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Abstract

In this paper we study the global structure of projective threefolds X whose
anticanonical bundle −KX is nef.

Introduction

In this paper we study the global structure of projective threefolds X whose anti-
canonical bundle −KX is nef. In differential geometric terms this means that we
can find metrics on −KX = detTX (where TX denotes the tangent bundle of X)
such that the negative part of the curvature is as small as we want. In algebraic
terms nefness means that the intersection number −KX ·C ≥ 0 for every irreducible
curve C ⊂ X. The notion of nefness is weaker than the requirement of a metric
of semipositive curvature and is the appropriate notion in the context of algebraic
geometry.

In [6] it was proved that the Albanese map α : X −→ Alb(X) is a surjective
submersion if −KX carries a metric of semi-positive curvature, or, equivalently, if X
carries a Kähler metric with semipositive Ricci curvature. It was conjectured that
the same holds if −KX is only nef, but there are very serious difficulties with the
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old proof, because the metric of semi-positive curvature has to be substituted by a
sequence of metrics whose negative parts in the curvature converge to 0. The conjec-
ture splits naturally into two parts: surjectivity of α and smoothness. Surjectivity
was proved in dimension 3 already in [6] and in general by Qi Zhang [30], using char
p. Our main result now proves smoothness in dimension 3:

Theorem

Let X be a smooth projective threefold with −KX nef. Then the Albanese map

is a surjective submersion.

Actually much more should be true: there should be a splitting theorem: the
universal cover of X should be the product of some Cm and a simply connected
manifold. Again this is true if X has semipositive Ricci curvature [8].

The above theorem should also be true in the Kähler case. Surjectivity in the
threefold Kähler case is proved in [9], in higher dimensions it is still open. Concerning
smoothness for Kähler threefolds, our methods use minimal model theory, which at
the moment is not available in the non-algebraic situation.

We are now describing the methods of the proof of the above theorem. First
of all notice that we may assume that KX is not nef, because otherwise KX would
be numerically trivial and then everything is clear by the decomposition theorem
of Beauville-Bogomolov-Kobayashi, see e.g. [3]. Since KX is not nef, we have a
contraction of an extremal ray, say ϕ : X −→ Y. The Albanese map α factorises
over ϕ (of course we assume that X has at least one 1-form). If dimY < 3, the
structure of ϕ is well understood and we can work out the smoothness of α using
the informations on ϕ. So suppose that ϕ is birational. It is easy to see [6] that
ϕ has to be the blow up of a smooth curve C ⊂ Y. If −KY is nef, then we can
proceed by induction on b2(Y ). This is almost always the case, but unfortunately
there is one exception, namely that C is rational with normal bundle O(−2)⊕O(−2).
This exception creates a lot of work; the way to get around with this phenomenon
(which a posteriori of course does not exist!), is to enlarge the category in which we
are working. Needless to say that we have to consider threefolds with Q−factorial
terminal singularities; shortly called terminal threefolds.

We say that −KX is almost nef for a terminal threefold X, if −KX · C ≥ 0 for
all curves C with only finitely many exceptions, and these exceptions are all rational
curves. Now in our original situation −KY is almost nef. So we can repeat the step;
if the next contraction, say ψ : Y −→ Z, is again birational, then −KZ will be
almost nef. If dimZ ≥ 2, we can construct a contradiction: ψ must be a submersion
and −KY is nef.
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Performing this program, i.e. repeating the process on Z if necessary, we might
encounter also small contractions (contracting only finitely many curves). Then we
have to perform a flip and fortunately this situation is easy in our context, the
existence of flips being proved by Mori. Since there are no infinite sequences of flips,
we will reach after a finite number of steps the case of a fibration X ′ −→ A and at
that level the Albanese will be a submersion. Now we still study backwards and see
that we can have blown up only a finite number of étale multi-sections over A in
case dimA = 1 and that X = X ′ if dimA = 2.

In the last section we treat the relative situation: given a surjective map π :
X −→ Y of projective manifolds such that −KX|Y is nef, is it true, that π is a
submersion?

Our main theorem is of course the special case that Y is abelian and π the
Albanese map. We restrict ourselves again mostly to the 3-dimensional case and
verify the conjecture in several special cases. We also show that in case dimY = 2,
we may assume that Y has positive irregularity but no rational curves. However, to
get around with the general case, we run into the same trouble as before with the
exceptional case of a blow-up of a rational curve with normal bundle O(−2)⊕O(−2).
Hopefully this difficulty can be overcome in the near future.

To attack the higher dimensional case however, it will certainly be necessary to
develop new methods.

We want to thank the referee for very useful comments and for pointing out
some inaccuracies.

This paper being almost finished modulo linguistical efforts, the second named
author died in february 1997. Although we have never met personally, the first
named author will always remember and gratefully acknowledge the fruitful and
enjoyable collaboration by letters and electronic mail.

0. Preliminaries

(0.1) Let X be a normal projective threefold.

(1) X is terminal if X has only terminal singularities.
(2) We will always denote numerical equivalence of divisors or curves by ≡ .
(3) A morphism ϕ : X −→ Y onto the normal projective threefold Y is an extremal

contraction (or Mori contraction) if −KX is ϕ−ample and if the Picard numbers
satisfy ρ(X) = ρ(Y ) + 1.

(4) We let N1(X) be the vector space generated by the Cartier divisor onX modulo
≡ and N1(X) the space generated by irreducible compact curves modulo ≡ .
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(5) Moreover NA(X) ⊂ N1(X) is the (closure of the) ample cone, and NE(X) ⊂
N1(X) is the smallest closed cone containing all classes of irreducible curves.
In the whole paper we will freely use the results from classification theory and

Mori theory and refer e.g. to [17], [24], [25]. The symbol X ⇀ Y signifies a rational
morphism from X to Y.

(0.2) A ruled surface is a P1−bundle S over a smooth compact curve C. It is given
as P(E) with a rank 2-bundle E on C.We can normalise E such that H0(E) 
= 0 but
H0(E ⊗ L) = 0 for all line bundles L with negative degree. We define the invariant
e of S by e = −c1(E). A section of E defines a section C0 of S −→ C with C2

0 = −e.
For details and description of NA(S) and NE(S) we refer to [14, Chapter V.2].
Note that E is semi-stable if and only if e ≤ 0.

(0.3) Let X be a normal variety with singular locus S. Let X0 = X \S with injection
i : X0 −→ X. Let S be a reflexive sheaf of rank 1 on X. Notice that S is locally free
on X0. Let m be an integer. Then we set S [m] = i∗((S|X0)⊗m).

Proposition 0.4

Let X be a smooth threefold, C a smooth curve and π : X −→ C a smooth

morphism and such that −KF is nef for all fibers F of π and such that F is not

minimal. Then there exists an étale base change σ : Y = X×CD −→ D induced by

an étale mapD −→ C, and a smooth effective divisor S ⊂ Y such that the restriction

σ|S : S −→ D yields a P1−bundle structure on S, and S ∩ F is a (−1)−curve in F

for all F. Hence Y can be blown down along σ|S.

Proof. First note that all non-minimal surfaces F with −KF nef are isomorphic to
the plane P2 blown up in at most 9 points in sufficiently general position [4]. Fix
an ample divisor H on X. Pick a fiber F of π and take a (−1)-curve E ⊂ F such
that H · E is minimal under all (−1)−curves in F. It follows immediately that the
normal bundle is of the form

NE|X = O ⊕O(−1) .

By the general theory of Hilbert schemes it follows that E moves algebraically in
a 1-dimensional family, i.e. there exists a projective curve B and an irreducible
effective divisor M ⊂ X × B, flat over B, such that M ∩ (X × 0) = E, identifying
X × 0 with X. We let

Et =M ∩ (X × t)
and shall identify X with X × t.
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Claim 1. Every Et is a (−1)−curve in some fiber F ′ of π.
It is clear that Et has to be a Cartier divisor in some fiber F ′ (consider the

deformations of the line bundle OF (E)). In particular every Et is Gorenstein and
Cohen-Macaulay and does not have embedded points. Observe next that

−KX · Et = −KX · E = 1 .

If −KF is ample for every F , then we deduce that Et is irreducible and reduced and
by flatness that Et � P1. Hence Et is a (−1)curve in F ′. If −KF is merely nef, we
need to be more careful. Assume that some Et0 is reducible. Write

Et0 =
∑
aiCi

with irreducible curves Ci. Since −KF ′ is nef, we conclude (after renumbering pos-
sibly) that

a0 = 1,−KF ′ · C0 = 1

and that
−KF ′ · Ci = 0, i ≥ 1.

We claim that H1(OEt0
) = 0 and therefore that all Ci are smooth rational curves.

One is tempted to argue by flatness, however it is not completely clear that
h0(OEt0

) = 1, since Et0 might not be reduced. So we argue as follows. Consider the
exact sequence

H1(OF ′) −→ H1(OEt0
) −→ H2(IEt0

).

Since F ′ is rational, it suffices to see

(∗) H2(IEt0
) = 0 .

Note that
H2(IEt0

) � H0
(
F ′,O(Et0) ⊗ ωF ′

)
.

Now F ′ is realised as blow-up of P2 in 9 points. Therefore it makes sense to speak
of a general line in F ′. Take such a general line l in F ′. It can be deformed to a
general line ls in a neighboring Fs. Now for general s we have

(
KFs

+ Es
)
· ls < 0

where Es is one of the (−1)−curves in our family sitting in Fs. Therefore

(
KF ′ + Et0

)
· l < 0
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proving (*). We conclude in particular that C0 is a (−1)−curve in F ′ and the
Ci, i ≥ 1, are (−2)−curves. We claim that B is smooth at t0. For this we need to
know

h1
(
NEt0 |X

)
= 0 .

This comes down to
h1(NEt0 |F ′) = 0

since h1(OEt0
) = 0. By Hq(OF ′) = 0, q ≥ 1, we must prove

h1
(
OF ′(Et0)

)
= 0 .

If this would not be true, then by χ(OF ′(Et0)) = 1, Et0 would move inside F ′.
Any deformation of Et0 must have however the same type of decomposition, so that
necessarily some of the Ci would have to move in F ′ which is absurd.

Now we look at the deformations of C0 and obtain a family (Cs)s∈A. For a small
neighborhood ∆ ⊂ B of t0 the curve Et is in π−1(t) (strictly speaking there is a
canonical map f : B −→ C, and f |∆ is an isomorphism, so that we can identify t
and f(t) for small t). In the same way, Ct ⊂ π−1(t). Therefore we can consider the
(non-effective) family of cycles (Et − Ct)t∈∆ so that

Et0 − C0 =
∑

i≥1

aiEi.

By the choice of Et, H · Et is minimal for general t, therefore H · Et ≤ H · Ct and
we conclude

H ·
∑

i≥1

aiEi = 0

and therefore ai = 0 for i ≥ 1 so that E0 is irreducible and reduced.
This proves Claim 1.

Claim 2. Let Z = pr1(M) ⊂ X. Then Z ∩ F ′ is a reduced union of (−1)− curves
and the number is independent of F ′.

In fact, the first part (reducedness) is immediate from Claim 1 (if a (−1)−curve
E in a fiber appears with multiplicity m ≥ 2 in Z ∩ F, then E could be deformed
itself to the neighboring fibers. This contradicts clearly the smoothness of B). The
independence of the number follows also from the smoothness of B.

In other words, Claim 2 says that f : B −→ C is étale. So set D = B, Y =
X×CD and define S to be the irreducible component of Z×CD mapping onto Z. �
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Remark (0.5). In (0.4) we used the nefness assumption for −KX only to make sure
that (-1)-curves in fibers can only be deformed into (-1)-curves in fibers. If we know
this for some other reason, then the conclusion of (0.4) remains true.

The next proposition should be well-known and hold in more generality; however
we could not find a reference, so we include the short proof.

Proposition 0.6

Let X be a terminal Q-factorial threefold and et ϕ : X −→ Y be the contraction

of an extremal ray. Assume that ϕ contracts a divisor E to a curve C. Assume that

Y is smooth and C is locally a complete intersection. Then ϕ is the blow-up of C

in Y.

Proof. Let N be the singular locus of C and Ñ = ϕ−1(N). Then Ñ is purely 1-
dimensional or empty since E is irreducible. Let π : X ′ −→ Y be the blow-up of Y
along C with exceptional set E′. Since C is locally a complete intersection, we have
E′ = P(N ∗

C). Thus N ′ = π∗(N) is purely 1-dimensional or empty, too. Since ϕ is
generically the blow-up of C, we have an isomorphism X̃ \ Ñ −→ X ′ \N ′. We next
observe that X ′ is normal. Locally (in Y ) we have X ′ ⊂ Y ×P1, since Y is smooth.
Hence X ′ is Cohen-Macaulay. On the other hand,

dim Sing(X ′) ≤ 1.

In fact, up to a finite set, Sing(X ′) ⊂ π−1(Sing(C)). Now all non-trivial fibers of π
are (smooth rational) curves, hence dim Sing(X ′) ≤ 1.

Putting things together, X ′ is normal. By [19, 2.1.13] we have X � X ′ unless
N ′ has an irreducible contractible component which is of course absurd. �

1. Fiber spaces

Definition 1.1. Let X be a normal projective variety and L a line bundle on
X. Then L is called almost nef, if there are at most finitely many rational curves
Ci, 1 ≤ i ≤ r, such that L · C ≥ 0 for all curves C 
= Ci.

Proposition 1.2

Let X be a terminal n-fold with −KX almost nef. Then κ(X) ≤ 0. Moreover

the following three statements are equivalent.

(a) κ(X) = 0
(b) KX ≡ 0
(c) KX is nef.
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Proof. The first assertion is clear.
If κ(X) = 0 and if KX 
≡ 0, then there exists a non-zero D ∈ |mKX | for some

positive m. Hence −KX cannot be almost nef.
If KX is nef, then KX ·C = 0 for all but finitely many curves. In particular we

have KX ·H1 · ... ·Hn−1 = 0 for all ample Hi on X. Therefore KX ≡ 0, see e.g. [27,
6.5]. �

Proposition 1.3

Let X be a terminal Q-factorial 3-fold with −KX almost nef. Assume that

there is an extremal contraction ϕ : X −→ C to the elliptic curve C. Then X is

smooth, ϕ is a submersion and −KX is nef.

Proof. All rational curves in X are contracted by ϕ, moreover all rational curves
are homologous up to multiples. Hence −KX must be nef.

(A) First note that for all positive m the sheaf

Vm = ϕ∗
(
−mKX|C

)
= ϕ∗

(
ω

[−m]
X|C

)

is a vector bundle since it is torsion free and dimC = 1. Now let us consider only
those m ∈ N such that mKX is Cartier. Then we have

(∗) c1(Vm) ≤ 0 .

For the proof of (*) we first compute (using the relative version of Kawamata-
Viehweg, recall that ω−1

X|C is ϕ−ample)

χ(ω−m
X|C) = χ

(
ϕ∗(ω−m

X|C)
)

= χ(Vm) = c1(Vm)

by Riemann-Roch on C. Next we compute χ(ω−m
X|C) on X. The first step is to apply

Riemann-Roch to obtain

χ
(
ω

[m+1]
X|C

)
= χ

(
ω

[m+1]
X

)
=

(
1 − 2(m+ 1)

)
χ(X,OX) +A ,

where A ≥ 0 (and A = 0 if and only if X is Gorenstein); see [28], [11] for the
singular Riemann-Roch version needed here. Note that we have used K3

X = 0; in
fact, if K3

X < 0, then −KX would be big and nef, hence q(X) = 0 (see [18, 3.11].
Since

χ(OX) = χ(OC) = 0 ,
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we gep

(1) χ
(
ω

[m+1]
X|C

)
≥ 0 .

Since mKX is Cartier, we have

ω
[m+1]
X|C = ωmX|C ⊗ ωX|C = ωmX|C ⊗ ωX ,

hence
χ
(
X,ω

[m+1]
X|C

)
= −χ

(
X,ω−m

X|C
)

by Serre duality. Thus χ(ω−m
X|C) ≤ 0 and we conclude c1(Vm) ≤ 0 .

(B) We claim that V = Vm is nef. In case X is smooth and ϕ a submersion this
is just [7, 3.21], applying (3.21) to L = ω−(m+1)

X|C . The proof of (3.21) remains valid
in our situation if ϕ is only flat (which is true since dimC = 1, but X is still
assumed to be smooth). If X is singular, we argue as follows. Let π : X̂ −→ X be
a desingularisation and let ϕ̂ : X̂ −→ C denote the induced map. Let

Lm = π∗
(
ω

[−(m+1)]
X|C

)
/torsion;

then Lm is locally free, at least if π is chosen suitably (see e.g. [13]). At the same
time we can achieve that

π∗
(
ω

[−(m+1)]
X|C

)⊗m
/torsion = π∗

(
ω

[−m(m+1)]
X|C

)
/torsion

is locally free. Then it is immediately checked that mLm = π∗(ω−m
X|C)m+1, therefore

mLm is nef, and so does Lm. By the flat version of [7, 3.21] the bundle

ϕ̂∗
(
ωX̂|C ⊗ Lm

)

is nef. Now
π∗

(
ωX̂|C ⊗ Lm

)
⊂

(
ωX|C ⊗ ω[−(m+1)]

X|C
)∗∗ = ω−m

X|C ,

since the first sheaf is torsion free, the second is reflexive and both coincide outside
a finite set. Therefore

ϕ̂∗
(
ωX̂|C ⊗ Lm

)
⊂ ϕ∗

(
ω−m
X|C

)
= Vm ,

and the inclusion is an isomorphism generically. Thus Vm is nef. Since c1(Vm) ≤ 0,
we conclude that Vm is numerically flat, i.e. both Vm and V ∗

m are nef (see [7]), in
particular c1(Vm) = 0.
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By (B) we conclude

χ
(
X,ω

[m+1]
X

)
= −χ

(
X,ω−m

X

)
= χ(Vm) = 0 .

Therefore our reasoning in (A) proves that X is Gorenstein.

(C) If m� 0, we have an embedding

i : X ↪→ P(V ) ,

since −mKX|C is ϕ−very ample. Let r = rkV and OX(1) = i∗(OP(V )(1)). Then by
construction

−mKX = OX(1) ⊗ ϕ∗(L)

with some line bundle L on C. We claim that

c1(L) = 0.

To verify this, first notice from −mKX = OX(1) ⊗ ϕ∗(L) that

(+) V = Vm = ϕ∗
(
OX(1)

)
⊗ L .

Now consider the exact sequence

0 −→ IX ⊗OP(V )(1) −→ OP(V )(1) −→ OX(1) −→ 0

and apply π∗ to obtain

0 −→ π∗
(
IX ⊗OP(V )(1)

)
−→ V −→ ϕ∗

(
OX(1)

)
(++)

−→ R1π∗
(
IX ⊗OP(V )(1)

)
−→ 0 .

We check that
R1π∗(IX ⊗OP(V )(1)) = 0 .

In fact, this sheaf is 0 generically, since for general c ∈ C, the embedding Xc =
ϕ−1(c) ⊂ π−1(c) is defined by H0(Xc,−mKXc

) which implies

H1
(
Xc, IXc

(1)
)

= 0 .

Since however ϕ∗(−mKX) is locally free and Rqϕ∗(−mKX) = 0 for q > 0, standard
semi-continuity theorems (notice that ϕ is flat!) imply that h0(Xc,−mKXc) is
constant. Since

H1
(
Xc,−mKXc

)
= 0 ,
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as we check easily, we obtain

H1
(
Xc, IXc(1)

)
= 0

for all c ∈ C, hence R1π∗(IX ⊗ OP(V )(1)) = 0. Since rkV = rk(ϕ∗(OX(1)) by (+),
we conclude

V � ϕ∗
(
OX(1)

)

by (++) and the R1−vanishing. Again from (+) we finally obtain

c1(L) = 0 .

Using
KP(V ) = OP(V )(−r) ⊗ π∗(detV ) ,

we obtain by the adjunction formula

(∗∗) OX(rm− 1) = ϕ∗
(
(detV )m ⊗ L

)
⊗ (detNX)m.

Now it is well-known that P(V ) is almost homogeneous (and the tangent bundle
TP(V ) is nef) (cp. [4]), i.e. the holomorphic vector fields generate TP(V ) outside
some proper analytic set S ⊂ P(V ).

(C1) We first treat the case that X 
⊂ S. Assume that ϕ is not a submersion. This
means that the sheaf of relative Kähler differentials Ω1

X|C is not locally free of rank 2.
Note that once we know that Ω1

X|C is locally free, then automatically X must be
smooth. We are first going to show that under our assumption

(2) h0
(
NX|P(V )

)
> rkN .

Here N denotes the normal sheaf of X ⊂ P(V ), the dual of I/I2. Let ω be the
pull-back of a non-zero 1-form from C. From the exact sequence

0 −→ ϕ∗(Ω1
C) −→ Ω1

X −→ Ω1
X|C −→ 0

we see that ω has zeroes exactly at some of the singularities of X and at the smooth
points of X where ϕ is not a submersion. Consider the exact sequence of tangent
sheaves

(S) 0 −→ TX −→ TP(V )|X −→ NX .



476 Peternell and Serrano

This sequence shows that NX is generated by global sections outside the set S̃ =
S ∪ SingX. If

h0(N ) = rkN ,

then by (S) also TX would be generically generated. Hence we can find v ∈ H0(TX)
such that ω(v) 
= 0, so that ω(v) is a non-zero constant holomorphic function and ω
has no zeroes. Therefore ϕ can fail to be a submersion at most at the singularities
of X, in particular inequality (2) holds already for X smooth. In the remaining case
we argue as follows. Since TX is generically generated, X is almost homogeneous
with respect to Auto(X), i.e. the automorphisms act with an open orbit. Every
x ∈ Sing(X) must be a fixed point. Hence the fiber of ϕ containing x is invariant
under the action and consequently the induced action on C has a fixed point. C
being elliptic, the action on C is trivial, but then X cannot be almost homogeneous.
Of course this argument can also be used in the case X smooth.

Now (2) is proved. In particular, NX being generically spanned, we have

h0
(
detNX

)
≥ 2 .

By (**) we conclude the existence of some n0 ∈ N and a line bundle G0 ∈ Pic0(C)
such that

h0
(
ω−n0
X ⊗ ϕ∗(G0)

)
≥ 2 .

Note that necessarily n0KX is Cartier. We claim:

(***) there is some n1 ∈ N and a G1 ∈ Pic0(C) such that the base locus B1 of the
linear system |ω−n1

X ⊗ ϕ∗(G1)| has dimension ≤ 1.

Proof of (***): If already the base locus B0 of our linear system |ω−n0
X ⊗ ϕ∗(G0)|

has dimension ≤ 1, then we are done; so assume that dimB0 = 2. Let B̃0 be the
2-dimensional part (with appropriate multiplicities). Let

M = ω−n0
X ⊗ ϕ∗(G0) ⊗OX(−B̃0).

Then the base locus of |M | has dimension at most 1. We can write

OX(B̃0) = ω−µ
X ⊗ ϕ∗(H),

note that B̃0 is Cartier and that µ is a non-negative rational number and H is
Q−Cartier on C. Now choose k ∈ N such that k(n0 + µ) = ρm for some positive
integer ρ where mKX is Cartier and let n1 = ρm. Then we consider kM instead of
M, of course the base locus of |kM | still has dimension at most 1. We have

kM = ω−n1
X ⊗ ϕ∗

(
Gk

0 ⊗H−k
)
.
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If H ≡ 0, we are done, so assume H 
≡ 0. Since

0 
= H0
(
X,Mk

)
= H0

(
C, Vn1 ⊗H−k ⊗ Gk

0

)
,

the numerical flatness of Vn1 forces degH < 0. But then, going back to the decom-
position of B̃0, we would have a section of −µKX vanishing on some fibers of ϕ
which gives a section of Vµ with zeroes, contradicting the flatness of Vµ. So H ≡ 0.
This proves (***).

Let
f : X ⇀ Y

be the map associated to the linear system |ω−n1
X ⊗ ϕ∗(G1)|. Since −KX is not big,

we have dimY = 1 or dimY = 2. Let F be a general fiber of f. Note first that in
case dimY = 1, the map f cannot be holomorphic, i.e. B1 
= ∅, because otherwise
K2

X = 0, which is impossible, ϕ being a del Pezzo fibration. We next treat the case
that f is holomorphic in case dimY = 2, or, more generally, that F ∩B1 = ∅. Then

KF = KX |F ≡ 0 .

Therefore F is an elliptic curve. Moreover

c1
(
OP(V )(1)

)
· F = 0 .

Using the tangent bundle sequence and the generic spannedness of TP(V ), we see
immediately that NF |P(V ) = O⊕N

F . Now the relative tangent bundle sequence for
π : P(V ) −→ C together with the relative Euler sequence imply that

h∗(V ) = ON
F ,

where h = π|F −→ C is the étale covering of F over C. Hence after the base change
F −→ C the space P(V ) becomes a product. It follows in particular that f must
be an elliptic bundle and that ϕ is smooth.

So we are reduced to the case that B1 
= ∅. Then we even have dimB1 = 1,
otherwise we could pass to m(−n1KX + ϕ∗G1)) to obtain base point freeness. Let
B ⊂ B1 be the 1-dimensional part of B1.

(a) We start with the case dimY = 1. First note that

F ≡ −ρKX
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with some positive rational number ρ. Take another general fiber F ′ and consider
the nef line bundle F ′|F (strictly speaking we should take λ such that λF ′ is Cartier
and consider λF ′|F ). We write (on F )

F ′|F = B +M,

M the movable part. Decomposing B =
∑
biB

i, we deduce from K3
X = 0 that

−KX ·
∑
biB

i +M = 0 .

Since −KX is nef, we conclude −KX · Bi = −KX ·M = for all i. Therefore all Bi

and M are homologous, i.e. contained in the half ray

R =
{
Z ∈ NE(X)|Z ·KX = 0

}

inside the 2-dimensional cone NE(X). There is a slight difficulty that M and B a
priori might not be Q−Cartier in F. To circumvent this, choose a desingularisation
σ : F̂ −→ F. Let M̂ be the strict transform of M in F̂ . Choose B̂j ⊂ F̂ such that
σ(B̂j) ⊂ Bi(j) and such that there is an equation

(3) σ∗(F ′|F ) = M̂ +
∑
b̂jB̂j + E,

where E is effective and contained in the exceptional locus for σ (including the non-
normal part). M̂ being irreducible and movable (for general choice of M), we have
M̂2 ≥ 0. If M̂2 > 0, then M̂ would be big, so σ(F ′|F ) would be big contradicting
the nefness of F ′ together with F ′2 · F = 0. Hence M̂2 = 0. Thus M̂ is base point
free and defines a map

λ̂ : F̂ −→ BF

to a curve BF . Now notice

σ∗(F ′) · M̂ = F ′ ·M = 0

(use F ′2 · F = 0 and the nefness of F ′|F ). Therefore σ∗(F ′) · l = 0, with l a fiber
of λ̂. Consequently all B̂j and all components of E must be contained in fibers of
λ̂ (just dot (3) with l). It follows that M is Cartier on F (and so does B) and its
sections define a morphism

λF : F −→ B′
F
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to a curve B′
F (with a natural map BF −→ B′

F ). Since M ·Bi = 0 (in F ), all Bi are
contracted by λF and hence the general fiber G of λF does not meet B1. We may
assume G connected. Since

KG = KF |G ≡ (1 − ρ)KX |G,

we have KG ≡ 0 and either G is smooth elliptic or a singular rational curve. This
second alternative cannot occur: since dimϕ(G) = 1 by virtue of KX · G = 0, the
curve G surjects to the elliptic curve C. Hence G is a smooth elliptic curve. Now we
argue as in the case dimY = 2 and f holomorphic and obtain a contradiction. (b)
The case dimY = 2 with dimB1 = 1 is essentially the same. We choose

D,D′ ∈
∣∣ − n1KX + ϕ∗(G)

∣∣

general, substitute F by D and F ′ by D′ and repeat the arguments of (a). This
finishes the case (C1).

(C2) We still must deal with the case X ⊂ S. The structure of S is however very
easy. Choose H ∈ Pic0(C), such that, putting Ṽ = V ⊗ H, the dimension h0(Ṽ )
gets maximal. Write Ṽ as the following extension

0 −→ Op
C −→ Ṽ −→ V ′ −→ 0 ,

such that h0(V ′) = 0. Then the exceptional orbit S is of the form S = P(V ′) ⊂
P(Ṽ ) = P(V ). Now we substitute V by V ′ and run the old argument. �

We proceed with investigating conic bundles over possibly singular surfaces.

Lemma 1.4

Let Y be a normal projective surface with only rational singularities. Assume

that −KY is almost nef and that q(Y ) ≥ 1. Then Y is either a P1−bundle over an

elliptic curve, an abelian surface or a hyperelliptic surface; in particular Y is smooth,

and −KY is nef.

Proof. Rational singularities are automatically Q−Gorenstein, hence the assump-
tion “−KY nef” makes sense. Let π : Ŷ −→ Y be a desingularisation. Since

−KŶ = π∗(−KY ) +A

with A effective (possibly 0), −KŶ is almost nef. Let σ : Ŷ −→ Ym be a map to the
minimal model. Then

−KŶ = σ∗(−KYm) − E
with E effective, hence −KYm is almost nef.
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If κ(Ym) ≥ 0, we conclude that KYm ≡ 0, so that Ym is abelian or hyperelliptic
(by the existence of a 1-form); moreover that Ŷ = Y = Ym by almost nefness of the
corresponding canonical bundles.

Hence we shall assume κ(Ym) = −∞ from now on. Ym being a P1−bundle over
a curve C of genus g(C) ≥ 1, it is clear that −KYm

is nef, hence C is an elliptic
curve. It remains to prove the following
(*) if λ : Y ′ −→ Ym is the blow-up of the point p ∈ Ym, then −KY ′ is not almost
nef.

Given (*), we conclude that Ŷ = Ym, and since Y has only rational singularities,
it follows Y = Ŷ = Ym.

For the proof of (*), we first note that −KY ′ must be nef if it is almost nef. In
fact, otherwise there is a rational curve C with KY ′ ·C > 0. Since C does not move,
it can only be the exceptional curve for λ or the strict transform of the ruling line
containing p. But in both cases KY ′ · C = −1. Hence −KY ′ is nef. On the other
hand K2

Y ′ = −1, contradiction. This proves (*) and finishes the proof of (1.4).

(1.5) Let ϕ : X −→W be an extremal contraction of the terminal Q-factorial three-
fold X to the surfaceW. It is well-known and easy to prove that ϕ is equidimensional
(since ρ(X) = ρ(Y ) + 1.) The surface W has only quotient singularities, i.e. (W, 0)
is log terminal, in particular W has only rational singularities (see [18]). Let

S = Sing(X);S′ = ϕ(S)

and
W0 =W \ S′, X0 = ϕ−1(W0) .

Then ϕ0 : X0 −→ W0 is a usual conic bundle and W0 is smooth. Let ∆0 denote its
discriminant locus and put ∆ = ∆0 ⊂W. �

Lemma 1.6

Assume the situation of (1.5). If −KX is almost nef, then −(4KW + ∆) is

almost nef.

Proof. Note that W is Q−factorial since it has only rational singularities. The
arguments in [20, 4.11] show that

ϕ∗(K2
X) = −(4KW + ∆)
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in N1(W ), since this has only to be checked on curves which are very ample divisors
on W (and therefore may be assumed not to pass through S′). Hence our claim is
clear: if

−(4KW + ∆) · C < 0 ,

then K2
X ·ϕ−1(C) ·C < 0, hence −KX |ϕ−1(C) cannot be nef, hence ϕ−1(C) contains

one of the finitely many rational curves C ′ with KX · C ′ > 0 so that C = ϕ(C ′). �

Proposition 1.7

Let X be a terminal Q-factorial threefold with −KX almost nef. Assume

q(X) = 1 and let α : X −→ C be the Albanese map to the elliptic curve C.

Let ϕ : X −→ W be an extremal contraction to the surface W. Then X is smooth

and α is a submersion. Moreover W is a hyperelliptic surface or a P1−bundle over

C with −KW nef.

Note that we do not claim here that −KX is nef; we will address to this point
in (1.8).

Proof. We shall use the notations of (1.5). If κ(Ŵ ) ≥ 0, Ŵ a desingularisation, then,
−(4KW + ∆) being almost nef, −KW is the sum of an almost nef and an effective
divisor which includes ∆. Passing to Ŵ and using the effectiveness of KŴ , it follows
immediately ∆ = 0. Hence W is hyperelliptic by (1.4). But then by a base change
we pass to the case alb(X) = 2,dimW = 2 treated in (1.9) and (1.10). However it
is also possible to make the following arguments work also in the hyperelliptic case.
From now we will assume κ(Ŵ ) = −∞.
(A) First we consider the case ∆ = 0. By (1.6) −KW is almost nef, hence W is
smooth by (1.4). We claim that

X0 = P(E0)

with an algebraic vector bundle E0 on W0. First we show that E0 exists as a holo-
morphic bundle. The obstruction for the P1−bundle X0 −→ W0 to be of the form
P(E0) is a torsion element

P ∈ H2(W0,O∗)

(see e.g. [10]). From the exponential sequence we see

H2(W0,O∗) � H3(W0,Z) ,
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if S′ 
= ∅. Assuming S′ 
= ∅ for the moment, we check easily via Mayer-Vietoris that
H3(W0,Z) is torsion free. Hence P = 0. If S′ = ∅ then X is smooth and ϕ is a
P1−bundle so that α is a submersion. Hence we will assume that S′ 
= ∅, i.e. that
X is singular.

Now we have X0 = P(E0) analytically. Therefore −KX0|W0 = OP(V )(2) an-
alytically with some rank 2-vector bundle V. We may assume V = E0. Of course
−KX0|W0 is algebraic; we want to show that E0 is algebraic, i.e. OP(E0)(1) is al-
gebraic. In fact, taking roots, there is a 2:1 Galois cover g : X̃0 −→ X0 and an
algebraic line bundle L on X̃0 such that

g∗(−KX0|W0) = L2.

So g∗(−KX0|W0) is algebraic and so does g∗g∗(−KX0|W0) � OX0 ⊕−KX0|W0 . So E0

can be taken to be an algebraic vector bundle. Thus E0 has a coherent extension to
W. The bidual of this extension is reflexive, hence locally free, W being a smooth
surface. Thus E0 has a vector bundle extension E. Let X̃ = P(E). Then X̃ and X
coincide outside finitely many curves. Thus X̃ � X by [19, 2.1.13]. Hence ϕ and
therefore α is a submersion.

(B) Now let ∆ 
= 0.
By (1.6), −(4KW + ∆) is almost nef. It follows already that −KW is almost

nef except possibly for the case that there might be an irrational curve B ⊂ ∆ with
KW ·B > 0.

If −KW is almost nef, then by (1.4) W is smooth, in fact a P1−bundle over C
with −KW nef [4]. We therefore shall prove now that −KW is almost nef. Assume
to the contrary that there is an irrational curve B such that

KW ·B > 0 .

We have already seen that necessarily B ⊂ ∆. Note that W is Q−factorial since W
has only rational singularities. In particular KW and B are Q−Cartier. We claim
that

KW +B ·B < 0 .

In fact, since −4(KW + ∆) is almost nef and B irrational, we have

−4(KW + ∆) ·B ≥ 0 ,

so that ∆ ·B ≤ −4(KW ·B). Consequently

B2 ≤ ∆ ·B ≤ −4(KW ·B) < −(KW ·B) .
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This proves the claim. Now let µ : B̃ −→ B be the normalisation. Choosem positive
such that m(KX +B) is Cartier. Then by the subadjunction lemma (see [17, 5-1-9]),
there is a canonical injection

ωm
B̃

−→ µ∗
(
OB(m(KX +B))

)
.

Hence degKB̃ < 0 and B is rational, contradiction. So −KW is almost nef.

(C) Now we know that W is a P1−bundle over C with −KW nef. Hence e(W ) =
0,−1. Moreover −(4KW + ∆) is nef. However X maybe still be singular and −KX

only almost nef. First let us see that X is Gorenstein and ϕ really a conic bundle.
We shall use the notations from (A). The sheaf

F = ϕ0∗(ω∗X)

is torsion free and locally free on W0. We claim that F is actually reflexive. In
fact, take x ∈ W \ W0, let U ⊂ W be an open neighborhood of x and take s ∈
H0(U \ {x},F). We need to prove that s extends to U. Consider s as an element of
H0(ϕ−1(U \ {x}, ω∗X). Since dimϕ−1(x) = 1 and since ω∗X = OX(−KX) is reflexive,
s extends to s̃ ∈ H0(ϕ−1(U), ω∗X). This proves the extendability of s on U and F
is reflexive. W being a smooth surface, F is locally free. X0 −→ W0 being a conic
bundle, there is an embedding X0 ↪→ P(F|W0). Let X̃ be the closure in P(F). Then
X̃ is clearly Gorenstein and we claim that X̃ is a (possibly singular) conic bundle.
To see this we let π : P(F) −→ W denote the projection and we must prove that
there is no point w ∈W such that π−1(w) ⊂ X̃. Consider the canonical morphism

α : ϕ∗(F) = ϕ∗ϕ∗(ω∗X) −→ ω∗X

Let S = Imα. Then we obtain an embedding

P(S) ⊂ P
(
ϕ∗(F)

)
= P(F) ×W X,

hence an embedding P(S) ⊂ P(F). It follows that X̃ is the unique irreducible
component of P(S) which is mapped onto W by π. Assuming the existence of a
point w ∈W as above, we have P2 � π−1(w) ⊂ P(S). If however

p : P(S) −→W

denotes the canonical projection, then, factorising p as P(S) −→ X −→W, it is clear
that p−1(w) cannot be P2, since ϕ us equidimensional [5], contradiction. Hence X̃
is a conic bundle. Now there is a birational map X ⇀ X̃, which is an isomorphism
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outside finitely many curves. Hence X � X̃ by [Ko89,2.1.13] and X is Gorenstein
and a conic bundle. Note that no component of a fiber of ϕ is contractible so that
[19, 2.1.13] is applicable.

Now we write −4KW = ∆ +D with a nef divisor D.

(C1) First we consider the case that e = 0. Then −4KW ≡ 8C0. Consequently
∆ ≡ aC0 and D ≡ bC0 with a+ b = 8.

So ∆ cknsists of a disjoint sections. Let y ∈ C and let Xy be the fiber of α over
y; clearly Xy is reduced. Since ∆ is smooth, every singular conic ϕ−1(x), x ∈ W, is
a pair of two different lines. Let

l = β−1(y),

β :W −→ C the projection. Then l meets ∆ transversally in a points and therefore
for y general, Xy is the blow-up of a Hirzebruch surface in a points. In particular,
K2

Xy
= 8 − a for all y. Suppose Xy singular. Consider the projection

p : Xy −→ l = P1.

Since the only singular fibers of p are line pairs, we see that Xy has only finitely
many singularities. Xy being Gorenstein (because X is Gorenstein), we conclude
that Xy is normal. Let

σ : X̂y −→ Xy

be the minimal desingularisation and

µ : X̂y −→ X̃y

a map to a minimal model. We can arrange things such that X̂y −→ l factors
through a map X̃y −→ l (just make X̂y −→ l relatively minimal). We conclude
that σ contract only parts of fibers of X̂y −→ l (and hence Xy has only rational
double points as singularities). Since K2

X̂y
= 8 − a, the birational map µ consists

of a blow-ups. On the other hand, Xy −→ l has exactly a singular fibers which are
line pairs. Therefore σ cannot contract any curve, so that Xy is smooth. Hence α
is a submersion. In particular X is smooth.

(C2) The argument in case e = −1 is essentially the same, we thus omit it. �
Remark. In case X is smooth in the situation of (1.7) and if −KX is nef, we can
prove the smoothness of α by direct local calculations, see (4.7).

Proposition 1.8
In (1.7) −KX is always nef. Moreover the discriminant locus ∆ of the conic

bundle ϕ is - after finite étale cover of the base C - of the form ∆ ≡ νC0, where C0

is a section of W with C2
0 = 0. If ν ≥ 3 or with W = P(O⊕L) with L a torsion line

bundle, then ϕ is analytically a P1−bundle, i.e. a conic bundle with discriminant
locus ∆ = ∅.
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Proof. We make use of the notations of the proof of (1.7). Suppose ∆ 
= 0.We know
that ∆ is smooth and that −KW is nef.

(1) In a first step we reduce to the case W = P1 × C.
(a) If the invariant e = −1, take a curve C0 with C2

0 = 1. By [29, Lemma 22],
W has three étale multi-sections Ci of degree 2, which are numerically equivalent to
2C0 −F. Take one of them, say C1 and perform the base change C1 −→ A to obtain
the new ruled surface W ′. Then W ′ has invariant e = 0. Hence the case e = −1 is
reduced to the case e = 0.

(b) Since −KW is nef, (a) implies e = 0. In that case ∆ ≡ νC0, where C2
0 = 0

and 1 ≤ ν ≤ 8. In fact, since −KF is nef, F is a Hirzebruch surface blown up in at
most 8 points and therefore

∆ ≡ νC0 + µl ,

where l is a fiber of β (compare the proof of (1.7)). Since on the other hand −(4KW +
∆) is nef and since −KW ≡ 2C0, we must have µ = 0 and 1 ≤ ν ≤ 8. We now show
that if ν/geq3, then we can reduce ourselves to W = P×C. If W = P(O⊕L) with
a topologically trivial line bundle L, then ∆ provides a multi-section, disjoint from
the two canonical sections. Hence W = P1 × C after a finite étale base change.
Therefore we may assume that W is a product in that case. If W = P(E) with E
a nontrivial extension of O by O, then ∆ provides a multi-section disjoint from the
canonical section, so that after a finite étale base change h : C̃ −→ C, the pull-back
W̃ has two disjoint sections, so that h∗(E) splits. This is impossible.

(2) We consider here the case W = P × C. Let pi denote the projections of W to
P1 and C. We consider the fibration g = p1 ◦ ϕ : X −→ P1. Its general fiber G is
aP1−bundle over an elliptic curve with −KG nef, hence G has invariant e = 0 or
e = −1. We can write

∆ =
⋃

{xi} × C .

Let Ci = {xi}×C and Gi = ϕ−1(Ci). Then every fiber of GilaCi is a reducible conic
and thus there exists an unramified 2:1 cover C̃i −→ Ci such that G̃i = Gi×Ci

C̃i −→
C̃i is a P1−bundle. The map h : G̃i −→ Gi is nothing than the normalisation of Gi.

By adjunction
KGi

= KX |Gi ,

hence, −KX being almost nef, it is clear that −KGi is nef. If ei is the invariant of
G̃i, it follows as above that ei ∈ {0,−1}. We have the well-known formula (see [23])

(∗) KG̃i
= h∗(KGi

) − Ñ ,
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where N is the non-normal locus (with structure given by the conductor ideal) and
Ñ the analytic preimage of N. Write

h∗(−KGi) ≡ αC0 + βF,

where as usual C0 is a section with C2
0 = −ei and F is a ruling line. Since h(F ) is

an irreducible component of a conic in X, it follows

α = h∗(−KGi) · F = 1.

By virtue of K2
Gi

= K2
G we have

h∗(−KGi)
2 = (C0 + βF )2 = 2β − ei = 0,

in particular ei = 0. From (*) and

−KG̃i
≡ 2C0 + eiF ≡ 2C0

it follows
Ñ ≡ C0

and
h∗(−KGi) ≡ C0.

Hence KGi is (numerically) not divisible by 2. Thus KG is not divisible by 2, hence
e = e(G) = −1. If C ′

0 and F ′ are the canonical section resp. a ruling line, we have
−KG ≡ 2C ′

0 + F ′. Taking limits yields

h∗(−KGi
) ≡ 2C0 + 2F,

contradiction.
Hence ∆ = ∅. Now it is clear that every fiber of α is P1 × P1 and therefore

−KX is nef.

(3) Next we treat the case ν = 1. Hence ∆ is a section of β :W −→ C with ∆2 = 0.
Then the general fiber of α : X −→ C is either

(a) P1 × P1 blown up in one point or
(b) the first Hirzebruch surface F1 blown up in one point, i.e. P2 blown up in

two points.
(a) We want to apply (0.5). We start with an irreducible component B of a reducible
conic sitting in a general fiber F. In other words, we consider α|F, which is a P1−
bundle over a rational curve blown up in one point and we take a (-1)-curve in a
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fiber of α. Since ϕ is a conic bundle, every deformation of B is still a (-1)-curve in
some fiber of α so that we can apply (0.5). We obtain an étale cover C̃ −→ C and
a base changed ϕ̃ : X̃ −→ C̃ and a birational morphism τ : X̃ −→ X ′ contracting
a (-1)-curve in every fiber of α. We obtain a submersion g : X ′ −→ C with general
fiber P1×P1. If we know that every fiber of g is P1×P1, then −KX′ is g−nef. Since
−KX′ is almost nef, we conclude that −KX′ is nef, hence −KX is nef and we are
done. This is certainly the case if g is a contraction of an extremal ray. If g is not an
extremal contraction, we can choose some contraction, say h : X ′ −→ Z, inducing
a map h′ : Z −→ C̃. It follows that dimZ = 2 and that h is a conic bundle. Since
however every F ′ is a Hirzebruch surface, it is clear that h must be a P1−bundle,
and therefore g is a bP1 × P1−bundle.

(b) We proceed in the same way. Now the general fiber of g is F1. Then either we
can repeat the process by another application of (0.5) or we argue as follows. Since
F ′ � F1, it is well known that h cannot be an extremal contraction. As in (a) we
choose a contraction h : X ′ −→ Z. If dimZ = 2, we conclude as in (a). If h is
birational, then the general fiber of h′ : Z −→ C is P2, thus h′ is a P2− bundle and
h is a F1− bundle. Therefore −KX is nef.

(4) The case ν = 2 is completely analogous; details are omitted.

(1.9) To end the discussion of contractions of fiber type, we must consider the case
alb(X) = 2,dimW = 2. Of course we assume −KX to be almost nef. In that case
α : X −→ Alb(X) = A has connected fibers [15, 24, 11.5.3]. Therefore the map
β : W −→ A has connected fibers, thus it is birational. We claim that β is an
isomorphism.

In fact, by (1.6) −(4KW + ∆) is nef, ∆ denoting the discriminant locus of the
“generic” conic bundle ϕ (cp. (1.5)). Let h : Ŵ −→ W be the minimal desin-
gularisation. Since the singularities of Ŵ are all rational double points, we have
KŴ = h∗(KW ).We conclude that −KŴ is the sum of an effective and a nef divisor.
But κ(Ŵ ) = 0, therefore ∆ = 0, and −KŴ ≡ 0. So Ŵ is a torus, and β ◦ h and in
particular β are isomorphisms.

So W = A. Then (1.6) once again proves ∆ = 0 so that ϕ is analytically a
P1−bundle outside a finite set of A. �

Proposition 1.10

In the situation of (1.9) X is analytically a P1−bundle over A. In particular X

is smooth and −KX is nef.
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Proof. First note that ϕ is equidimensional, as in (1.7). Let

S =
{
a ∈ A|Xa is singular

}
.

Then S is finite (or empty), (1.5,1.8). So X \ϕ−1(S) −→ A \S is a P1−bundle and
the same technique as in (1.7) shows that ϕ is a P1−bundle (noting that no fiber
of ϕ contains a contractible curve since ϕ is an extremal contraction). The required
torsion freeness of H2(A \ S,O∗) follows as in (1.7); it is equivalent to the torsion
freeness of

H3(A \ S,Z).

Now ϕ being a P1−bundle, X is smooth and −KX is nef. �

2. Birational Contractions

We shall always assume that X is a terminal Q-factorial threefold with −KX almost
nef.

Proposition 2.1

Let ϕ : X −→ Y be a divisorial contraction. Then −KY is almost nef.

Proof. Let E ⊂ X be the exceptional prime divisor contracted by ϕ. If dimϕ(E) = 0,
then our claim is obvious; hence we shall assume dimϕ(E) = 1 from now on. Let
C = dimϕ(E). We only have to show that KY · C ≤ 0, if C is irrational. We let
g : Ẽ −→ E and ν : C̃ −→ C be the normalisations and denote g the genus of C̃.
We obtain a map p : Ẽ −→ C̃.

Let h = g ◦ σ : Ê −→ E. Let f : Ê −→ E0 be the minimal model (note that
Ê is irrational!). Let C1 ⊂ E0 be a section with minimal self-intersection and put
C2

1 = −e. Let F be a general ruling line of E0. Choose λ such that both λKX , λKY

are Cartier. Then we have

λKX = ϕ∗(λKY ) + λE,

since ϕ is generically the blow-up of C. It follows that h∗(λKE) = h∗(λKX |E+λE|E)
is Cartier. Write

h∗(−λKX) = f∗(αC1 + βF ) +
∑
aiAi,

where the Ai are the exceptional components of f. Since ϕ is generically a blow-up,
we see immediately that

λ = α.
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By the same reason we have

h∗(λE|E) = f∗(−λC1 + γF ) +
∑
biAi.

We conclude by adjunction

h∗(λKE) ≡ f∗(−2λC1) + (γ − β)F ) +
∑

(bi − ai)Ai.

Now - passing to the level of sheaves - ωÊ is a subsheaf of h∗(ωE). Thus

ωλE0
= f∗(ωλÊ) ⊂

(
f∗h

∗(ωλE)
)∗∗
.

Since KE0 ≡ −2C1 + (2 − 2g − e)F, we obtain

−2λC1 + (γ − β)F ≡ λKE0 + ρF

with ρ ≥ 0. Squaring yields

−4λ2e+ 4λβ − 4λγ = 8λ2(1 − g) − λg,
hence −λe+ λβ − λγ ≤ 0. This implies β + γ ≥ 0. �

Proposition 2.2
Let ϕ : X ⇀ X+ be a flip. If −KX is almost nef, then so does −KX+ .

Proof. Let E ⊂ X and E+ ⊂ X+ be the exceptional sets so that ϕ : X \ E −→
X+\E+ is an isomorphism. Both E and E+ consist of finitely many rational curves,
so we do not have to care about curves in E+. Therefore it is sufficient to show the
following:

if C ⊂ X is an irreducible curve, C 
⊂ E, and if C+ ⊂ X+ denotes its strict
transform, then KX+ · C+ ≤ KX · C.

Choose a desingularisation g : X̂ −→ X such that the induced rational map
h : X̂ −→ X+ is a morphism. Then one has

KX̂ = g∗KX +
∑
λiEi

and
KX̂ = h∗KX+ +

∑
µiEi ,

where the Ei are the exceptional components of g. Then by [17, 5.1.11] we have
λi ≤ µi from which our inequality is clear. �

Proposition 2.3
Let X be a smooth projective threefold with −KX nef and positive irregularity

q(X). Let ϕ : X −→ Y be a divisorial contraction. Then ϕ is the blow-up of a
smooth curve C ⊂ Y and −KY is almost nef. If −KY is not nef, then C � P1 with
normal bundle NC|Y � O(−2) ⊕O(−2).
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Proof. [6]. �

The exception described in (2.3) is the reason why we introduce the notion
“almost nef”. In the end it will turn out that this exception does not happen. If
q(X) = 0 then the exception might very well occur.

3. The main theorem

Here we begin studying backwards: we start with a smooth object with −K nef and
ask how we can modify without destroying this property.

Proposition 3.1

Let Y be a smooth projective threefold with −KY nef. Let β : Y −→ A be its

Albanese map to the abelian surface A. We assume that β is a submersion. Let X

be a terminal threefold and let ϕ : X −→ Y be a divisorial contraction. Then −KX

is not almost nef.

Proof. We may assume that κ(Y ) = −∞, otherwise our claim is obvious. By our
assumption β is a P1−bundle analytically. Let E be the exceptional divisor of ϕ.

(a) First let dimϕ(E) = 0.We can write KX = ϕ∗(KY )+µE for some positive
rational number µ. Notice that X might not be smooth, even not Gorenstein as
examples using weighted blow-ups, say in P3, show. First of all we have

K3
X = K3

Y + µ3E3.

Since K3
Y = 0 and E3 > 0, we conclude K3

X > 0, hence −KX cannot be nef. If −KX

is almost nef, there is a rational curve C ⊂ X with KX · C > 0. Then ϕ(C) must
be a fiber of β, namely the fiber containing p = ϕ(E). In particular C is the unique
curve in X with KX ·C > 0. Observe that after a possible étale base change, we may
assume Y = P(V ) with a rank 2-bundle V on A. Since −KY is nef, V is numerically
flat (after another base change) [4, 7] and thus we have an exact sequence

0 −→ L1 −→ V −→ L2 −→ 0

with flat line bundles Li. In particular K2
Y = 0. Now take a general smooth surface

S through p and let Ŝ be its strict transform in X. Then

K2
X · Ŝ = K2

Y · S + 2ϕ∗(KY ) · E · Ŝ + µ2E2 · Ŝ = µ2E2 · Ŝ < 0 .
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Hence −KX |Ŝ cannot be nef; on the other hand Ŝ does not contain C, contradiction.
(b) If dimϕ(E) = 1, choose a general curve B ⊂ A. Let B̂ its preimage under

β ◦ ϕ. Then −KB̂|B is almost nef, hence nef and therefore B̂ −→ B is a submersion
(4.4). This proves βϕ(E) = 0. If −KX is almost nef, then an argument as in
(a) shows that −KX is nef. But in that case simple numerical calculations give a
contradiction, see (4.19) for the details in a slightly more general situation. �

Proposition 3.2

Let Y be a smooth projective threefold with −KY nef, β : Y −→ A the Albanese

to the elliptic curve A. Suppose that β is a submersion. Let ϕ : X −→ Y be the

blow-up of a point or a smooth curve C. If −KX is nef, then ϕ cannot be the blow-up

of a point. If ϕ is the blow-up of C, then C is an étale multi-section of β and α is

smooth.

Proof. The first claim, that ϕ is not the blow-up of a point, is obvious since we have
K3

X = K3
Y = 0. So assume that ϕ is the blow-up of the curve C. If dimβ(C) = 1,

then our claim follows from the more general proposition (4.11), therefore we shall
assume dimβ(C) = 0, so that C is contained in a fiber F of β. The case K2

F > 0
is treated in (4.11), too. Hence it remains to consider the case K2

F = 0. We may
assume κ(X) = −∞. Then either

(1) F is a P1−bundle over an elliptic curve with invariant e ≤ 0 or
(2) F is P2 blown up in nine sufficiently general points.

(1) In this case β factors by (0.4) in the following way

Y
γ−→ Z δ−→ A

with γ a P1−bundle and δ an elliptic bundle. Hence Z is hyperelliptic. Then we
perform an étale base change Z̃ −→ Z with Z̃ an abelian surface and conclude easily
by applying (3.1).

(2) Here we have a factorization

Y
γ1−→ Y1 −→ . . . γk−→ Yk δ−→ Z ε−→ A

or
Y

γ1−→ Y1 −→ . . . γk−→ Yk
ρ−→ A

with γj blow-ups of étale multi-sections, δ and ε both P1−bundles and ρ a
P2−bundle. Let Cj be the image of C in Yj . Let Ej ⊂ Yj−1 be the exceptional
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divisor of γj and let Bj be the center of γj so that Ej = γ−1
j (Bj). Now by the

computations of [6, p. 234-235] and of the proof of (4.11) below we have, in the
notations of (4.11) that b+µ = 0, which is to say that KY ·C = 0. Hence KF ·C = 0
and C is an elliptic curve. Moreover there is an index j such that Cj−1 ∩ Ej 
= ∅,
i.e. Cj ∩Bj 
= 0.

Every Bj is an elliptic curve; we now check that the normal bundle NBj⊂Yj is
flat (hence the ruled surface Ej has invariant e = 0). In fact, we see inductively that
−KYj−1 is nef and that K3

Yj−1
= 0. As in [6, p. 234] and (4.11) we write

−KYj−1 |Ej ≡ C0 + bf,

and
NEj |Yj−1 ≡ −C0 + µf,

where f is a ruling line of E. Then we have by [6]:

b+ µ = 2b− e.
On the other hand we have by the proof of (4.11) that

b+ µ = 0 and b =
e

2
.

Since e ≥ −1, we conclude e ≥ 0, hence b = µ = e = 0. So NBj |Yj
is flat.

With this last observation our claim now clearly follows from the

Sublemma 3.3.a Let Z be a smooth projective threefold, B ⊂ Z be a smooth
elliptic curve with flat normal bundle NB and ψ : Y −→ Z be the blow-up of B.
Denote E = ψ−1(B) the exceptional divisor of ψ. Let C ⊂ Y be a smooth curve
and ϕ : X −→ Y be the blow-up of C. Assume −KY nef and K3

Y = 0. Then −KX

is not nef unless C ∩ E = ∅.

Proof. We use analogous notations as in part (2) of the proof of (3.2) and have by
our assumptions (cp. [6, p. 234-235], (4.11)):

−KY |E ≡ 0; KE ≡ −2C0 .

Let Ê be the strict transform of E in X. Then

KX |Ê = ϕ∗(KY |E) +D,

where D is an effective divisor supported exactly on the exceptional set of Ê −→ E.
Now suppose that C ∩E 
= ∅. Then −KX |Ê ≡ ϕ∗(C0)−D, and, D being non-zero,
we conclude

K2
X · Ê = D2 < 0 ,

so that −KX cannot be nef.
This finishes the proof of both the Sublemma and (3.2). �
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In the proof of (3.3) we will see that (3.2) remains true also if we only suppose
−KX to be almost nef, but this turns out to be much more complicated.

We are now in the position to prove the main result of this paper.

Theorem 3.3

Let X be a smooth projective 3-fold with −KX nef. Then the Albanese map

α : X −→ A is a surjective submersion.

Proof. We know already by [6] that α is surjective. Of course we may assume that
q(X) > 0. If KX is nef, then by (1.2) KX ≡ 0 and it is well-known (see e.g. [3])
that after a finite étale cover X is a product of a torus and a K3-surface or X is a
torus. Then our assertion is clear. So we shall assume that KX is not nef. Then
κ(X) = −∞, hence X is uniruled, q(X) ≤ 2 and there exists an extremal contraction

ϕ : X −→ X1 .

We have a factorization α = β ◦ ϕ with β : X1 −→ A the Albanese of X1 (of course
X1 might be singular).

(1) First assume that dimX1 < dimX. Then we conclude by (1.3), (1.7) and
(1.10).

(2) Now suppose that dimX1 = dimX and that −KX1 is nef. Let E be the
exceptional divisor of ϕ. Then dimϕ(E) = 1; [6, 3.3]; otherwise (−KX1)

3 > 0 so
that −KX1 would be big and nef, hence q(X1) = 0 by [18]. Hence X1 is smooth
and by induction on ρ(X) we conclude that β is a submersion. Then α is smooth
by (3.1) and (3.2).

(3) Finally we deal with the case that dimX1 = dimX and that −KX1 is
not nef. By [6] this happens exactly when the exceptional divisor E is mapped to a
smooth rational curve C ⊂ X1 with normal bundle NC = O(−2)⊕O(−2). Moreover
K2

X · F = 0 for every fiber F of α. We must show that this special situation cannot
occur.

To this extend we perform Mori’s minimal model programme and obtain a
sequence

X −→ X1 −→ X2 −→ ... −→ Xk −→ Xk+1

of extremal contractions ϕi : Xi −→ Xi+1 resp. flips ϕi : Xi ⇀ Xi+1 such that

dimXk = 3,dimXk+1 ≤ 2 .

In order to simplify notations we let Y = Xk and Z = Xk+1. Furthermore let
f = ϕk. The map α clearly induces maps β : Y −→ A and γ : Z −→ A such that
β = γ ◦ f.
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By (2.1) and (2.2) −KY is almost nef. Hence by (1.3), (1.7), (1.8) and (1.10)
Y is smooth, −KY is nef and β is a submersion. It follows that ϕk−1 : Xk−1 −→ Y
cannot be a flip, so it has to be a divisorial contraction. If dimA = 2, we apply
(3.1) to conclude that −KXk−1 cannot be almost nef which contradicts the nefness
of −KX via (2.1) and (2.2).

Therefore we are left with the case that dimA = 1. Then either

Case I. β is the contraction of an extremal ray, in particular Z = A, or

Case II. dimZ = 2.
We are going to show that in both cases the sequence

X −→ ... −→ Xk−1 −→ Y

consists of blow-ups of étale multi-sections over A. To prove this, we proceed step
by step starting with Xk+1 = Y and we are allowed to perform étale base changes
on A.

Case I. By (1.3), β is a submersion so that β is a P2− or P1 × P1− bundle (0.4).
In the second subcase we can reduce by a base change to Case II, applying [4,
7.2] (β becomes a P1−bundle over a P1−bundle). For simplicity of notations let
W = Xk−1. We can write

Y = P(E0)

with a 3-bundle E0 over A. The nefness of −KY is equivalent to saying that

E0 ⊗
1
3

detE∗
0

is nef or that E0 is semi-stable. By another base change and normalisation, taking
into account [29], we have the following situation. There are exact sequences

(S1) 0 −→ O −→ E0 −→ F0 −→ 0

and

(S2) 0 −→ L1 −→ F0 −→ L2 −→ 0

with a 2-bundle F0 and topologically trivial bundles Li on A. Therefore we have a
distinguished surface

P := P(F0) ⊂ Y.
Of course the sequences (Si) might not be unique.
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(A) We are now going to investigate the structure of g and will show that g is the
blow-up of a ”canonical” section coming from some sequence (Si). First note that
g cannot be small since −KY is nef. So let E be the exceptional divisor of g. We
claim that

dim g(E) = 1 .

Suppose dim g(E) = 0. Then we argue similarly as in the beginning of (3.1). Namely,
if −KW is nef, then K3

W = 0, hence KW = g∗(KY ) + µE with positive µ, easily (as
before) gives

E3 = 0 ,

which is absurd. Hence −KW is not nef. Since g is a weighted blow-up (of type
(1, a, b) with relative prime positive integers a and b), i.e. the blow-up of the ideal
(x, ya, zb) is suitable coordinates, it is immediately calculated that −KW is still
relatively nef over A. Since −KW is not nef, we find an irreducible curve C such
that KW ·C > 0. Then C maps onto A, so that C is irracional. Hence −KW is not
almost nef.

So g(E) is a curve D. We are going to show that D −→ A is étale so that D
is a smooth elliptic curve, W is smooth and g the ordinary blow-up. Of course g is
generically the blow-up of the smooth curve D.

We will distinguish three different cases according to the position of D and P.

(a) D ∩ P is a finite non-empty set.
Let P̂ be the strict transform of P in W. By abuse of notation we will not

distinguish between g and g|E. Let C0 ⊂ P be a curve with C2
0 = 0 such that C0

and a ruling line F generate the cone of curves. Let E′ = E ∩ P̂. Then

−KW |P̂ = g∗(−KY |P) − E′ = g∗(−KP +NP) − E′ ≡ g∗(3C0) − E′;

here N denotes the normal bundle. If P̂ happens to be singular, we pass to a
desingularisation, so that we shall assume now P̂ to be smooth. It is actually
sufficient to consider the case where P̂ −→ P is the blow-up of one simple point; the
other cases will factorise over this case. We know that g∗(3C0)−E′ must be almost
nef. On the other hand we have

(
g∗(3C0) − E′)2 = −1,

hence g∗(3C0) − E′ is not nef. But clearly g∗(3C0) − E′ is nef on every rational
curve of W, contradiction.

(b) D ⊂ P.
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In this case D is locally a complete intersection curve, so that we know a priori
that g is the blow-up of D (0.6). We therefore know P̂ � P. If D ⊂ P is a ruling
fiber, we see immediately that −KW |P̂ is not almost nef, so assume that D is a
multi-section of P. Since −KW |P̂ ≡ g∗(3C0) − D, we conclude, identifying P̂ and
P and writing D ≡ aC0 + bF , that

3C0 −D ≡ (3 − a)C0 − bF

must be almost nef. By virtue of
(
3C0 −D

)
· F ≥ 0

and (
3C0 −D

)
· C0 ≥ 0,

we deduce that D ≡ aC0 with a ≤ 3. After another base change D becomes a section
and must be of the form D = P(Li), using the sequence (S2) (if F0 splits, then of
course we need a suitable choice of Li).

(c) D ∩ P = ∅.
Now D is a multi-section of β, let h : D −→ A denote the restriction of β. Then

D provides a section of P(h∗(E0)), disjoint from h∗(P). Thus h∗E0 = O ⊕ h∗(F0).
Let ζ ∈ H1(A,F ∗

0 ) denote the extension class defining (S1). By the above splitting
it follows h∗(ζ) = 0. On the other hand the restriction map

h∗ : H1(A,F ∗
0 ) −→ H1

(
D,h∗(F ∗

0 )
)

is injective since OA is a direct summand of h∗(OD) (we may assume that D is
smooth). Therefore sequence (S1) already splits and we conclude that D = P(O).

(B) Now we have completely determined the structure of g; it is (after base change)
the blow-up of one of the canonical section of Y coming from (S1) or (S2). Note
also that clearly −KW is nef. Now we proceed with the next contraction ϕk−2 :
Xk−2 −→ Xk−1, which we rename g1 : W1 −→ W. We proceed in the same way as
before, the arguments being similar. Note that P survives (as strict transform) in
W1; we denote the transform again by P. First we show

dim g1(E′) = 0

as before where E′ ⊂W1 again denotes the exceptional divisor or in case of a blow-
up of the smooth point p we have the following geometric argument. Let F̂ be the
fiber component of β ◦ g ◦ g1 such that p ∈ g1(F̂ ). Then F̂ � P2(x, p), the blow-up
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of P2 at x and p. First we shall assume that x and p are not infinitesimally near.
Then we choose an irreducible cubic C ⊂ P2 passing through x and p and having
multiplicity 2 at p. Let Ĉ be its strict transform in F̂ . Then - with A = F̂ ∩ E -

Ĉ ∈ | −KF̂ −A| .

Noticing that
−KW1 |F̂ = −KF̂ −A ,

we conclude, using Ĉ, that −KW1 |F̂ is nef, and therefore −KW1 is relatively nef
with respect to β ◦ g ◦ g1. In particular

−KW1 · C ≥ 0

for all rational curves C ⊂ W1. Since −KW1 is almost nef, it is actually nef. But
K3

W1
= 1, since K3

W = 0, contradiction.
If p is infinitesimally near to x, then −KF̂ − A is no longer nef, so we argue

as follows. We consider the P1−bundle E −→ D and let Ê ⊂ W1 be its strict
transform. The normal bundle ND|W is a flat vector bundle. Hence KE ≡ −2C0

and N∗
E|W ≡ C0. Thus

−KW |E ≡ C0.

Now
−KW1 |Ê = g∗1(−KW )|Ê − 2E′|Ê ≡ g∗1(C0) − 2l

where l = E′ ∩ Ê. Here we have used p ∈ E, which follows from the fact that p and
x are infinitesimally near. We conclude that g∗1(C0) − 2l is almost nef. Now take
a section C ∈ |C0| resp. C ∈ |C0 + F | with a ruling line F. Then, denoting Ĉ the
strict transform in Ê,

g∗1(C0) − 2l · Ĉ < 0 ,

contradiction.

Therefore we know that g1 is not the blow-up of a point, hence it must be
centered at a curve D1. First suppose D1 ⊂ E. Then g1 is the blow-up of D1 (0.6).
We identify Ê with E. Then we have

−KW1 |E = −KW |E −D1 ≡ C0 −D1 .

So C0 −D1 is almost nef. We conclude easily that D1 ≡ C0. So D1 is a section of
W1 −→ C. If D1 
⊂ E, we consider D ∩P and conclude as in (A), distinguishing the
cases D ∩ P finite, empty or D ⊂ P. Again −KW1 is nef.
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In the next step we have to consider g2 :W2 −→W1 and again have to rule out
the blow-up of a point. Here F̂ = P2(x1, x2, p) and it is convenient in the case of
general position to choose a line li ⊂ P2 such that x1, x2 ∈ l1 and p ∈ l1 ∩ l2. Then

l̂1 + l̂2 + l̂3 ∈ | −KF̂ − E| ,

from which the nefness of −KW2 |F̂ is an immediate consequence. In the infinitesimal
near case we argue as before.

(D) Continuing this way we can handle 5 steps (afterwards the linear system |−KF̂−
E| = ∅.) In every fiber F4 ofW4 −→ A at most two points can be infinitesimally near,
otherwise −KF5 would no longer be nef. Mapping all the centers of the blow-ups
ϕi to Y , we therefore obtain at least 4 disjoint multi-sections of Y = P(E0) −→ A.
Comparing with (Si), we conclude that for a suitable choice of (Si) and after possibly
substituting E by E ⊗ L, with L topologically trivial, we have either

F0 = O ⊕O

with all the sections to be blown up in P(F0), or

E0 = O⊕3.

But the first case cannot occur: looking again at a fiber F4, we then would find 4
points in P2 (to be blown up) on a line which is not possible since −KF4 is nef. So
we have Y = P2 ×A .
(E) Now our claim follows very easily: assume that we have done already j steps,
i.e. we have blown up only sections of the form xi × A. Then the result Wj−1 is of
the form

Wj−1 = P2(x1, ..., xj) ×A .

Now suppose that g :Wj −→Wj−1 is the blow up of a point p = (p1, p2) ∈Wj−1×A.
Then let B = p1 ×A. We see immediately that

KWj ·B > 0 ,

contradicting the almost nefness of −KWj
. So g contracts a divisor to a curve C.

Choose a generic smooth point p ∈ C and define B as before. If C 
= B, the same
computation as above yields a contradiction, hence C is as claimed.

(F) Conclusively X −→ Y is the blow-up of étale (multi-)sections so that ϕ : X −→
X1 cannot be the blow-up of a rational curve. This finishes Case I.
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Case II. This case is done partly in the same way, partly reduced to Case I. Note
that −KZ is nef, hence it is either a hyperelliptic surface, in which case we pass to
an abelian 2-sheeted cover of Z so that we reduce to the case dimA = 2. Or [4] Z
is a P1−bundle over C, moreover Z = P(E) with a semi-stable rank 2- bundle E
on A. After passing to a 2 : 1−cover of A, the bundle E is flat. If ψ : Y −→ Z

is a P1−bundle, it is given by Y = P(V ) with a 2-bundle V on Z and it is clear
that −KY is nef since it is almost nef. Then we can proceed in the same way as in
Case I. So suppose that ψ is a proper conic bundle. By (1.8) −KY is nef. Note that
Y −→ A is a submersion since −KY is nef. Then, using (0.4) we perform another
base change to reduce our situation to Case I.

This finishes the proof of the Main Theorem. �

The proof of the main theorem actually gives a more explicit description of the
Albanese map.

Corollary 3.4

Let X be a smooth projective threefold with −KX nef. Let α : X −→ A be the

Albanese.

(1) If dimA = 2, then X is a P1− bundle over A.

(2) If dimA = 1, then there exists a sequence of blow-ups ϕi : Xi −→ Xi+1, 0 ≤
i ≤ r, with X0 = X and inducing maps αi : Xi −→ A such that

(a) all Xi are smooth, all −KXi are nef, ϕi is the blow up of a smooth curve

Ci and Ci is an etale multi-section of αi+1;
(b) the induced map αr+1 : Xr+1 −→ A is a P2− bundle or a P1×P1− bundle

or it factors as h ◦ g with g : Xr+1 −→ Y a conic bundle and h : Y −→ A
is a P1− bundle.

Corollary 3.5

Let X be a smooth projective threefold with −KX nef. Let α : X −→ A be

the Albanese and assume dimX = 1. Then there exists a finite etale cover X̃ −→ X
induced by a finite etale cover Ã −→ A such that the following holds. There exists a

finite sequence of blow-ups of sections over Ã, say X̃ −→ X̃1 −→ ... −→ X̃r+1 such

that the induced map αr+1 : X̃r+1 −→ Ã is P2−bundle or a P1 ×P1− bundle over

Ã. In the first case X̃r+1 = P(E) with a semi-stable vector bundle of rank 3 on Ã. In

the second case αr+1 is the contraction of an extremal ray (hence ρ(X̃r+1) = 2) or

αr+1 factorises as αr+1 = g◦f, where f : X̃r+1 −→ S is a P1−bundle and S = P(F )
with F a semi-stable rank 2 - bundle over Ã.
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4. The relative case

In this section we want to consider the following situation. Let X be a smooth
projective manifold of dimension n and Y a projective manifold, dimY ≥ 1. Let
ϕ : X −→ Y be a surjective map. Assume that

−KX|Y = ω−1
X|Y = ω−1

X ⊗ ϕ∗(ωY )

is nef. What can one say about the structure of ϕ? Our previous situation of the
last three sections is the special case when dimX = 3, Y is abelian and ϕ the
Albanese. We shall fix the above notations for the entire section. Miyaoka has
shown in [22] that ω−1

X|Y is never ample. His proof works for all ground fields,
even not algebraically closed. For algebraically closed fields of characteristic 0 the
statement can be improved, the proof being much easier:

Proposition 4.1

Suppose ω−1
X|Y nef. ω−1

X|Y is not big, i.e. (ω−1
X|Y )n = 0.

Proof. We proceed by induction on d = dimY. Suppose that ω−1
X|Y is nef and big.

By Kawamata-Viehweg vanishing we obtain:

0 = H1
(
X,ω−1

X|Y ⊗ ωX
)

= H1
(
X,ϕ∗(ωY )

)
.

The Leray spectral sequence yields

H1(Y, ωY ) = 0,

which gives a contradiction in case d = 1.
Now suppose that the claim holds for values of dimY smaller than d. Take

a smooth very ample divisor Z ⊂ Y such that W := ϕ−1(Z) is smooth. Then
ω−1
X|Y |W = ω−1

W |Z is nef, hence by induction ω−1
W |Z is not big. Hence

0 =
(
ω−1
W |Z

)n−1 =
(
ω−1
X|Y

)n−1 ·W.

But clearly κ(ω−1
X|Y |W ) = n− 1 for general choice of Z. This is a contradiction. �

As the referee points out, (4.19) remains true if −(KX + ∆) is nef as long as
(X,∆) is log terminal in the sense of Kawamata [17].

Proposition 4.2

Suppose that ω−1
X|Y is nef and that the general fiber has Kodaira dimension

κ(F ) ≥ 0. Then κ(F ) = 0, ϕ is smooth and locally trivial and ω−1
X|Y is a torsion line

bundle.
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Proof. Since −KF = ω−1
X|Y |F is nef and κ(F ) ≥ 0, it follows that KF is torsion.

Choose a positive integer d such that dKF = OF . Then ϕ∗(ω⊗d
X|Y ) is of rank 1.

Viehweg has shown that ϕ∗(ωX|Y
⊗d) is weakly positive, see e.g. [24] for definition

and references. Since the natural injective map

ϕ∗
(
ωX|Y

⊗d
)
−→

(
ϕ∗(ω−1

X|Y
⊗d

)
)∗∗

is generically surjective, it turns out that

(
ϕ∗(ωX|Y

⊗d)
)∗∗

is weakly positive, too [24, 5.1.1(b)]. But this last sheaf is invertible, and for in-
vertible sheaves the notions of weak positivity and pseudoeffectivity are equivalent
[24, p.293]. Therefore (ϕ∗(ωX|Y ))∗∗ is pseudoeffective, i.e. numerically equivalent
to a limit of effective Q−divisors, and so does its pull-back to X. Via the generically
surjective map

ϕ∗
(
ϕ∗(ωX|Y

⊗d)
)∗∗ −→ ωX|Y

⊗d,

we conclude that ωX|Y
⊗d is pseudoeffective. We claim that

ωX|Y ≡ 0 .

In fact, take an ample divisor H on X. By pseudoeffectivity we have ωX|Y ·Hn−1 ≥ 0
while by our nefness assumption we get the reversed inequality. Hence ωX|Y ·Hn−1 =
0 which easily implies our claim. By Corollary 1.2 in [16] we deduce

κ(ωX|Y ) ≥ κ(F ) = 0 .

Hence ωX|Y is torsion. Finally Theorem 4.8 in [12] shows that ϕ is smooth and
locally trivial. �

Remark. The hypothesis κ(F ) ≥ 0 in (4.2) can be (formally) weakened to KF ·Hd ≥
0 for some ample divisor H on F,dimF = d. In that case, keeping in mind that −KF

is nef, we get KF ·Hd = 0, which implies KF ≡ 0. Then Kawamata’s result [16, 8.2]
shows that κ(F ) = 0 so that KF is torsion.

Proposition 4.3

Let X be a terminal threefold and ϕ : X −→ Y a surjective morphism to

a normal projective Q−Gorenstein surface. Assume that −KX|Y is nef. Then

dim{y ∈ Y |Xy is singular} ≤ 0.
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Proof. Let C ⊂ Y be a general irrational hyperplane section. Then XC := ϕ−1(C)
is smooth and −KXC |C is nef. Now apply the following proposition (4.4). �

Proposition 4.4

Let f : S −→ C be a surjective morphism from a smooth projective surface to

a smooth non-rational curve. Assume that −(dKS|C + ∆) is nef for some rational

number d > 1 and some effective reduced divisor ∆ (possibly 0). Then f is smooth

and locally trivial, the general fiber f has genus g(F ) ≤ 1 and one of the following

cases occurs.

(a) g(F ) = 1,∆ = 0, and −KS|C is a torsion line bundle

(b) g(F ) = 0, and every connected component ∆i of ∆ is a smooth curve, nu-

merically equivalent to −rKS|C for some positive rational number r; moreover

ϕ : ∆i −→ C is étale.

Observe the following special case. If f : S −→ C is a P1−bundle, then −KS|C
is nef if and only if S = P(E) with E semi-stable or equivalently E ⊗ detE∗

2 is nef.
We shall explain this in more detail and in any dimension in (4.6).

Proof. We shall proceed in several steps. From

0 ≤ −
(
dωS/C + ∆

)
F ≤ −dKSF

we deduce that either KSF = 0 and F is elliptic, or KSF < 0 and F is rational. In
the former case, we factor out f as σ ◦ π where σ : R → C is a relatively minimal
elliptic fibration and π : S → R is a birational morphism. Since g(C) ≥ 1 we get
κ(R) ≥ 0, and thus χ(OR) ≥ 0. The canonical bundle formula yields

ωR/C = σ∗(D) +
t∑

i=1

(mi − 1)Fi

where D is a divisor of degree equal to χ(OR) ≥ 0, and m1F1, . . . ,mtFt stand for
the multiple fibres of σ. Hence ωR/C is nef. We also have ωS/C = π∗

(
ωR/C

)
+ E,

for some effective divisor E. If L now stands for an ample divisor on S we get

0 ≤ −
(
dωS/C + ∆

)
L = −d π∗

(
ωR/C

)
L−

(
dE + ∆)L ≤ 0 .

We conclude that ∆ = 0, E = 0, f = σ and ωS/C is numerically trivial. Proposi-
tion 4.2 applies here, and yields part (i).

From now on we shall assume that F is rational.
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Claim 1: If β : S → R is the blow-down of a (−1)-curve E, and ∆′ := β(∆) is the
reduced image of ∆, then −(dωR/C + ∆′) is nef.

The proof is just a computation. We write

∆ = β∗(∆′) −mE , m ≥ 0

ωS/C = β∗
(
ωR/C

)
+ E .

Then

(∗) −
(
dωS/C + ∆

)
= −β∗

(
dωR/C + ∆′) + (m− d)E

and 0 ≤ −
(
dωS/C + ∆

)
E = d−m.

Let A′ be any irreducible curve in R. Its strict transform is of the form A =
β∗(A′) − rE , r ≥ 0. Thus

0 ≤ −
(
dωS/C + ∆

)
A = −

(
dωR/C + ∆′)A′ + r(m− d)

≤ −
(
dωR/C + ∆′)A′ .

This finishes the proof of Claim (1).
Now, let us assume for a moment that part (b) of the Proposition holds true

for smooth maps f. Then, we are going to show that our f is actually smooth.
Otherwise, some (−1)-curve on S could be blown down to a point P ∈ R by a
map β : S → R. From Claim 1 we know that −

(
dωR/C + ∆′) is nef. Since by

a finite sequence of blow-downs we eventually reach a P1-bundle, we may already
assume that R → C is a smooth map. In this case, since we are assuming that the
Proposition is true for R, it follows that the multiplicity of ∆′ at P is m = 0 or 1,
and so (m− d)2 > 0. In view of (∗) above we get

(∗∗) 0 ≤
(
dωS/C + ∆

)2 =
(
dωR/C + ∆′)2 − (m− d)2 .

Our assumptions again imply that dωR/C + ∆′ is numerically equivalent to b ωR/C ,
for some b ∈ Q. Then, −ωR/C being nef combined with Proposition 4.1, yields
ω2
R/C = 0, and so

(
dωR/C + ∆′)2 = 0.

This is in contradiction to (∗∗).
It only remains to prove the Proposition in the particular case when f is a P1-

bundle. Assume so in the sequel. We shall freely use notation and results from [14],
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V.2. Let C0 stand for a section of f : S −→ C with minimal self-intersection
C2

0 = −e. The decomposition of ∆ into irreducible components

∆ = C1 + . . .+ Cr + F1 + . . .+ Fs +
∑

i

∆i

is written in such a way that the C ′
is are exactly the components numerically

equivalent to C0, F1, . . . , Fs are the fibres in ∆ and the remaining components are
∆i ≡ aiC0 + biF , ai, bi integers. Since ωS/C ≡ −2C0 − eF we get

dωS/C + ∆ ≡ (r − 2d)C0 + (s− de)F +
∑

i

(aiC0 + biF ) .

From 0 ≤
(
− dωS/C − ∆

)
C0 it follows

(∗ ∗ ∗) 0 ≤ (r − d)e− s+
∑

i

(aie− bi) .

Let us consider the case e > 0 first. Since C2
0 = −e < 0 we get r = 0 or 1, and so

(r− d)e < 0. Furthermore aie− bi ≤ 0 for all i ([14, V.2]), which contradicts (∗ ∗ ∗).
When e = 0 we have bi ≥ 0, and from (∗ ∗ ∗) it follows

0 ≤ −s−
∑

i

bi ≤ 0 .

Hence s and all b′is are 0. In particular, all components of ∆ are numerically equiv-
alent to a multiple of C0, and so is ω−1

S/C ≡ 2C0, whence the claim.
We shall finally deal with the case e < 0. Now bi ≥ aie/2 for all i. Since

−ωS/C ≡ 2C0 + e F,−ωS/C

is a limit of ample Q-divisors ([14, V.2]), and thus it is nef. Note that ω2
S/C = 0.

Therefore
0 ≤ −

(
dωS/C + ∆

)(
− ωS/C

)
= ∆ωS/C

= re− 2s+
∑

i

(
aie− 2bi

)
≤ 0 .

We conclude r = s = 0, aie− 2bi = 0 for all i, which yields the result.
As for the fact that any component of ∆ is mapping onto C without ramification,

it just follows from Hurwitz formula, namely

2g(∆i) − 2 =
(
2g(C) − 2

)
∆iF = deg f∗(KC)|∆i

· deg(∆i → C). �
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Remark. Let X be a terminal variety of dimension n, Y a projective normal Q−
Gorenstein variety of dimension n− 1 and ϕ : X −→ Y a surjective map such that
ω−1
X|Y is nef. Then

dim
{
y ∈ Y |Xy is singular

}
≤ n− 2 .

In fact, this follows from (4.3) by taking n− 3 general hyperplane sections.
We are now going to study threefolds X admitting a map π : X −→ C to a

curve of genus at least 1 such that ω−1
X|C is nef. We start with a general statement,

valid in every dimension and generalizing [21, 3.1].

Proposition 4.5

Let X be a n-dimensional projective manifold, π : X −→ C an extremal con-

traction to the smooth curve C. Let λ be the class of ω−1
X|C in N1(X). Then the

following statements are equivalent.

(1) ω−1
X|C is nef

(2) the ample cone NA(X) is generated (as cone) by λ and a fiber F of π, i.e.

NA(X) = R+λ+ R+F

(3) NE(X) = R+λ
n−1 + R+λ

n−2F

(4) λn ≥ 0 and every effective divisor in X is nef.

Proof. First note that λ and F are clearly linearly independent in N1(X) and that
moreover λn−1 and λn−2F are linearly independent in N1(X). This statement holds
because λn−1F = (−KF )n−1 > 0, whereas λn−2F 2 = 0.

(1) =⇒ (2) This is clear since ρ(X) = 2 and λ is nef but not ample by (4.1).
(2) =⇒ (3) One inclusion being obvious, we take an irreducible curve C ⊂ X.

Write in N1(X):
C = aλn−1 + bλn−2F.

From λ · C ≥ 0 and F · C ≥ 0 we deduce via λn = 0 (4.2) and λn−1F > 0 that
a ≥ 0, b ≥ 0, from which our claim follows.

Since both (2) and (3) clearly imply (1), all three statements are equivalent.

(3) =⇒ (4) By (1) and (4.2) we have λn = 0. Let D be an effective divisor. By
(3) it is sufficient to show

(a) D · λn−1 ≥ 0,
(b) D · λn−2F ≥ 0. (a) is clear, since λ is nef by (1). (b) holds because
λn−2 ·D ∈ NE(X), (again since λ is nef) and since F is nef.
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(4) =⇒ (1) We will show
h0

(
ω−m
X|C

)
≥ 0

for large m. By Riemann-Roch we have

χ
(
ω−m
X|C

)
=
mn

n!
λn +

mn−1

(n− 1)!
λn−1F +O(n− 2) .

This can be reformulated as follows

χ
(
ω−m
X/C

)
=
mn

n!
λn +

mn−1

2(n− 1)!
λn−1

(
−KX

)
+O(n− 2) .

We also take into account

λn−1(−KX) = λn +
(
2g(C) − 2

)
λn−1F.

Since ω−1
X/C is π-ample, we have Rjπ∗(ω−m

X/C) = 0 for j ≥ 1, m >> 0, and thus
Hq

(
ω−m
X/C

)
= Hq

(
π∗ω

−m
X/C

)
= 0 for q ≥ 2, m >> 0.

We therefore get:
(a) If λn > 0, then h0

(
ω−m
X/C

)
> 0, m >> 0. Hence λ is nef, so that λn = 0 by

(4.1), a contradiction.
(b) If λn = 0, we can conclude as before if g(C) ≥ 2. If C is elliptic, nothing

can be concluded. We set b = inf
{
β ∈ R|λ + βF is nef

}
. If b ≤ 0,

then λ is nef, so assume b > 0. Write L = λ + bF then. If Ln > 0 then
(L − εF )n > 0 for ε > 0 small enough, so that r(L − εF ) is effective if
r >> 0, hence nef against the choice of L. Hence Ln = 0. On the other
hand Ln = λn + nbλn−1F, so that b = 0, contradiction. �

Remark (4.6). We expect that the condition λn ≥ 0 in (4.5(4)) can be omitted. In
case X is a Pn−1bundle over C, this is easily verified as follows. Write X = P(E)
with a rank n − 1−bundle E on C. Then λ is nef if and only if E is semi-stable.
Now we prove that in case E is instable, then not every effective divisor in X is nef.
Normalise E such that H0(E) 
= 0 but H0(E⊗L) = for every line bundle L on C of
negative degree. Since E is instable, E is not nef. Let s ∈ H0(E), s 
= 0. Let D ⊂ X
be the associated divisor in OP(E)(1). Then D is not nef, since OX(D) � OP(E)(1),
which is not nef.

Proposition 4.7

Let X be a smooth projective threefold, π : X −→ C a surjective map to the

curve C of genus g ≥ 1. Assume ω−1
X|C to be nef. Assume furthermore that there

exists a conic bundle ϕ : X −→ S and a map f : S −→ C such that π = f ◦ϕ. Then

π is smooth.
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Proof. Let ∆ ⊂ S denote the discriminant locus of ϕ. For any curve B ⊂ S we
known that

ω2
X/C · ϕ−1(B) = −(4ωS/C + ∆) B

([20], p. 96), so that −(4ωS/C + ∆) is nef.
If ∆ = 0 then ϕ is a P1-bundle and ω−1

S/C is nef. Hence f is smooth and π,
being a composite of smooth maps, is also smooth. Suppose ∆ 
= 0. By (4.4), ∆
is a (possibly reducible) smooth curve, all of whose components map surjectively
onto C. The morphism π can only fail to be smooth at points lying on ϕ−1(∆). In
order to see that this will never happen, take any point P ∈ ∆. Since ∆ is smooth
at P,ϕ−1(P ) is a pair of distinct lines meeting at Q ([2], 1.2). π is smooth at every
point of ϕ−1(P ) different from Q. Let us see that π is smooth at Q too. We take
a small analytic neighborhood U ⊂ S of P with local parameters (s, t) such that
P = (0, 0),∆ is locally defined by s = 0 and f becomes the projection (s, t) −→ s.
We can consider ϕ−1(U) as the hypersurface in U × P2 given by an equation

(∗)
∑

0≤i≤j≤2

Aij(s, t)XiXj = 0

where (X0 : X1 : X2) are the homogeneous coordinates of P2, and the A′
ijs are

analytic functions (see [2]). We can also arrange things such that ϕ−1(P ) is given
by the equation X2

1 +X2
2 = 0, so that Q is (1:0:0) in {P}×P2. We introduce affine

coordinates x1 = X1/X0, x2 = X2/X0 and transform (∗) into

(∗∗) A00(s, t) +A01(s, t)x1 +A02(s, t)x2 +
∑

1≤i≤j≤2

Aij(s, t)xixj = 0 ,

Since (∗∗) becomes x21 + x22 = 0 for s = t = 0, we obtain

A11(0, 0) = A22(0, 0) = 1 , and Aij(0, 0) = 0 otherwise .

The series expansion of Aij(s, t) around (0, 0) thus becomes for i = 1, 2 : Aii(s, t) =
1 +

(
aiis + biit

)
+ (terms of degree ≥ 2 in s, t), otherwise: Aij(s, t) = aijs + bijt+

(terms of degree ≥ 2 in s, t).
Since ∆ is the discriminant locus of ϕ we get that detAij(s, t) = 0 if and only

if s = 0. Therefore, detAij(s, t) = s · F (s, t) for some analytic function F. Since the
linear term of detAij(s, t) is a00s+ b00t we deduce b00 = 0. On the other hand, the
linear term of (∗∗) in all four variables s, t, x1, x2 is a00s + b00t. Hence, X being
smooth at Q implies a00 
= 0.

Finally, the fibre of π over s = 0 is

G(s, x1, x2) = A00(0, t) +A01(0, t)x1 +A02(0, t)x2 +
∑

1≤i≤j≤2

Aij(0, t)xixj = 0 .

Since ∂G
∂s (Q) = a00 
= 0, we finally conclude that π−1(0) is non-singular at Q, as

claimed. �
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In general we have the following conjecture for the relative situation, some
special cases of which we shall prove.

Conjecture 4.8 Let π : X −→ C be a surjective morphism from the smooth
projective threefold X to the smooth curve C of genus ≥ 1. Assume that ω−1

X|C is nef
and that the general fiber of π has Kodaira dimension −∞. Then π is a submersion.
More precisely, there exists a sequence

(4.8.1) X = X0
ϕ1−→ X1

ϕ2−→ X2 −→ ... ϕr−→ Xr

of birational morphisms over C, each ϕi being the blow-up of a smooth curve Ci ⊂ Xi

which map without ramification to C, such that all ω−1
Xi|C are nef and the resulting

map f : Xr −→ C is
(1) either a smooth Mori fibration, the fibers being del Pezzo surfaces (so that in
particular ρ(Xr) = 2) or
(2) f factors as Xr

h−→ S g−→ C, with h a (Mori) conic bundle and g a P1−bundle
(hence ρ(Xr) = 3.)

In case (2), −(4ωS|C+∆) is nef by (4.7), and the ramification ∆ of h is described
in (4.4). Note that in case g(C) = 1 the conjecture is an immediate consequence
of our Main Theorem (and its corollaries). In case π is the Albanese map, we have
proved (4.8) in (3.4). It turns out that, after suitable finite etale base change, the
structure in the above conjecture can be made quite simple (cp. (3.5)):

Proposition 4.9
Assume Conjecture (4.8) holds. Then after a suitable étale base change B −→ C

the induced submersion
σ : X ′ = X ×C B −→ B

has the following structure.
There exists a sequence

X ′ = X ′
0

ϕ′
1−→ X ′

1

ϕ′
2−→ X ′

2 −→ . . . ϕ′
r−→ X ′

r

with the same properties as in (4.8) and f ′ : X ′
r −→ B belongs to one of the following

cases.

(1) Either ρ(X ′
r) = 2 and f ′ is a P1 × P1−bundle or a P2−bundle (in the latter

case X ′
r = P(E) with a semistable rank 3-bundle E over B) or

(2) ρ(X ′
r) = 3 and f ′ factors as

X ′
r

h′
−→ S′ g′−→ B

where both h and g are P1−bundles and moreover S′ = P(F ) with F a semistable
rank 2-bundle on B.
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The proof of (4.9) is again an application of (0.4) and just the same of corollary
(3.5) which is contained in the proof of the Main Theorem. For the semi-stability
of the bundles in question apply [21, 3.1].

(4.10) Let X be a smooth projective threefold and π : X −→ C a surjective
morphism to the smooth curve C of positive genus. In order to prove Conjecture
4.8 we need to investigate birational extremal contractions ϕ : X −→W. As in (3.2)
above and [6, p. 234] we see that ϕ is the blow-up of a smooth curve C0 ⊂ W.
Since g(C) > 0, we have a factorization π = σ ◦ ϕ with a map σ : W −→ C. In this
situation we can state

Proposition 4.11

Assume ω−1
W |C nef. Let S be the general fiber of π and assume either K2

S > 0
or dimσ(C0) = 1. Then σ|C0 : C0 −→ C is étale.

Proof. Let E denote the exceptional divisor of ϕ and let F be a (general) fiber of
E|C0. Set

g = g(C0), γ = g(C), d = deg(C0 −→ C).

Here d = 0 if and only if dimσ(C0) = 0. Following [6, p. 234-235] we write for
numerical equivalence

−KX|E ≡ C1 + bF, NE|X ≡ −C1 + µF.

Then
ωX|C |E = −C1 −

(
b+ d(2γ − 2)

)
F.

We know by (4.1) that ω3
X|C = ω3

X|C = 0. Thus

0 =
(
ϕ∗(ωW |C)

)3 = (−E)3 = −3(ωX|C)2|E + 3(ωX|C |E · (E|E) − (E|E)2

(1) = e− 3b− 6d(γ − 1) − µ,

where e = −C2
1 . Moreover (**) of [6, p. 235] gives

(2) e− b− 2(g − 1) + µ = 0 .

Since ω−1
X|C is nef, we have

ω−1
X|C · C1 ≥ 0, ω−1

X|C
2 · E ≥ 0 ,
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which translate into

(3) e− b− 2d(γ − 1) ≤ 0

and

(4) e− 2b− 4d(γ − 1) ≤ 0 .

The nefness of ω−1
X|C also yields

0 ≥ ωX|C · C0 = ϕ∗(ωW |C) · C1 = (ωX|C − E) · C1 = −b− 2d(γ − 1) − µ

and therefore

(5) b+ µ+ 2d(γ − 1) ≥ 0 .

Note that by (1)

0 = e− 2b− 4d(γ − 1) − (b+ µ+ 2d(γ − 1)) ≤ e− 2b− 4d(γ − 1) ≤ 0 .

The first and second inequality are due to (5) and (4), respectively. Hence (4) and
(5) are just equalities:

e− 2b− 4d(γ − 1) = 0

b+ µ+ 2d(γ − 1) = 0.

We first deal with the case d > 0. Note that g − 1 ≥ d(γ − 1). Adding up (1) and
(3) we get

0 = 2e− 4b− 6d(γ − 1) − 2(g − 1) ≤ 2e− 4b− 8d(γ − 1) .

Then
b+ 2d(γ − 1) ≤ 1

2
e .

On the other hand we obtain from ω−1
X|C |E being nef that

b+ 2d(γ − 1) ≥ 1
2
e

resp.
b+ 2d(γ − 1) ≥ e,
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if e > 0. We thus conclude

b+ 2d(γ − 1) =
1
2
e ≤ 0 and g − 1 = d(γ − 1) .

This implies that C0 −→ C is étale of degree d.
Now suppose d = 0. Then we have K2

S > 0 by assumption. Combining (2),(6)
and (7) we deduce g = 1 and b = e

2 . Then (3) yields e ≤ 0, thus e = 0 or −1. But
−1 = e = 2b is absurd. Hence

(8) e = b = µ = 0, g = 1 .

On the other hand E is contained in some fiber S of π, hence, taking into account
(6), we derive (

ω−1
X|C + S

)2
E =

(
ω−1
X|C

)2
E = 0 .

Now the nef divisor ω−1
X|C +S is also big thanks to the assumption K2

S > 0. Further-
more (

ω−1
X|C + S

)
E2 = (−KX)E2 = C1 · (−C1) = e = 0,

in view of (8). Then the following proposition gives

0 ≡
(
ω−1
X|C + S

)
|E = C1

which is absurd. This concludes the proof. �

Proposition 4.12

Let X be a projective manifold of dimension n. Let D be a nef and big divisor

on X and E a divisor with Dn−1 ·E = 0. Then Dn−2 ·E2 ≤ 0, with equality holding

if and only if Dn−2 · E ≡ 0.

Proof. [26].
We now turn to the case of mappings to surfaces.

Conjecture 4.13 Let X be a smooth threefold, S a smooth surface and π : X −→ S
a surjective map with connected fibers. If ω−1

X|S is nef, then π is smooth.
Note that if ω−1

X is nef, then π may very well be non-smooth, e.g. there are
Fano threefolds which are conic bundles with non zero discriminant over P2. But
observe that ”−KX|S nef” is a somehow stronger condition than the nefness of −KX

if κ(S) = −∞.
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The general fiber of π is either elliptic or a rational. In the former case the
conjecture follows from 4.2. So we shall assume from now on that it is rational. In
case S is abelian, 4.13 is our Main Theorem. If C is a general hyperplane section of
S and XC = π−1(C), then ω−1

XC |C = ω−1
X|C |XC is nef, and therefore π is smooth over

C. Hence π can fail to be smooth only over finitely many points of Y.
The following is a straightforward consequence of (4.13).

Proposition 4.14

Let π : X −→ Y be a surjective morphism between projective manifolds with

dimX = dimY + 1. Let B ⊂ Y be the set points over which π fails to be smooth.

Let ω−1
X|Y is nef. If Conjecture (4.13) holds, then codimYB ≥ 3.

Proposition 4.15

In order to prove Conjecture 4.13, we may assume that S contains no rational

curve and that H1(S,OS) 
= 0.

Proof. Let B ⊂ Y be the set of point over which π is not smooth. Take a Lefschetz
pencil Λ of hyperplane sections on S such B is disjoint from the base locus. Take
a sequence of blow-ups, say β1 : R1 −→ S to make the map associated to Λ base
point free. We obtain a map f : R1 −→ P1 with reduced fibers. Choose any smooth
hyperplane section C of R1 of positive genus, not passing through the singular
fibers of f, nor through any point of β−1

1 (B). We arrange things that C −→ P1 is
unramified where R1 −→ P1 is not smooth. Then

R2 = C ×P1 R1

is a smooth surface which is mapped onto C, so that R2 contains at most a finite
number of rational curves. The next step will be to choose a hyperplane section D
and a smooth curve H ∈ |nD|, which skips the singular points of all rational curves
in R2 and also avoids all points lying over B. Let R3 −→ R2 be the n−cyclic cover
determined by H. The rational curves in R2 become irrational when lifted to R3,

since n� 0. Hence R3 contains no rational curves.
Let βi : Ri −→ Ri−1 the canonical map, Xi

πi−→ Ri the base change with
associated maps αi : Xi −→ Xi−1. Here we denote X = X0 and π = π1. If β1 is the
blow-up of S at B = {P1, ..., Pr}, and if the Ei are the corresponding exceptional
divisors in R1, then α1 is the blow-up of X at π∗(E1), . . . , π∗(Er). Since

KR1 = β∗1(KS) +
∑
Ei,
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and
KX1 = α∗1(KX) +

∑
π∗(Ei) ,

we get ω−1
X1|R1

= α∗(ω−1
X|S), which is nef. From the fact that C −→ P1 is branched

away from the singular points of R1 −→ P1, we obtain

ωR2|C = β∗2
(
ωR1|P1

)

and
ωX2|C = α∗2

(
ωX1|P1

)
.

We conclude that ω−1
X2|R2

) = α∗(ω−1
X1|R1

, hence ω−1
X2|R2

is nef. Now α3 is a n−cyclic
cover totally ramified at π∗(H) and determined by π∗(H) ∼ nπ∗(D). From e.g. [1,
p. 42] we derive

KR3 = β∗3
(
KR2 + (n− 1)D

)

and
KX3 = α∗3

(
KX2 + (n− 1)π∗(D)

)
.

Hence ω−1
X3|R3

= α∗3(ω
−1
X2|R2

) is nef. By construction the map X3 −→ X is étale
over the singular fibers of π. If therefore we can show that π3 is smooth, then π is
smooth, too. �

(4.16) In view of the preceding result, we can restrict ourselves to the following
situation. X is a smooth projective threefold, S a smooth surface without rational
curves and such that q(S) > 0. Let π : X −→ S be surjective with connected fibers.
Assume that the general fiber is rational.

Since KX is not nef, there exists an extremal contraction ϕ : X −→W. We are
going to investigate the structure of π.

Proposition 4.17

In the situation of (4.16) assume dimW ≤ 2. Then W = S, ϕ = π and π is a

P1−bundle.

Proof. Since S does not contain rational curves, it is clear that dimW = 2 and that
there is a map σ :W −→ S such that π = σ ◦ϕ. Since the fibers of π are connected,
σ must be birational, i.e. a sequence of blow-ups. Let E be the exceptional divisor
of σ and ∆ the discriminant locus of the conic bundle ϕ. Then an easy calculation
shows (cp. 1.6, 1.7)

0 ≤ ω−1
X|S · ϕ∗(C) = −(∆ + 4E)C.

Hence ∆ = E = 0 and the claim follows. �
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It remains to treat the case that ϕ is birational. Let E be the exceptional
divisor.

Proposition 4.18

dimϕ(E) = 1.

Proof. Assume dimϕ(E) = 0. Similar as in [6, 3.3] we see that ω−1
W |S is big and nef.

This contradicts (4.1).
So ϕ is the blow-up of a smooth curve C0. Since S does not contain rational

curves, we obtain again a factorization π = σ ◦ ϕ, with σ :W −→ S. �

Proposition 4.19

(1) dimσ(C0) = 0.
(2) C0 � P1.

Proof. (1) follows easily from the remarks after (4.13).
(2) Choose H ample on S and set L = ω−1

X|S + π∗(H). Then L is nef and big
and

aL−KX = (a+ 1)ω−1
X|S + π∗(aH −KS)

is also nef and big for a � 0. Therefore mL is generated by global sections for
largem by the base point free theorem. Let D ∈ |mL| be a general smooth and
irreducible element. Let A = D∩E.We may assume A smooth and irreducible. Let
f = π|D : D −→ S. Then f is generically finite and by (1) A is contracted by f.
Therefore (A2)D < 0. On the other hand,

0 > (A2)R = E2 ·mL = mE|E · L|E = mE|E · (−KX)|E.

In the notations of the proof of (4.11) we obtain the following inequality

0 > m(−C1 + µF )(C1 + bF ) = m(e+ µ− b) = 2m(g − 1),

where g is the genus of C0. Consequently g = 0. �

Proposition 4.20

Suppose we know the following

(*) Let Z be a smooth projective threefold having a surjective morphism f :
Z −→ Y to a smooth surface Y having no rational curve. Assume q(S) > 0. and

that −KZ|Y nef. If g : Z −→ Z ′ is a birational extremal contraction, then −KZ′|Y
is again nef.

Then in our situation π : X −→ S is a submersion and in particular ϕ cannot

exist.
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Proof. In view of (4.16) we have a birational contraction ϕ : X −→ W contracting
the divisor E to the curve C0 ⊂W. Moreover there ω−1

W |S is nef via the induced map
σ : W −→ S. Again we shall use the notations of the proof of (4.11). In the same
way as (4.11(1)) we get

(1) e− 3b− µ = 0 .

Since C0 is rational, (**) of [6, p. 235] gives

(2) e− b+ µ = −2 .

Adding up (1) and (2) gives

(3) e− 2b = −1 .

Since ωX|C |E = (−KX)|E = C1 + bF is nef, we obtain b ≥ e. Combining with
(3) yields e = 1, hence b = 1, µ = −2. In view of our hypothesis we can apply
this procedure inductively finitely many times until we reach the situation where no
birational contraction is possible on W. From (4.17) it follows that σ :W −→ S is a
P1−bundle. Since then C0 is contracted to a point by σ, it is a fiber of σ and thus
NC0|W = O ⊕O. This contradicts e = 1. �

The condition (*) is “mostly” satisfied as we explain in the next two propositions
which are proved with the same type of arguments as Propositions (3.3) and (3.5)
in [6], respectively:

Proposition 4.21
Let X be a smooth projective threefold and let π : X → Y be a surjective

morphism with connected fibres, where Y is either a smooth curve of genus ≥ 1 or
a smooth irregular surface containing no rational curve. Suppose the general fibre
of π has Kodaira dimension −∞. Let ϕ : X →W be the blow-up of a smooth curve
C0 ⊆W. We always have a factorization π = σ ◦ ϕ, where σ :W → C. Now assume
that ω−1

W/Y is not nef. Then C0 � P1, σ(C0) is a point and one of the following cases
occurs:

(A) NC0/W = O(−2) ⊕O(−2), and KW · C0 = 2
(B) NC0/W = O(−1) ⊕O(−2), and KW · C0 = 1.

Proposition 4.22
Case B above is impossible.

Proof of (4.22). We proceed exactly as in Proposition (3.5) in [6], replacing
everywhere KX ,KW by ωX/Y , ωW/Y , etc. At the end we obtain a threefold Z
with one terminal singularity such that the Q-divisor ω−1

Z/Y is big and nef. Now
we apply [17, 1.2.5, 1.2.6] with ∆ = 0, D = f∗KY , where f : Z → Y. It follows
that H1(Z, f∗KY ) = 0. The Leray spectral sequence yields H1(Y,KY ) = 0, which
contradicts our hypothesis. �
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