistable points in the Grassmannian
by the action of the linear group. Hence, the set of stable sheaves on the variable
curve modulo the equivalence relation in (4.1) is naturally identified to the moduli
space of (semi)stable sheaves on the curve C0. �
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