
Collect. Math. 49, 2–3 (1998), 447–463

c© 1998 Universitat de Barcelona

Bounds on multisecant lines

Scott Nollet
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Abstract

The purpose of this paper is twofold. First, we give an upper bound on the order
of a multisecant line to an integral arithmetically Cohen-Macaulay subscheme
in P

n of codimension two in terms of the Hilbert function. Secondly, we give
an explicit description of the singular locus of the blow up of an arbitrary local
ring at a complete intersection ideal. This description is used to refine a standard
linking theorem. These results are tied together by the construction of sharp
examples for the bound, which uses the linking theorems.

0. Introduction

There are many questions one can ask about the geometry of a curve C ⊂ P
3

and its embedding. The question of interest here is, what is the maximal order of
a multisecant line to C in terms of natural invariants of C, such as the degree d
and the genus g? Gruson and Peskine have shown that a smooth connected space
curve is expected to have a nonzero finite number of 3-secant and 4-secant lines
(and have used intersection theory to give formulas for these numbers in terms of
d and g, see [10], Theorem 2.5) but no secant lines of higher order. In another
paper by Gruson, Lazarsfeld and Peskine, it is shown that the ideal sheaf of such a
curve is (d − 1)-regular [8], which implies that the order of a multisecant line (for
nondegenerate curves) is bounded above by d − 1. Further, they show that if the
ideal sheaf is not (d− 2)-regular, then C is rational and has a (d− 1)-secant line.
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From the above, we know that the maximal order of a multisecant line of a
curve is between 4 and d − 1 and that both occur. In the present paper, we give
an upper bound on the order of a multisecant line to an integral arithmetically
Cohen-Macaulay subscheme in P

n of codimension two in terms of its Hilbert function
and show that the bound is sharp by example. The bound on multisecant order
follows immediately from work of Campanella (see [3], Theorem 2.1(c)), although
we give a new proof here. The sharp examples are achieved by first understanding
the singularities of P

n blown up at a local complete intersection, and then using
this to prove a Bertini theorem which produces the examples. Usually the bound
obtained is strictly better than that given by the Castelnuovo-Mumford regularity.

In the first section, we set up our notation and conventions for dealing with
arithmetically Cohen-Macaulay subschemes in P

n of codimension two. We use the
γ-character of Martin-Deschamps and Perrin [15] to describe the Hilbert function.
In terms of the γ-character, we recover the upper bounds of Campanella on highest
degree of a minimal generator for the total ideal, which in turn gives an upper bound
on the order of a multisecant line.

In section two, we develop linking theorems for producing integral subschemes
with small singular locus by refining the standard linking theorem of Peskine and
Szpiro ([20], Proposition 4.1). The key ingredient is a description of the singular
locus of the spectrum of a local ring blown up at a complete intersection ideal (see
Theorem 2.1).

In the last section, we use the Bertini theorems to produce sharp examples
for the upper bound on multisecant order. This strengthens the usual smoothing
result for ACM curves in P

3 (see Theorem 2.5 of [9], Theorem 4 of [14] or the
main theorem of [21]), in that we do not assume characteristic zero and obtain the
smooth connected curves with maximal order multisecants. While our construction
gives subvarieties which are smooth in codimension ≤ 2, we also recover the fact
that general determinental subvarieties are smooth in codimension ≤ 3 (see [4],
Example 2.1).

This paper is dedicated to the memory of Ferran Serrano, who introduced me to
algebraic geometry at Berkeley when he was a visiting professor there. I appreciate
the hospitality of the University of Barcelona during the writing of this paper and
the comments of the referee, who helped me to give proper credit where it was due.

1. ACM subvarieties

In this section we prove our results on multisecants to integral arithmetically Cohen-
Macaulay (henceforth ACM) subschemes in P

n of codimension two. To state the
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results, we need to use some invariant which describes the Hilbert function of the
subscheme. For convenience, we use the γ-character used by Martin-Deschamps and
Perrin in [15].

Definition 1.1. Let X ⊂ P
n be a subscheme of codimension two. The γ-character

γX of X is given by

γX(l) = −∆nHX(l)

for l ∈ Z, where HX is the Hilbert function of X.

For X⊂P
n, we make a few more definitions that will be useful. Let I = H0

∗ (IX)
be the saturated homogeneous ideal which definesX. Then we let s0(X) = min {l :
Il �= 0} and s1(X) = min {l : I≤l is not principal}. We set t1(X) = min {l : V (Il)
contains no hypersurface}, which is the same the least twist of the ideal that cuts
out a subscheme of codimension two. For the maximal degree generator, we use
the notation ω(X) = min {l : I≤l generates I}. Clearly we have the inequalities
s0(X) ≤ s1(X) ≤ t1(X) ≤ ω(X). The following definition reflects some necessary
conditions on γX .

Definition 1.2. Let γ : Z → Z be a function. We say that γ is a character if
γ is not identically zero, has finite support and

∑
γ(l) = 0. We say that γ is an

admissible character if there exist integers 0 < s0(γ) ≤ s1(γ) such that

(a) γ(l) = 0 for l < 0
(b) γ(l) = −1 for 0 ≤ l < s0(γ)
(c) γ(l) = 0 for s0(γ) ≤ l < s1(γ)
(d) γ(s1(γ)) > 0.

In considering a minimal free graded resolution for I = IX , it is easy to check
that γX is an admissible character with s0(γX) = s0(X) and s1(γX) = s1(X). There
are two more properties of the γ-character that we will consider. We say that γ is
positive if γ(l) ≥ 0 for l ≥ s1(γ). We will say that γ is connected if for each a < b

satisfying γ(a) > 0 and γ(b) > 0 we have that γ(l) > 0 for all a ≤ l ≤ b.

Proposition 1.3

If X ⊂ P
n is an ACM subscheme of codimension two, then γX is a positive

admissible character. Conversely, each positive admissible character arises as γX for

some such X.
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Proof. In [15] V, Theorem 1.3, this is proved for curves in P
3, but the same proof

holds in general. �

Lemma 1.4

Let X,Y ⊂ P
n be ACM subschemes of codimension two which are linked by

hypersurfaces S, T of degrees s, t. Then

γX(l) + γY (s+ t− 1 − l) =
(
l − s

0

)
+

(
l − t

0

)
−

(
l
0

)
−

(
l − s− t

0

)

for l ∈ Z.

Proof. In [6], Theorem 3(b) it is shown that if A is a graded Gorenstein ring of
dimension m contains ideal I and J which are linked, then

∆mH(A, t) = ∆mH(A/I, t) + ∆mH(A/J,N − t)

where N = max {t ∈ N : ∆mH(A, t)} �= 0. We apply this when A is the homoge-
neous coordinate ring of the complete intersection S ∩T , noting that N = s+ t− 1.
Taking one further difference function and using the Koszul resolution to compute
∆nH(A, t) gives the formula of the lemma. �

Next we give a linkage-theoretic proof of the upper bound on the degree of a
minimal generator for the total ideal of codimension two ACM subscheme given by
Campanella, who further shows that the bound is sharp [3].

Proposition 1.5

Let X ⊂ P
n be an ACM subscheme of codimension two satisfying s = s0(X)

and t = s1(X) = t1(X). Then one of the following statements holds.

(a) γX(l) ≤ 1 for all l and X is a complete intersection of hypersurfaces of degrees

s and t. In this case γX(l) > 0 if and only if l ∈ [t, s+ t− 1] and ω(X) = t.

(b) γX(l) > 1 for some l ∈ Z and X links to an ACM subscheme Y via hypersurfaces

of degrees s and t. In this case γX(l) > 0 if and only if l ∈ [t, s+ t− 1 − s0(Y )] and

ω(X) ≤ max {l : γX(l) > 1} = s+ t− 1 − s1(Y ).
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Proof. Since s1(X) = t1(X), X is contained in a complete intersection S∩T formed
by hypersurfaces of degrees s and t. If X = S ∩T , then all the statements in (a) are
clear. The Koszul resolution shows that

γX(l) =
(
l − s

0

)
+

(
l − t

0

)
−

(
l

0

)
−

(
l − s− t

0

)
.

If X is not a complete intersection, then S ∩ T links X to another subscheme Y .
Now consider the formula of Lemma 1.4. In view of Definition 1.2 and the comment
following it, we see that γX(l) is given by the binomial part of the formula for l < t,
thus γY (p) = 0 for p ≥ s and hence γY is supported on [0, s − 1]. It follows that
γX(l) = 0 for l ≥ s+ t and that γX(l) = γY (s+ t− 1− l) + 1 on [t, s+ t− 1]. Since
Y is ACM, γY is a positive character and it follows that γX is connected. In fact,
γX > 0 precisely on the interval [t, s+ t− 1 − s0(Y )] and M = max {m : γX(m) >
1} = s+ t− 1 − s1(Y ).

To finish the proof, we must show that IM generates I≥M . Since Y is ACM of
codimension two, it has a minimal resolution for the form

0 → ⊕O(−l)a(l) → ⊕O(−l)b(l) ⊕O(−s0(Y )) → IY → 0

in which b(l) = 0 for l < s1(Y ) and a(l) = 0 for l ≤ s1(Y ). Applying the cone
construction ([20], Proposition 2.5) we obtain a resolution for X of the form

0 → ⊕O(−s− t+ l)b(l) → ⊕O(−s− t+ l)a(l) ⊕O(−s) ⊕O(−t) → IX → 0 .

In taking global sections, we see that ω(X) ≤M . �

Corollary 1.6

Let X ⊂ P
n be an ACM subscheme of codimension two which satisfies s1(X) =

t1(X) and let L �⊂ X be a line with oL(X) = length(X ∩ L).

(a) If γ(l) ≤ 1 for each l ∈ Z, then oL(X) ≤ t1(X) = min {l : γ(l) > 0} .

(b) If γ(l) > 1 for some l ∈ Z, then oL(X) ≤ max {l : γ(l) > 1} .

Proof. If oL(X) exceeds the boundB given, then L is contained in every hypersurface
of degree ≤ B which contains X. Since IX(B) is generated by global sections, it
follow that L ⊂ X, a contradiction. �
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Remark 1.7. The bound on ω(X) given in Proposition 1.5 is stronger than that given
by Castelnuovo-Mumford regularity. For example, the complete intersection of two
quadrics in P

3 is 3-regular, although its total ideal is generated in degree 2. On the
other hand, if we drop the condition s1(X) = t1(X), then the Castelnuovo-Mumford
regularity bound is sharp. For example, the complete intersection of quadrics men-
tioned above degenerates to the union C ⊂ P

3 of a plane cubic and a line whose
ideal is generated in degree 3. In this case, C has a resolution of the form

0 → O(−4) ⊕O(−3) → O(−3) ⊕O(−2)2 → IC → 0

in which the summand O(−3) cannot be canceled (clearly it can be canceled when
C is deformed to the complete intersection of quadrics).

Remark 1.8. We note in either case (a) or (b) of Proposition 1.5 that γX is a con-
nected positive admissible character. This condition is equivalent (via the formula
of [15], Proposition 2.9) to the numerical character of X having no gaps. In partic-
ular, the conclusion that an integral ACM subscheme of codimension two in P

n has
numerical character with no gaps ([9], Corollary 2.2) holds under the weaker hy-
pothesis that s1(X) = t1(X). This statement generalizes to any even linkage class of
codimension two subschemes in P

n ([18], Theorem 2.4), however there are stronger
necessary conditions for integral subschemes ([18], Theorem 3.4).

There is another interpretation of the condition that X have a connected pos-
itive character which stems from a definition of Sauer [21]. For a comparison of
Sauer’s results with those of Gruson-Peskine [9] and Maggioni-Ragusa [14], we refer
the reader to Geramita and Migliore’s paper [7]. Since X is ACM of codimension
two, it has a resolution of the form

0 → P → Q→ IX → 0

where P and Q are direct sums of line bundles. Gathering summands of the same
degree, this can be written

0 → ⊕t−1
i=1O(−αi) ⊕B → ⊕t

i=1O(−βi) ⊕B → IX → 0

where {αi} and {βi} are nondecreasing sequences and αi �= βj for each (i, j). Here
Sauer defines m(X) = min {i : αk < βk+i for some 1 ≤ k < t} (if αi > βj for all
(i, j)), we will set m(X) = ∞). The resolution above gives the formula

γX(l) = # {i : βi ≤ l} − # {i : αi ≤ l} − 1
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for l ≥ 0, which allows us to interpret the integer m(X) as a condition on γX . We
find the following:

Lemma 1.9

Let X ⊂ P
n be ACM of codimension two. Then m(X) ≥ 2. Moreover, m(X) ≥

r ≥ 2 if and only if for each 0 ≤ k ≤ r−2, the following condition holds: if γX(a) ≥ k

and γX(b) ≥ k for some 0 < a < b, then γX(l) ≥ k for a ≤ l ≤ b. In particular,

m(X) ≥ 3 if and only if γX is connected.

Proof. In view of the formula for γ = γX in terms of the {αi} and {βi} for l ≥ 0,
we see that γ strictly increases from βi − 1 to βi, strictly decreases from αi − 1
to αi and is constant elsewhere. In particular, for l ≥ s0(γ), the local minimum
values of γ occur among the γ(αi). Thus we see that m(X) = ∞ if and only if γ is
nondecreasing on [0, βt] and nonincreasing on [βt,∞] if and only if the condition of
Lemma 1.9 holds for all k ≥ 0. If m(X) <∞, then γ has at least one local minimum,
and the smallest such local minimum value is precisely m(X) − 2 = γ(αK), where
K is chosen with αK < βK+m(X). �

In [21], Sauer was interested in smooth ACM curves in P
3. He proved that if

m(X) = 2, then X is necessarily singular. In [14], Chang shows that if m(X) = 2,
then X must be reducible (hence singular, since any ACM subscheme is connected).
In Proposition 1.5 above, we see further that if m(X) = 2, then X does not lie
on hypersurfaces of minimal possible degrees (with respect to the Hilbert function)
which meet properly. On the other hand, if m(X) ≥ 3 and X is a space curve, then
X is smoothable, as has been shown using various notations [4, 9, 14, 17, 21].

2. Singularities in blow ups

In this section we give a precise description of the singular locus of P
n blown up

along a local complete intersection ideal. This is obtained by first carrying out a
local analysis, which generalizes some other results. We conclude the section with
some geometric applications, which will be used in the existence theorems of the last
section.

Theorem 2.1

Let (A,m, k) be a local ring. Let I ⊂ A be an ideal generated by a regular

sequence of r elements with corresponding quotient ring (A,m, k). Let π : P →
SpecA be the blow up of SpecA at I, and let x ∈ SpecA denote the closed point
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with fibre f = π−1(x) ∼= P
r−1
k . Then the singular locus of P along f can be described

as follows:

(1) If A is not regular, then f ⊂ Sing(P ).
(2) Assume that A is regular.

(a) If dimkm/m2 = dimA, then f ∩ SingP = ∅.
(b) If dimkm/m2 = dimA+ 1, then f ∩ SingP is a hyperplane in f .

(c) If dimkm/m2 > dimA+ 1, then f ⊂ SingP .

Proof. First note that in the special case r = 1, the map π is an isomorphism and
the theorem holds (here case (c) cannot occur and the “hyperplane” of part 2(b)
is empty because the fibre is P

0). Thus we assume r ≥ 2 and that I = (f1, ...fr)
is generated by a regular sequence. Because this is a regular sequence, we have an
isomorphism ⊕d≥0I

d ∼= A[T1, ...Tr]/(Tifj − Tjfi). and P is covered by standard
affines SpecBk where Bk = A[T1, ...T̂k, ...Tr]/(Tjfk − fj) ([12], Proposition 14.1).

We consider maximal ideals n ⊂ A[T1, ...T̂k, ...Tr] which contain m and whose
image in Bk we denote n. Let p be the dimension of the subvector space V ⊂ n/n2

generated by the r − 1 equations Tjfk − fj . Then we have

dimkn/n2 = dimkn/n2 − p = dimkm/m2 + (r − 1) − p .

This is always ≥ dimA because p ≤ r − 1 (V is generated by r − 1 elements) and
dimkm/m2 ≥ dimA. Thus n corresponds to a regular point in P if and only if
p = r − 1 and A is regular. This already covers case (1) of the theorem, so we now
assume that A is regular.

By the standard inductive proof that A[T1, ...T̂k, ...Tr] is a regular ring, a system
of parameters for m extends to a system of parameters for n. Thus we may write
m = (u1, ...ud) and n = (u1, ...ud, g1, ...gr−1). If A/I is regular, then fi extends to
a regular system of parameters for m, and we may take ui = fi for 1 ≤ i ≤ r. In
this case, we certainly have that p = r − 1, for if the relations {Tjfk − fj} are not
linearly independent in n/n2, then there is a relation

∑
aj(Tjfk − fj) = 0, which

can be rewritten (
∑
ajXj)fk −

∑
ajfj = 0, hence we deduce that aj ∈ n for all j

because the {fj} were part of a system of parameters for n. This finishes case 2(a).
In case 2(b), only r− 1 of the generators for I will be independent in m/m2, so

we may take ui = fi for 1 ≤ i ≤ r−1 and fr ∈ m2. Now we consider regularity at n.
First, I claim that the affine patch ring Br is regular. Indeed, since fr ∈ m2 ⊂ n2,
the relations Tjfr − fj have the same images in n/n2 as −fj , which were part of a
regular sequence of parameters for n. Thus p = r − 1 and Br is regular. It remains
to consider a patch ring Bk with k < r and a maximal ideal n which contains Tr.
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In this case the relation Xrfk − fr lies in ∈ n2, so p < r − 1 and n corresponds to a
singular point. Thus the singular locus is given by the hyperplane {Tr = 0}.

Finally, in case 2(c) we may choose generators for I in such a way that fr−1, fr ∈
m2. In this case the relations Tjfk − fj are contained in the vector space generated
by the fj , which has dimension at most r − 2 < r − 1, hence each maximal ideal n
corresponds to a singular point. �

Corollary 2.2

With the notation of Theorem 2.1, P is smooth if and only if A is regular.

Proof. This is immediate from the theorem. This characterization is also proved by
O’Carroll and Valla in [19], Theorem 2.1, where these conditions are also shown to
be equivalent to smoothness of the exceptional divisor. �

Example 2.3: Consider the special case of two lines meeting at a point in P
3.

Locally the ideal at the singularity can be written I = (xy, z) ⊂ A = k[x, y, z]
and the blow up at I is given by ProjA[X,Y ]/(xyY − zX). This is covered by
two affines whose coordinate rings are B1 = k[x, y, z,X]/(xy − zX) and B2 =
k[x, y, z, Y ]/(xyY − z). Clearly B2 is a regular ring, while B1 is the ring of the affine
cone over the nonsingular quadric surface in P

3, which has exactly one singularity
at the vertex.

Example 2.4: A planar double line in P
3 is locally described by the ideal I =

(x2, y) ⊂ A = k[x, y, z]. The blow up at I is ProjA[X,Y ]/(x2Y − yX), which
is covered by two affines with coordinate rings B1 = k[x, y, z,X]/(x2 − yX) and
B2 = k[x, y, z, Y ]/(x2Y −y). Clearly B2 is a regular ring, while B1 is the ring of the
affine cone over the quadric cone in P

3. Since the quadric cone has one singularity (at
the vertex), the affine cone has singular locus Z(x, y,X), which is a (set-theoretic)
section of the line Z(x, y) in SpecA.

Remark 2.5. One can give a geometric description of the singular locus in the inter-
esting case 2(b) of Theorem 2.1. IfX ⊂ SpecA is the closed subscheme corresponding
to I of dimension d, then the condition 2(b) says that locally X is contained in a
smooth subvariety Y of dimension d + 1 which has the same Zariski tangent space
as X. Moreover, X is locally the intersection of Y and a singular hypersurface Z.
The blow up Z̃ of Z at X is a closed subscheme of P = ˜SpecA, and the exceptional
divisor EZ is a P

r−2-bundle over X, which sits inside the exceptional divisor E on
P as the hyperplane of singularities.
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Proposition 2.6

Let Y ⊂ P
n be a subscheme of pure codimension two such that IY (s) is gener-

ated by global sections. Assume that Y is reduced, has embedding dimension ≤ n−1
in codimension ≤ 1, is a local complete intersection in codimension ≤ 2, and is lo-

cally generated by ≤ 3 elements in codimension ≤ 3. Then the general scheme X

linked to Y by hypersurfaces F,G of degrees > s enjoys the following properties.

(a) The hypersurfaces F and G are smooth in codimension ≤ 2, and both X and Y

are Cartier on these hypersurfaces in codimension ≤ 1 (on X and Y ).

(b) The scheme X is integral, smooth in codimension ≤ 2, and a local complete

intersection in codimension ≤ 3.

Proof. We follow the proof of Peskine and Szpiro ([20], Proposition 4.1), taking into
account the refinement offered by Theorem 2.1. Let π : P̃n → P

n be the blow up
of P

n at Y with exceptional divisor E. For d ≥ s, the invertible sheaf IE ⊗O(d) is
generated by global sections, giving a morphism P̃n → P

n × PId → PId, where the
first map is a closed immersion and the second map is the second projection (here
Id = H0(IY (d))). Let σd denote the composite morphism. For f ∈ Id, f represents
hypersurfaces Hf ⊂ PId and Z(f) ⊂ P

n, which are isomorphic away from the base
locus Y (that is, σ−1

d (Hf ) = π−1(Z(f)) away from π−1(Y )). The map σd is a closed
immersion when d > s.

Let W ⊂ P
n denote the closed set (of dimension ≤ n− 5) on which Y is not a

local complete intersection and let U be its complement. The restricted exceptional
divisor E ∩ π−1(U) is Cartier on π−1(U), which is smooth in codimension ≤ 2
by 2.1. By Jouanolou’s Bertini theorem ([13], Theorem 6.10), σ−1

d (Hf ) is integral
(because σd is a closed immersion) and σ−1

d (Hf )∩π−1(U) is smooth in codimension
≤ 2. Moreover, E ∩ σ−1

d (Hf ) is Cartier on σ−1
d (Hf ). For e > s, the local complete

intersection σ−1
d (Hf ) ∩ σ−1

d (Hg) is integral, smooth in codimension ≤ 2, and is
Cartier on σ−1

d (Hf ).
The fibres π−1(u) ∼= P

1 for u ∈ U∩Y map to straight lines in PId (the restriction
of IE ⊗ π∗(O(d)) to a fibre is OP1(1) because IE is the relative O(1) in the proj
construction of P̃n). A dimension count shows that a general hyperplane Hf ⊂
PId contains a family of these image lines of dimension ≤ n − 4, hence σ−1

d (Hf )
contains an (n−4)-dimensional family of the fibres π−1(u) parametrized by W1 ⊂ U .
Similarly, σ−1

d (Hf ) ∩ σ−1
e (Hg) contains a family of these fibres parametrized by

W2 ⊂W1 of dimension ≤ n− 6.
It is easy to prove that if A → B is a closed immersion, B → C is projective,

and A meets the fibres of B → C in schemes of length ≤ 1, then the composite
map A → C is a closed immersion. Using this, we see that σ−1

d (Hf ) (resp. E ∩
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σ−1
d (Hf )) maps isomorphically onto its image Z(f) (resp. Y ) on U −W1 and that
σ−1
d (Hf )∩ σ−1

e (Hg) maps isomorphically onto its image X on U −W2. This suffices
to deduce all conclusions of the proposition except that X is a complete intersection
in codimension ≤ 3.

For this last assertion, we consider the the locally closed subset W3 of dimension
≤ n−5 where IY is locally generated by exactly 3 elements. Since IY (s) is generated
by global sections, it is clear for general f ∈ Id, g ∈ Ie that IY /(f, g) is principal at
the generic points of W3. In this situation we can apply [20], Lemma 3.5 to see that
IX is minimally generated by 2 elements at these generic points, and hence that
the subset of W4 ⊂ W3 where X is not a local complete intersection has dimension
≤ n− 6. It follows that X is a local complete intersection in codimension ≤ 3. �

Remark 2.7. When char k = 0, one can deduce the same smoothness results while
considering hypersurfaces of degrees = s instead of > s. For curves in P

3, these
statements can also be found in [16], Lemma 5.2 and Theorem 5.1 or [17], Theo-
rems 4.3.1 and 4.3.3. However, in this case we cannot expect to take X integral, as
is seen by taking Y to be a pair of skew lines in P

3 and s = 2.

Remark 2.8. Regarding part (a) of the proposition, more general statements about
the smoothness of hypersurfaces containing projective schemes have been proven by
Altman and Kleiman [1]. For the case of curves in P

3, the results are the same.

Corollary 2.9

Let Y ⊂ P
n be a subscheme of pure codimension two such that IY (s) is gener-

ated by global sections. Assume that Y has generic embedding dimension ≤ n − 1
and that Y is a local complete intersection in codimension ≤ 1. Then

(a) The general hypersurface F of degree > s containing Y is smooth in codimension

≤ 1.

(b) The general scheme X linked to Y by hypersurfaces of degrees > s is integral

and smooth in codimension ≤ 1.

Proof. Almost the same as the proof of Corollary 2.6, except that π−1(U) is smooth
in codimension ≤ 1. �

Corollary 2.10

Let Y ⊂ P
n be a subscheme of pure codimension two such that IY (s) is gene-

rated by global sections. Assume that Y is smooth in codimension ≤ 2 and a local

complete intersection in codimension ≤ 3. Then the general scheme X linked to Y

by hypersurfaces of degrees > s is integral and smooth in codimension ≤ 3.
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Proof. We use the same notation as in the proof of Proposition 2.6. Letting W =
Sing(Y ) and U = P

n − W , we see that π−1(U) is smooth and hence so is X̃ =
σ−1
d (Hf ) ∩ σ−1

e (Hg) ∩ π−1(U). This maps isomorphically onto its image X off the
set of dimension ≤ n − 6 corresponding to the fibres contained in X̃. On the other
hand, consider the locally closed set W2 ⊂ Y − U (of dimension ≤ n − 5) where Y
is a local complete intersection. For general w2 ∈ W2, the intersection σ−1

d (Hf ) ∩
σ−1
e (Hg)∩ π−1(w2) is empty, so the possible singularities of X occurring on W2 is a

closed set of dimension at most n− 6. �
Remark 2.11. Similarly, one can prove that if Y ⊂ P

n is a smooth subvariety of
codimension r and IY (s) is generated by global sections, then the general subscheme
X linked to Y by hypersurfaces of degrees > s is smooth in codimension ≤ 2r − 1
(using the same sort of dimension count, one sees that the general intersection
∩r
i=1σ

−1
di

(Hfi) fails to meet the fibres in schemes of length ≤ 1 off a set of dimension
≤ n − 3r). Thus we can link a smooth subvariety Y ⊂ P

n to a smooth subvariety
X if dimY < 2

3n. On the other hand, if dimY ≥ 2
3n, then Hartshorne’s conjecture

predicts that the only smooth subvarieties are complete intersections.

3. Existence results

In this section we prove that the bound of Corollary 1.6 is sharp and that examples
can be found which are smooth in codimension ≤ 2. In particular, we obtain smooth
connected curves in P

3 and smooth surfaces in P
4. On the other hand, our construc-

tion gives varieties which are typically singular in codimension 3 rather than the
optimal codimension of 4. This reflects the expectation that maximal order mul-
tisecanted varieties should occur on some proper closed subset of the moduli. On
the other hand, if m(X) ≥ 4, then X deforms to a subvariety which is smooth in
codimension ≤ 3.

Lemma 3.1
Let Y ⊂ P

n be a subscheme of pure codimension two contained in a hypersurface
S of degree s. Let H be a plane meeting Y properly and consider the basic double
link Z = Y ∪ (S ∩H). Then

(a) The total ideal of Z is given by IZ = (f, hIY ), where f is the equation of S and
h is the equation of H.
(b) The γ-characters of Y and Z are related by the formula

γZ(l) = γY (l − 1) −
(
l

0

)
+

(
l − 1

0

)
+

(
l − s

0

)
−

(
l − s− 1

0

)
for l ∈ Z.
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Proof. This is standard linkage theory. Part (a) can be proven using Schwartau’s
linkage addition (see [2], page 358). The formula for change in γ-character is given
in [15], III, Proposition 3.4(2). �

Proposition 3.2

Let γ be a positive admissible character. Then there exists an ACM subscheme

Y = P
n−2 ∪ Z ⊂ P

n of codimension two with γY = γ which satisfies the hypothesis

of Proposition 2.6 and the following conditions.

(a) Setting A = s1(γ) = min {s : γ(s) > 0}, there is a linear P
3 ⊂ P

n meeting Y

properly such that the genus of the curve restrictions of Y and Z satisfy pa(Y ∩
P

3) − pa(Z ∩ P
3) = A− 2.

(b) Setting B = max {s : γ(s) > 0}, the sheaf IY (r) is generated by its global

sections.

Proof. We proceed by induction on s = s0(γ). For the induction base s = 1 we
see that γ(r) = 1 (with r as in part (a)) and γ(n) = 0 for 1 ≤ n, n �= r. In this
case, choose linear subspaces P

3 and P
n−2 in P

n which intersect in a line L. Let
H be a hyperplane containing P

n−2 and take Y to be the union of P
n−2 with a

general complete intersection of H and a hypersurface of degree r − 1 (The scheme
Z is empty when r = 1. In this case we must interpret pa(∅) = χ(I∅) = 1 for the
empty curve, and condition (a) holds). Then Y is a complete intersection of H and
a hypersurface of degree r, hence satisfies conditions (a) and (b).

Now assume that s > 1. Define γ′ by

γ′(n− 1) = γ(n) +
(
n− 1

0

)
−

(
n
0

)
−

(
n− r

0

)
+

(
n− r − 1

0

)
.

Then γ′ is a positive admissible character with s0(γ′) = s − 1 and it is clear from
the formula above that γY ′(l) = 0 for l > r − 1. By induction hypothesis, there
exists Y ′ = P

n−2 ∪ Z ′ satisfying (a) and (b). In particular, IY ′(r − 1) is generated
by global sections. Applying Proposition 2.6 to Y ′, we can find a hypersurface F
of degree r containing Y ′ which is smooth in codimension ≤ 2 and such that Y ′ is
Cartier on F in codimension ≤ 1.

Let W1 be the closed subset of Y ′ on which Y ′ is not Cartier on F and let W2

be the closed set on which Y ′ is not a local complete intersection. We can choose
a general hyperplane H such that H ∩ F is integral and H meets each irreducible
component of Y ′, F , W1, W2 and Sing(F ) properly. Now let Y = Y ′ ∪ (F ∩H) be
the basic double link obtained from Y ′ by F and H (see Lemma 3.1). It is clear
that Y = P

n−2 ∪ Z, where Z = Z ′ ∪ (F ∩H). Since Y was obtained from Y ′ by a
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basic double link on F , the induction hypothesis and Lemma 3.1 shows that IY (r)
is generated by its global sections.

We check that the conditions of Proposition 2.6 hold for Y . By construction Y
is reduced. Because F ∩H is a complete intersection on the smooth hyperplane H,
the conditions of 2.6 automatically hold away from the intersection Y ′ ∩ (F ∩H) =
Y ′ ∩H. H was chosen so that F is generically smooth along this intersection, which
has codimension 1 in Y , so we conclude that Y has embedding dimension ≤ n−1 in
codimension ≤ 1. Since H meets the components of W1 properly, the dimension of
H ∩W1 is ≤ n− 5. Away from this set, both Y ′ and H ∩ F are Cartier on F along
Y ′ ∩H, hence their union is also. It follows that Y is a local complete intersection
in codimension ≤ 2. Finally, the dimension of H ∩W2 is ≤ n − 6, hence IY is at
most 3-generated away from H ∩W2 (use the local version of the exact sequence
from Lemma 3.1 to see this), and so Y is 3-generated in codimension ≤ 3.

Finally, we check that part (a) holds for Y . We consider the restriction of Y ′

and Y to the linear P
3 to get two curves C ′ = L ∪ D′ and C = L ∪ D, where L

is the line P
3 ∩ P

n−2. Since the plane H meets L in a single point, we see that
# {L ∩D} = # {L ∩D′} + 1 and hence

pa(C) − pa(D) = pa(C ′) − pa(D′) + 1 .

On the other hand, s1(γY ) = s1(γY ′)+1 as well, so the formula of part (a) continues
to hold. �

Theorem 3.3

Let γ be a connected, positive admissible character. Then there exists an in-

tegral ACM subscheme X ⊂ P
n of codimension two with γX = γ and having a

multisecant line achieving the bound of Corollary 1.6. Further,

(a)X can be taken to be smooth in codimension ≤ 2 and a local complete intersection

in codimension ≤ 3.

(b) The general hypersurface of minimal degree containing X is smooth in codimen-

sion ≤ 2.

Proof. First suppose that γ(l) ≤ 1 for all l ∈ Z. Letting s = s0(γ) and t = s1(γ),
the connectedness of γ shows that γ = 1 precisely on [t, t + s − 1], and hence γ is
the γ-character of a complete intersection of hypersurfaces of degrees s and t. By
Proposition 2.6, the general hypersurface F of degree s containing a linear P

n−2 ⊂ P
n

is smooth in codimension ≤ 2 (in the special case s = 1 take F to be a hyperplane).
If G is a general hypersurface of degree t, then F ∩G is smooth in codimension ≤ 2,
and a general line L ⊂ P

n−2 serves as a t-secant line.
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Now we consider the general case in which γ(l) > 1 for some l, and we let R be
the maximal such l. Defining s and t as in the previous paragraph, we define the
function δ by

γ(l) = δ(s+ t− 1 − l) −
(
l
0

)
+

(
l − s

0

)
+

(
l − t

0

)
−

(
l − s− t− 1

0

)

as suggested by Lemma 1.4. It is easy to see that δ is a positive admissible character
such that δ(l) = 0 for l ≥ s and s1(δ) = s+ t− 1 −R.

Applying Proposition 3.2, there exists an ACM subscheme Y ⊂ P
n of codi-

mension two such that γY = δ and Y satisfies the hypotheses of Proposition 2.6. In
particular, IY (s−1) is generated by global sections so we may apply Proposition 2.6
to link Y to a subscheme X by hypersurfaces F and G of degrees s and t such that
X is integral, smooth in codimension ≤ 2, is a local complete intersection in codi-
mension ≤ 3, and lies on a hypersurface F which is smooth in codimension ≤ 2.
By Lemma 1.4 we have γX = γ, and in particular F is a hypersurface of minimal
degree containing X. Since these hypersurfaces are general, we can also choose them
meeting the linear P

3 ⊂ P
n and the line P

3 ∩ P
n−2 properly.

It remains to show that X has an R-secant line. Restricting to the linear
P

3 ⊂ P
n from Proposition 3.2, the curve D = Y ∩P

3 contains the line L = P
n−2∩P

3,
and we have that pa(D)− pa(D−L) = s1(δ)− 2 = s+ t− 1−R (from 3.2). Noting
that the surfaces S = F ∩ P

3 and T = G ∩ P
3 link D to C = X ∩ P

3 and D − L to
C ∪ L, we get the formulas

pa(C ∪ L) − pa(D − L) =
(s+ t

2
− 2

)(
d(C ∪ L) − d(D − L)

)
pa(C) − pa(D) =

(s+ t

2
− 2

)(
d(C) − d(D)

)
.

Subtracting the bottom from the top yields and recalling that the difference in genre
for D and D − L was s+ t− 1 −R, we find that

pa(C ∪ L) − pa(C) = R− 1

which shows that L is an R-secant line for C. �

Remark 3.4. This strengthens the usual existence result [9, 14, 21] by removing
the characteristic zero hypothesis and obtaining maximal order multisecants. We
take a moment to compare the methods used in these papers (see also [7] for a
more detailed comparison). Gruson and Peskine [9] inductively produced the smooth
curves by performing basic double links on surfaces of high degree, and then using a
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characteristic zero Bertini theorem to smooth these double links. Sauer’s method [21]
was to work with the singular locus of the matrix defining the curves (although this
also has a linkage-theoretic aspect - see the account in [7]). Maggioni and Ragusa [14]
first constructed an ACM stick figure, and then did a direct link with surfaces of high
degree (which could be taken smooth). The method used here is similar to that of
Maggioni and Ragusa, except that special care was taken to obtain the multisecant
line.

Theorem 3.5

Suppose that X ⊂ P
n is an ACM subscheme of codimension two and that

m(X) ≥ 4. Then X deforms to an integral ACM subscheme of codimension two

which is smooth in codimension ≤ 3.

Proof. First suppose that γ(l) ≤ 1 for all l ∈ Z. Letting s = s0(γ) and t = s1(γ),
the connectedness of γ shows that γ = 1 precisely on [t, t+ s−1], and hence γ is the
γ-character of a complete intersection of hypersurfaces of degrees s and t. Clearly
we can obtain such a smooth such complete intersection.

Now we consider the general case where γ(l) > 1 for some l and let R be the
largest such l. Defining s and t as in the previous paragraph, we define the function
δ by

γ(l) = δ(s+ t− 1 − l) −
(
l
0

)
+

(
l − s

0

)
+

(
l − t

0

)
−

(
l − s− t− 1

0

)

as in Lemma 1.4. In this case, we use the condition m(X) ≥ 4 and its interpretation
in Lemma 1.9 to see that δ is a connected positive admissible character such that
δ(l) = 0 for l ≥ s and s1(δ) = s+ t− 1 −R.

According to Theorem 3.3. We can find an ACM subscheme Y of codimension
two such that γY = δ, Y is smooth in codimension ≤ 2 and Y is a local complete
intersection in codimension ≤ 3. Applying Corollary 2.10 to Y with hypersurfaces
of degrees s and t, we produce X ′ ⊂ P

n which is smooth in codimension ≤ 3. the
formula of Lemma 1.4 shows that γX′ = γX . Since these subschemes are both ACM,
this implies that X deforms to X ′. �

Remark 3.6. Theorem 3.5 can also be proved with Chang’s Filtered Bertini theorem
(see [4], Example 2.1). Bolondi and Migliore have shown that this holds on any
smooth projective Gorenstein variety of dimension five (see [2], Theorem 4.2), and
that m(X) ≥ 4 is a necessary condition for smoothness.
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