Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 49, 2-3 (1998), 383-397
(c) 1998 Universitat de Barcelona

On the Gorenstein property of the diagonals of the Rees algebra

Olga Lavila-Vidal* and Santiago Zarzuela ${ }^{\dagger}$
Departament d'Àlgebra i Geometria, Universitat de Barcelona, Gran Via 585, E-08007 Barcelona, (Spain)
E-mail: lavila@cerber.mat.ub.es zarzuela@cerber.mat.ub.es

Dedicated to the memory of Fernando Serrano

Abstract

Let Y be a closed subscheme of \mathbb{P}_{k}^{n-1} defined by a homogeneous ideal $I \subset A=k\left[X_{1}, \ldots, X_{n}\right]$, and X obtained by blowing up \mathbb{P}_{k}^{n-1} along Y. Denote by I_{c} the degree c part of I and assume that I is generated by forms of degree $\leq d$. Then the rings $k\left[\left(I^{e}\right)_{c}\right]$ are coordinate rings of projective embeddings of X in \mathbb{P}_{k}^{N-1}, where $N=\operatorname{dim}_{k}\left(I^{e}\right)_{c}$ for $c \geq d e+1$. The aim of this paper is to study the Gorenstein property of the rings $k\left[\left(I^{e}\right)_{c}\right]$. Under mild hypothesis we prove that there exist at most a finite number of diagonals (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is Gorenstein, and we determine them for several families of ideals.

1. Introduction

Let Y be a closed subscheme of \mathbb{P}_{k}^{n-1} defined by a homogeneous ideal $I \subset A=$ $k\left[X_{1}, \ldots, X_{n}\right]$, and X obtained by blowing up \mathbb{P}_{k}^{n-1} along Y. Denote by I_{c} the degree c part of I and assume that I is generated by forms of degree $\leq d$. Then the rings $k\left[\left(I^{e}\right)_{c}\right]$ are coordinate rings of projective embeddings of X in \mathbb{P}_{k}^{N-1}, where $N=\operatorname{dim}_{k}\left(I^{e}\right)_{c}$ for $c \geq d e+1$ (see [3], [2], [9]).

Among the projective varieties obtained in this way we have the Room surfaces, which have been studied in detail by A. Geramita and A. Gimigliano in [5]. These

[^0]surfaces are obtained by blowing-up \mathbb{P}_{k}^{2} along $\binom{d+1}{2}$ points, $d \geq 2$, which do not lie on any curve of degree $d-1$, and then embedding in $\mathbb{P}_{k}^{2 d+2}$. See also [6] and [7] for other results about embedded rational surfaces obtained by blowing up a set of points in \mathbb{P}^{2}.

Recently, the study of the Cohen-Macaulay property of the rings $k\left[\left(I^{e}\right)_{c}\right]$ has received much attention. Considering the Rees algebra $R_{A}(I)=\bigoplus_{n \geq 0} I^{n} t^{n} \subset A[t]$ endowed with a natural bigrading, one can obtain the above rings as diagonals of $R_{A}(I)$. A useful strategy consists in assuming the Cohen-Macaulay property of $R_{A}(I)$ and then to look for which diagonals inherit this property, see for instance A. Simis, N.V. Trung and G. Valla [19], A. Conca, J. Herzog, N.V. Trung and G. Valla [2] and O. Lavila-Vidal [17]. In particular it is known that if $R_{A}(I)$ is CohenMacaulay there are infinitely many pairs (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is Cohen-Macaulay ([17], Theorem 4.5).

Here we are interested in the (quasi) Gorenstein property of the rings $k\left[\left(I^{e}\right)_{c}\right]$. Recall that the a-invariant of a positively graded ring T over a local ring T_{0} is defined as $a(T)=\max \left\{i \mid\left[H_{\mathcal{M}}^{d}(T)\right]_{i} \neq 0\right\}$, where \mathcal{M} is the maximal homogeneous ideal of T and $d=\operatorname{dim} T$. Assuming that T has a canonical module $K_{T}, \mathrm{~T}$ is said to be quasi-Gorenstein if there exists a graded isomorphism $K_{T} \cong T(a)$ with $a=a(T)$, and Gorenstein if in addition T is Cohen-Macaulay.

Under appropriate hypothesis we are able to determine for which pairs (c, e) the ring $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein. In order to state the result assume that I is minimally generated by forms f_{1}, \ldots, f_{r} of degrees d_{1}, \ldots, d_{r} respectively, and put $d=d_{r} \geq \ldots \geq d_{1}$. Suppose $n \geq r \geq 2$ and $c \geq d e+1$. Let $G_{A}(I)=\bigoplus_{n \geq 0} I^{n} / I^{n+1}$ be the form ring of I. Then we prove the following:

Theorem (Theorem 2.8)

Assume $h t(I) \geq 2, \operatorname{dim}(A / I)>0$, and $G_{A}(I)$ is Gorenstein. Set $a=$ $-a\left(G_{A}(I)\right)$. Then $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein if and only if $\frac{n}{c}=\frac{a-1}{e}=l_{0} \in \mathbb{Z}$. In this case, $a\left(k\left[\left(I^{e}\right)_{c}\right]\right)=-l_{0}$.

This result can be applied to several families of ideals. In particular, to any complete intersection ideal (extending in this way a result by A. Conca et al. in [2] for the case $r=2$) and to the ideal generated by the maximal minors of a generic matrix. Note also that under the assumptions of the above theorem there are at most a finite number of rings $k\left[\left(I^{e}\right)_{c}\right]$ which are quasi-Gorenstein. We show that this holds in general:

Proposition (Proposition 3.1)
There exist at most a finite number of diagonals (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein.

For a real number x, let us denote by $\lceil x\rceil=\min \{m \in \mathbb{Z} \mid m \geq x\}$. Assuming that the Rees algebra is Cohen-Macaulay we can give upper bounds for the diagonals (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein:

Proposition (Proposition 3.2)
Assume that $h t(I) \geq 2$ and $R_{A}(I)$ is Cohen-Macaulay. Let $a=-a\left(G_{A}(I)\right)$. If $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein, then $e \leq a-1$ and $c \leq n$. If $\operatorname{dim}(A / I)>0$ then $\left\lceil\frac{a}{e}\right\rceil-1=\frac{n}{c}=l \in \mathbb{Z}$. In particular, if $a=1$ there are no diagonals (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein.

We also prove a converse of Theorem 2.8 by showing that, under some restrictions, the existence of a diagonal (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein implies that $G_{A}(I)$ is Gorenstein. Denoting by $l(I)$ the analytic spread of an ideal I, we have:

Theorem (Theorem 3.3)
Assume that $R_{A}(I)$ is Cohen-Macaulay, $h t(I) \geq 2, l(I)<n$ and I is equigenerated. If there exists a diagonal (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein then $G_{A}(I)$ is Gorenstein.

Finally, by using a variation of Proposition 3.2, we study the case of the Room surfaces. We show that the only Room surface which is Gorenstein is the del Pezzo sestic surface in \mathbb{P}^{6}, so recovering that well known result (see [5], Example 1).

Throughout the paper we shall use the following notation: $A=k\left[X_{1}, \ldots, X_{n}\right]$ will denote the usual polynomial ring with coefficients in a field k, and $I \subset A$ a homogeneous ideal minimally generated by forms f_{1}, \ldots, f_{r} of degrees d_{1}, \ldots, d_{r}. We put $d=d_{r} \geq \ldots \geq d_{1}, u=\sum_{j=1}^{r} d_{j}$. If $d_{1}=d_{2}=\ldots=d_{r}$ we say that I is equigenerated. Let us consider the Rees algebra of $I: R_{A}(I)=\bigoplus_{n \geq 0} I^{n} t^{n} \subset A[t]$ endowed with the \mathbb{N}^{2}-grading given by $R_{A}(I)_{(i, j)}=\left(I^{j}\right)_{i} t^{j}$. Let $S=k\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{r}\right]$ be the polynomial ring with the \mathbb{N}^{2}-grading obtained by giving $\operatorname{deg} X_{i}=(1,0)$ for $i=1, \ldots, n$, deg $Y_{j}=\left(d_{j}, 1\right)$ for $j=1, \ldots, r$. Then $R_{A}(I)$ can be seen in a natural way as a bigraded S-module.

For any pair of positive integers $\Delta=(c, e)$ and any bigraded S-module $L=$ $\bigoplus_{(i, j)} L_{(i, j)}$ we may consider $L_{\Delta}:=\bigoplus_{s \in \mathbb{Z}} L_{(c s, e s)}$ which is a graded module over the graded ring $S_{\Delta}:=\bigoplus_{s \geq 0} S_{(c s, e s)}$. We call these modules the diagonals of L and S along Δ. We shall always assume that $e>0, c \geq d e+1$. It is then known ([2], Section 1) that S_{Δ} is Cohen-Macaulay with $\operatorname{dim} S_{\Delta}=n+r-1, R_{A}(I)_{\Delta} \cong k\left[\left(I^{e}\right)_{c}\right]$ and $\operatorname{dim} k\left[\left(I^{e}\right)_{c}\right]=n$.

Let T be a positively bigraded d-dimensional ring defined over a local ring, and denote by \mathcal{M} the maximal homogeneous ideal of T. The bigraded a-invariant of T is then defined by $\mathbf{a}(T)=\left(a_{1}, a_{2}\right)$, where $a_{j}=\max \left\{n_{j} \mid \mathbf{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2},\left[H_{\mathcal{M}}^{d}(T)\right]_{\mathbf{n}} \neq\right.$ $0\}$.

2. The case of ideals whose form ring is Gorenstein

Let $S=k\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{r}\right]$ be the polynomial ring introduced before and $\Delta=(c, e)$. Applying the diagonal functor, S_{Δ} is always a Cohen-Macaulay ring. We begin this section by showing that, on the contrary, S_{Δ} is Gorenstein only for a finite number of diagonals. Furthermore, we may determine them.

Proposition 2.1

S_{Δ} is Gorenstein if and only if $\frac{r}{e}=\frac{n+u}{c}=l \in \mathbb{Z}$. Then $a\left(S_{\Delta}\right)=-l$.
Proof. Let $T=S_{\Delta}=\bigoplus_{s \geq 0} U_{s}$, where U_{s} is the k-vector space generated by the monomials $X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}} Y_{1}^{\beta_{1}} \ldots Y_{r}^{\beta_{r}}$ with $\alpha_{i}, \beta_{j} \geq 0$ satisfying the equations (\star)

$$
\begin{gathered}
\sum_{i=1}^{n} \alpha_{i}+\sum_{j=1}^{r} d_{j} \beta_{j}=c s \\
\sum_{j=1}^{r} \beta_{j}=e s
\end{gathered}
$$

By [2], Lemma 3.1 and local duality, $K_{T}=\bigoplus_{s \geq 1} V_{s}$ with V_{s} the k-vector space generated by the monomials $X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}} Y_{1}^{\beta_{1}} \ldots Y_{r}^{\beta_{r}}$, and $\alpha_{i}>0, \beta_{j}>0$ which satisfy (\star). Since T is Cohen-Macaulay, T is Gorenstein if and only if $K_{T} \cong T(a(T))$. Assume first that $\frac{r}{e}=\frac{n+u}{c}=l \in \mathbb{Z}$. Then, multiplication by $X_{1} \ldots X_{n} Y_{1} \ldots Y_{r} \in T_{l}$ induces an isomorphism $T \cong K_{T}(l)$ and so T is Gorenstein with $a(T)=-l$.

To prove the converse set $(\alpha, \beta)=\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{r}\right)$ with $\alpha_{i}, \beta_{j}>0$ and assume the contrary. This means that $(\mathbf{1}, \mathbf{1})$ is not a solution of (\star) for any s. On the other hand, the set of solutions of (\star) for some s is partially ordered by means of $(\alpha, \beta) \leq(\gamma, \rho) \Longleftrightarrow \alpha_{i} \leq \gamma_{i}, \beta_{j} \leq \rho_{j}, \forall i, j$. Then one can easily check that for any i, j there exists a solution of (\star) for some s such that $\alpha_{i}=\beta_{j}=1$. This implies the existence of at least two minimal solutions, and so T is not Gorenstein.
Remark 2.2. Note that the number of minimal elements in the set of solutions of the system (\star) coincides with the type of S_{Δ}. It is not difficult to see that if S_{Δ} is not Gorenstein, then its type is $\geq r$.

This result leads to the question of when there exist diagonals (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ be quasi-Gorenstein, and how one can determine them.

Our answer will be partially based on the following proposition which links the diagonal of the canonical module of $R_{A}(I)$ to the canonical module of the diagonal of $R_{A}(I)$. It is stated and proved for complete intersection ideals in [2], Proposition 4.5 but in fact the same statement and proof are valid in general. We include the proof for completeness.

Proposition 2.3

$$
K_{R_{A}(I)_{\Delta}}=\left(K_{R_{A}(I)}\right)_{\Delta}
$$

Proof. Let us denote by $T=S_{\Delta}$ and $R=R_{A}(I)$. Consider a presentation of R as S-module

$$
0 \rightarrow C \rightarrow S \rightarrow R \rightarrow 0
$$

which leads to the bigraded exact sequence of local cohomology modules

$$
0 \rightarrow H_{m_{S}}^{n+1}(R) \rightarrow H_{m_{S}}^{n+2}(C) \rightarrow H_{m_{S}}^{n+2}(S) \rightarrow 0
$$

where m_{S} is the maximal homogeneous ideal of S.
Similarly, we get the graded exact sequence

$$
0 \rightarrow H_{m_{T}}^{n}\left(R_{\Delta}\right) \rightarrow H_{m_{T}}^{n+1}\left(C_{\Delta}\right) \rightarrow H_{m_{T}}^{n+1}(T) \rightarrow 0
$$

where m_{T} is the maximal homogeneous ideal of T.
On the other hand, by [2], Theorem 3.6 we have a commutative diagram

$$
\begin{aligned}
& 0 \quad \rightarrow \quad H_{m_{S}}^{n+1}(R)_{\Delta} \quad \rightarrow \quad H_{m_{S}}^{n+2}(C)_{\Delta} \quad \rightarrow \quad H_{m_{S}}^{n+2}(S)_{\Delta} \quad \rightarrow \quad 0 \\
& \varphi_{R}^{n} \uparrow \quad \varphi_{C}^{n+1} \uparrow \quad \varphi_{S}^{n+1} \uparrow \\
& 0 \quad \rightarrow \quad H_{m_{T}}^{n}\left(R_{\Delta}\right) \quad \rightarrow H_{m_{T}}^{n+1}\left(C_{\Delta}\right) \quad \rightarrow \quad H_{m_{T}}^{n+1}(T) \quad \rightarrow 0
\end{aligned}
$$

where $\varphi_{C}^{n+1}, \varphi_{S}^{n+1}$ are isomorphisms, and so φ_{R}^{n} also is an isomorphism. Therefore $H_{m_{T}}^{n}\left(R_{\Delta}\right) \cong H_{m_{S}}^{n+1}(R)_{\Delta}$ and we get

$$
\begin{aligned}
K_{R_{\Delta}} & =\operatorname{Hom}_{k}\left(H_{m_{T}}^{n}\left(R_{\Delta}\right), k\right)=\operatorname{Hom}_{k}\left(H_{m_{S}}^{n+1}(R)_{\Delta}, k\right) \\
& =\operatorname{Hom}_{k}\left(H_{m_{S}}^{n+1}(R), k\right)_{\Delta}=\left(K_{R}\right)_{\Delta} . \square
\end{aligned}
$$

Remark 2.4. The hypothesis $n \geq r \geq 2$ fixed in the introduction is only used in this paper to prove Proposition 2.3, and of course its applications. Nevertheless, the
isomorphism $K_{R_{A}(I)_{\Delta}}=\left(K_{R_{A}(I)}\right)_{\Delta}$ is also valid if $n, r \geq 2, I$ is equigenerated and $R_{A}(I)$ is Cohen-Macaulay. To prove this, set $R=R_{A}(I)$ and assume $r>n$ (if $n \geq r$ we may apply Proposition 2.3). Let

$$
0 \rightarrow D_{r-1} \rightarrow \ldots \rightarrow D_{1} \rightarrow D_{0}=S \rightarrow R_{A}(I) \rightarrow 0
$$

be the \mathbb{Z}^{2}-graded minimal free resolution of R over S. For every p, D_{p} is a direct sum of S-modules of the type $S(a, b)$. Denote by \bar{b} the maximum of the $-b$'s which appear in the resolution. Since R is Cohen-Macaulay, we get from [17], Lemmas 3.6 and 3.7 that $\bar{b}=-1+r$. On the other hand, from [2], Lemmas 3.1 and 3.3 (note that hypothesis $n \geq r$ is not used there) we have that $H_{m_{S}}^{r}\left(S(a, b)_{\Delta}\right)_{s} \neq 0$ if and only if $\frac{(b+r) d-u-a}{c-e d} \leq s \leq \frac{-b-r}{e}$, hence $s<0$. Also by [17], Proposition $4.1-a \geq-b d$ and so $(b+r) d-u-a=b d-a \geq 0$. So we get $H_{m_{T}}^{r}\left(\left(D_{p}\right)_{\Delta}\right)=0$ for all p, and by [2], Lemma 3.1 that $H_{m_{T}}^{i}\left(\left(D_{p}\right)_{\Delta}\right)=0$ for all $n<i<n+r-1$ and that $\varphi_{D_{p}}^{n+r-1}$ is an isomorphism for all p. By [2], Lemma 1.7 we then have $\varphi_{R}^{i}, \varphi_{C}^{i}$ are isomorphisms for all $i>n$, and the same proof as in Proposition 2.3 shows that $K_{R_{\Delta}}=\left(K_{R}\right)_{\Delta}$.

This means that all the results we are going to prove are also valid if $n, r \geq 2$, I is equigenerated and $R_{A}(I)$ is Cohen-Macaulay.

In view of Proposition 2.3 any information on the bigraded structure of $K_{R_{A}(I)}$ will be of interest. Let B be a d-dimensional local ring, $d \geq 1$, which has a canonical module K_{B} and $I \subset B$ an ideal of positive height such that $R_{B}(I)$ is CohenMacaulay. In [21], Theorem 2.2 it is given a description of $K_{R_{B}(I)}$ in terms of a filtration of submodules of K_{B}. Assume now that $B=\bigoplus_{n \geq 0} B_{n}$ is a positively graded ring of positive dimension over a local ring B_{0}, which has a canonical module K_{B}. Let $I \subset B$ be a homogeneous ideal of positive height. Then, the Rees algebra $R_{B}(I)$ has a bigraded structure by means of $\left[R_{B}(I)\right]_{(i, j)}=\left(I^{j}\right)_{i} t^{j}$ for all $i, j \geq 0$. We also have a bigraded structure on the form ring by means of $\left[G_{B}(I)\right]_{(i, j)}=\left(I^{j}\right)_{i} /\left(I^{j+1}\right)_{i}$ for all $i, j \geq 0$.

Then, the proof of [21], Theorem 2.2 may be "bigraded" and we thus obtain a description of the bigraded structure of $K_{R_{B}(I)}$. Namely, we get:

Theorem 2.5

With the notation above assume that $R_{B}(I)$ is Cohen-Macaulay. Then there exists a homogeneous filtration $\left\{K_{m}\right\}_{m \geq 0}$ of K_{B} and isomorphisms of bigraded modules such that

$$
\begin{aligned}
& K_{R_{B}(I)} \cong \bigoplus_{(l, m), m \geq 1}\left[K_{m}\right]_{l}, \\
& K_{G_{B}(I)} \cong \bigoplus_{(l, m), m \geq 1}\left[K_{m-1}\right]_{l} /\left[K_{m}\right]_{l} .
\end{aligned}
$$

Several other results of [2] may also be "bigraded". In particular [21], Lemma 4.1 which makes precise when the canonical module of the Rees algebra has the expected form. Recall that $K_{R_{B}(I)}$ has the expected form if

$$
K_{R_{B}(I)} \cong B t \oplus B t^{2} \oplus \ldots \oplus B t^{l} \oplus I t^{l+1} \oplus I^{2} t^{l+2} \oplus \ldots
$$

for some $l \geq 0$. This definition was introduced by J. Herzog, A. Simis and W. Vasconcelos in [14]. We still use the same notation and again omit the proof.

Corollary 2.6

Assume $R_{B}(I)$ is Cohen-Macaulay and $G_{B}(I)$ is quasi-Gorenstein. Let $a\left(G_{B}(I)\right)=(-b,-a)$ be the bigraded a-invariant of $G_{B}(I)$. Then $K_{B} \cong B(-b)$ and

$$
K_{R_{B}(I)}=\bigoplus_{(l, m), m \geq 1}\left[I^{m-a+1}\right]_{l-b}
$$

where $I^{n}=B$ if $n \leq 0$.
Note that $-a$ coincides with the usual a-invariant of $G_{B}(I)$. By Ikeda-Trung's criterion [16] it is always negative if $R_{B}(I)$ is Cohen-Macaulay, and it has been calculated in many cases (see for instance [13], [10]). As for b, it is clear that under the hypothesis of Corollary 2.6 we get $-b=a(B)$. It is then also easy to compute the bigraded a-invariant of $R_{B}(I)$. Namely, we get that if $a=1$ then $a\left(R_{B}(I)\right)=\left(-d_{1}+a(B),-1\right)$, and if $a>1$ then $a\left(R_{B}(I)\right)=(a(B),-1)$.
Remark 2.7. Assume that $B=A=k\left[X_{1}, \ldots, X_{n}\right]$ and I is a complete intersection ideal. Then, the Eagon-Northcott complex provides a \mathbb{Z}^{2}-graded minimal free resolution of $R_{A}(I)$. Following the proof of Yoshino [24] it is possible to see that

$$
K_{R_{A}(I)}=J\left((r-2) d_{1}-n,-1\right)
$$

with $J=\left(f_{1}^{r-2}, f_{1}^{r-2} t, \ldots, f_{1}^{r-2} t^{r-2}\right) R_{A}(I)$.
Observe that in this case $a\left(G_{A}(I)\right)=(-n,-r)$ and by Corollary 2.6

$$
K_{R_{A}(I)}=\bigoplus_{(l, m), m \geq 1}\left[I^{m-r+1}\right]_{l-n}
$$

A straightforward computation shows that, in fact, multiplication by f_{1}^{r-2} provides an explicit isomorphism

$$
\bigoplus_{(l, m), m \geq 1}\left[I^{m-r+1}\right]_{l-n} \cong J\left((r-2) d_{1}-n,-1\right)
$$

Let us now assume that $I \subset A=k\left[X_{1}, \ldots, X_{n}\right]$ is a homogeneous ideal whose form ring is Gorenstein. We are now ready to prove the main result of this section determining the possible quasi-Gorenstein diagonals of $R_{A}(I)$. We use the same notation as before, and note that in this case $b=-a(A)=n$. Then we get:

Theorem 2.8

Assume $h t(I) \geq 2, \operatorname{dim}(A / I)>0$, and $G_{A}(I)$ is Gorenstein. Then $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein if and only if $\frac{n}{c}=\frac{a-1}{e}=l_{0} \in \mathbb{Z}$. In this case, $a\left(k\left[\left(I^{e}\right)_{c}\right]\right)=-l_{0}$.

Proof. Let $R=R_{A}(I)$. Recall that $R_{\Delta}=k\left[\left(I^{e}\right)_{c}\right]=\bigoplus_{l \geq 0}\left[I^{l e}\right]_{l c}$. Note that R is Cohen-Macaulay by using a result of Lipman [18, Theorem 5]. By now applying Corollary 2.6, $K_{R}=\bigoplus_{(l, m), m \geq 1}\left[I^{m-a+1}\right]_{l-n}$, so that by Proposition 2.3 we get $K_{R_{\Delta}}=\left(K_{R}\right)_{\Delta}=\bigoplus_{l \geq 1}\left[I^{e l-a+1}\right]_{c l-n}$. Let $l_{0}=\min \left\{l \in \mathbb{Z} \left\lvert\, l \geq \frac{n}{c}\right.\right\}, s=a-1-e l_{0}$. We shall now distinguish three cases.

If $s=0$, then the first non-zero component of $K_{R_{\Delta}}$ is $\left[I^{e l_{0}-a+1}\right]_{c l_{0}-n}=$ $A_{c l_{0}-n}$, so that if R_{Δ} is quasi-Gorenstein $c l_{0}-n=0$ and we get that $l_{0}=$ $\frac{n}{c}=\frac{a-1}{e}$ and $a\left(R_{\Delta}\right)=-l_{0}$. Conversely, if $l_{0}=\frac{n}{c}=\frac{a-1}{e}$ then $\left[K_{R_{\Delta}}\right] l_{l_{0}+m}$ $=\left[I^{e l_{0}-a+1+e m}\right]_{c l_{0}+c m-n}=\left[I^{e m}\right]_{c m}=\left[R_{\Delta}\right]_{m}$ for all m and so R_{Δ} is quasiGorenstein.

If $s<0$, let $l_{1}=\min \left\{l \mid e l-a+1>0, c l-n \geq d_{1}(e l-a+1)\right\}$. Then $l_{1} \geq l_{0}$ and the first non-zero component of $K_{R_{\Delta}}$ is $\left[K_{R_{\Delta}}\right]_{l_{1}}=\left[I^{e l_{1}-a+1}\right]_{c l_{1}-n}$. In particular, $a\left(R_{\Delta}\right)=-l_{1}$. Assume R_{Δ} is quasi-Gorenstein. Then $K_{R_{\Delta}} \cong$ $R_{\Delta}\left(-l_{1}\right)$ and so $\left[K_{R_{\Delta}}\right]_{l_{1}} \cong k$. This implies that $c l_{1}-n=d_{1}\left(e l_{1}-a+1\right)$: If $c l_{1}-n-d_{1}\left(e l_{1}-a+1\right)=r>0$ we may choose two linearly independent forms $g, h \in A_{r}$ such that $g f_{1}^{e l_{1}-a+1}, h f_{1}^{e l_{1}-a+1} \in\left[I^{e l_{1}-a+1}\right]_{c l_{1}-n} \cong k$, which is a contradiction. From the isomorphism one gets that $K_{R_{\Delta}}$ is generated by $f_{1}^{e l_{1}-a+1}$ as R_{Δ}-module. Now let $f_{j} \notin \operatorname{rad}\left(f_{1}\right)$ (it exists because $h t(I) \geq 2$), and choose m such that $m\left(c-d_{j} e\right)>d_{j}-d_{1}$ and there exists $f \in A_{d_{1}+c m-d_{j}(e m+1)}$ such that $\left(f, f_{1}\right)=1$. Then $f_{1}^{e l_{1}-a} f_{j}^{e m+1} f \in\left[I^{e l_{1}-a+1+e m}\right]_{d_{1}\left(e l_{1}-a+1\right)+c m}=f_{1}^{e l l_{1}-a+1}\left[I^{e m}\right]_{c m}$, and we get $f_{j}^{e m+1} f \in\left(f_{1}\right)$ which is a contradiction.

If $s>0$, the first non-zero component of $K_{R_{\Delta}}$ is $\left[I^{e l_{0}-a+1}\right]_{c l_{0}-n}=A_{c l_{0}-n}$, so if R_{Δ} is quasi-Gorenstein we get $c l_{0}-n=0$. Furthermore, for all $m \geq 1$ we have $\left[K_{R_{\Delta}}\right]_{l_{0}+m}=\left[I^{-s+e m}\right]_{c l_{0}-n+c m}=\left[I^{-s+e m}\right]_{c m} \cong\left[I^{e m}\right]_{c m}$. Since $s>0$ and $\left[I^{e m}\right]_{c m} \subset\left[I^{-s+e m}\right]_{c m}$ this isomorphism is possible if and only if $\left[I^{e m}\right]_{c m}=$ $\left[I^{-s+e m}\right]_{c m}$. Now choose X_{i} such that $X_{i} \notin \operatorname{rad}(I)$ (it always exists because $\operatorname{dim}(A / I)>0)$ and m with $e m-s \geq 1$. For any j consider $F_{j}=X_{i}^{\alpha_{j}} f_{j}^{e m-s}$ where $\alpha_{j}=c m-d_{j}(e m-s)=\left(c-d_{j} e\right) m+d_{j} s \geq 1$, and assume $\left[I^{e m}\right]_{c m}=\left[I^{-s+e m}\right]_{c m}$. Then $F_{j} \in\left[I^{e m-s}\right]_{c m}$ and so $X_{i}^{\alpha_{j}} f_{j}^{e m-s} \in I^{e m}$. Now let $f_{1}^{c_{1}} \ldots f_{r}^{c_{r}}$ such that
$c_{1}+\ldots+c_{r} \geq r(e m-s)$. This implies that there exists l with $c_{l} \geq e m-s$ and so $X_{i}^{\alpha_{1}} f_{1}^{c_{1}} \ldots f_{r}^{c_{r}}=X_{i}^{\alpha_{1}} f_{l}^{e m-s} f_{1}^{c_{1}} \ldots f_{l}^{c_{l}-e m+s} \ldots f_{r}^{c_{r}} \in I^{c_{1}+\ldots+c_{r}+s}$, since $\alpha_{1} \geq \alpha_{i}$ for all i. Thus we get $X_{i}^{\alpha} I^{h} \subset I^{h+s}$ for $h \gg 0$, which implies that $X_{i}^{\alpha} \in I^{s} \subset I$ since $R_{A}(I)$ is Cohen-Macaulay. But this contradicts $X_{i} \notin \operatorname{rad}(I)$ and so R_{Δ} cannot be quasi-Gorenstein.

The remaining cases $h t(I)=1, n$ in the above theorem are studied separately in the following remarks.

Remark 2.9. If $h t(I)=1$ then $k\left[\left(I^{e}\right)_{c}\right]$ is never quasi-Gorenstein. In fact, by [21] Proposition 4.6, $a\left(G_{A}(I)\right)=-1$ and so $a=1$. Following the same proof as in Theorem 2.8 we have that $s=-e l_{0}<0$. On the other hand, since $h t(I)=1$ we may write $I=g J$, with $h t(J) \geq 2, J=\left(\bar{f}_{1}, \ldots, \bar{f}_{r}\right)$ and $f_{j}=\bar{f}_{j} g$ for all j. The same argument as in Theorem 2.8 for the case $s<0$ but taking $\bar{f}_{j} \notin \operatorname{rad}\left(\bar{f}_{1}\right)$ and $f \in A_{d_{1}+c m-d_{j}(e m+1)}$ such that $\left(f, \bar{f}_{1}\right)=1$ leads to $\bar{f}_{j}^{e m+1} f \in\left(\bar{f}_{1}\right)$, which is a contradiction.

Remark 2.10. When $\operatorname{dim}(A / I)=0$, the condition $\frac{n}{c}=\frac{a-1}{e}=l_{0} \in \mathbb{Z}$ is sufficient but not necessary for $k\left[\left(I^{e}\right)_{c}\right]$ to be quasi-Gorenstein. For instance, let $A=k\left[X_{1}, X_{2}, X_{3}\right]$ and $I=\left(X_{1}, X_{2}, X_{3}\right)$. Set $R=R_{A}(I)$. Note that $a=-3$ and by Corollary $2.6 K_{R}=\bigoplus_{(l, m), m \geq 1}\left[I^{m-2}\right]_{l-3}$. By taking the (3,1)-diagonal, $K_{R_{\Delta}}=\bigoplus_{l \geq 1}\left[I^{l-2}\right]_{3(l-1)}=\bigoplus_{l \geq 1} A_{3(l-1)}=\left(\bigoplus_{l \geq 0} A_{3 l}\right)(-1)=R_{\Delta}(-1)$ and so $R_{\Delta}=k\left[I_{3}\right]$ is quasi-Gorenstein. In this case, $n=\bar{a}=3=c, e=1$ and $\frac{n}{c}=1 \neq 2$ $=\frac{a-1}{e}$.

As a consequence of Theorem 2.8 we obtain the following result for the case of complete intersection ideals. It generalizes [2], Corollary 4.7 where the case of ideals generated by two elements was considered.

Corollary 2.11

Let $I \subset k\left[X_{1}, \ldots, X_{n}\right]$ be a homogeneous complete intersection ideal minimally generated by r forms of degrees $d_{1} \leq \ldots \leq d_{r}=d$, with $r<n$. Then for $c \geq d e+1$, $k\left[\left(I^{e}\right)_{c}\right]$ is Gorenstein if and only if $\frac{n}{c}=\frac{r-1}{e}=l_{0} \in \mathbb{Z}$. In this case, $a\left(k\left[\left(I^{e}\right)_{c}\right]\right)=$ $-l_{0}$.

Proof. Since $a\left(G_{A}(I)\right)=-r$ we get by Theorem 2.8 that $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein if and only if $\frac{n}{c}=\frac{r-1}{e}=l_{0} \in \mathbb{Z}$. But then $\sum_{j=1}^{r} d_{j}+(e-1) d-n \leq r d+e d-d-n=$ $(r-1) d+d e-n=e \frac{n}{c} d+d e-n=n\left(\frac{e d-c}{c}\right)+d e \leq d e<c$, and by [2], Theorem 4.3, $k\left[\left(I^{e}\right)_{c}\right]$ is also Cohen-Macaulay and so Gorenstein.

We may also study the ideals generated by the maximal minors of a generic matrix. We thank A. Conca for suggesting we consider this case.

Example 2.12: Let $X=\left(X_{i j}\right), 1 \leq i \leq n, 1 \leq j \leq m$ be a generic matrix, with $m \leq n$. Let us consider $I \subset A=k\left[X_{i j}, 1 \leq i \leq n, 1 \leq j \leq m\right]$ the ideal generated by the maximal minors of X, where k is a field of arbitrary characteristic. It is well-known (see [4]) that the Rees algebra $R_{A}(I)$ is Cohen-Macaulay and the form ring $G_{A}(I)$ is Gorenstein. Moreover, it has been proved by A. Conca (personal communication) that all the diagonals of $R_{A}(I)$ are Cohen-Macaulay. Now we want to study the Gorenstein property of these rings. Note that I is an equigenerated ideal whose Rees algebra is Cohen-Macaulay, so one can apply Theorem 2.8. From the fact that I is generically a complete intersection, one can easily see that $a\left(G_{A}(I)\right)=$ $-h t(I)=-(n-m+1)$. We shall distinguish two cases.

If $m<n$, then $k\left[\left(I^{e}\right)_{c}\right]$ is Gorenstein if and only if $\frac{n m}{c}=\frac{n-m}{e} \in \mathbb{Z}$. So there is always at least one diagonal which is Gorenstein by taking $c=n m, e=n-m$.

If $m=n$, note that I is a principal ideal and so the Rees algebra is isomorphic to a polynomial ring. Then it is easy to prove that the only diagonal which is Gorenstein occurs when $c=n(n+1), e=1$.

3. Restrictions to the existence of Gorenstein diagonals. Applications

In the previous section we proved that under the assumptions of Theorem 2.8 there exist at most a finite number of diagonals (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is quasiGorenstein. Our next result shows that this holds in general.

Proposition 3.1

There exist at most a finite number of diagonals (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein.

Proof. Let $R=R_{A}(I)$ and $w_{1}, \ldots, w_{m} \in K_{R}$ a system of generators of K_{R} as R module with $\operatorname{deg} w_{i}=\left(\alpha_{i}, \beta_{i}\right)$ for all i, and so $K_{R}=\sum_{i=1}^{m} R w_{i}$. Note that since R is a domain K_{R} is torsion free. For $\Delta=(c, e)$ we then have by Proposition 2.3 that for all $l \geq 1$

$$
\left[K_{R_{\Delta}}\right]_{l}=\sum_{i=1, \ldots, m, e l-\beta_{i} \geq 0}\left[I^{e l-\beta_{i}}\right]_{c l-\alpha_{i}} w_{i}
$$

If R_{Δ} is quasi-Gorenstein there exists an integer l such that $\left[K_{R_{\Delta}}\right]_{l}=k$ and so $\left[I^{e l-\beta_{i}}\right]_{c l-\alpha_{i}} \neq 0$ for some $i(\star)$. We shall distinguish two cases.

Assume first that I is an equigenerated ideal of degree d. Then condition (\star) implies that $e l-\beta_{i}=0$ and $c l-\alpha_{i} \geq 0$ or $e l-\beta_{i}>0$ and $c l-\alpha_{i} \geq d\left(e l-\beta_{i}\right)$. If el $-\beta_{i}=0$, then $k=\left[K_{R_{\Delta}}\right]_{l} \supset A_{c l-\alpha_{i}} w_{i}$ and since K_{R} is torsion-free we get $c l-\alpha_{i}=0$. Hence (c, e) satisfies $\frac{\beta_{i}}{e}=\frac{\alpha_{i}}{c}=l \in \mathbb{Z}$ and the statement holds. If $e l-\beta_{i}>0$ then $k=\left[K_{R_{\Delta}}\right]_{l} \supset\left[I^{e l-\beta_{i}}\right]_{c l-\alpha_{i}} w_{i}$ which is impossible since K_{R} is torsion free and $c l-\alpha_{i} \geq d\left(e l-\beta_{i}\right)$.

Assume now that I is not equigenerated. Condition (\star) implies that el $-\beta_{i}=$ 0 and $c l-\alpha_{i} \geq 0$ or $e l-\beta_{i}>0$ and $c l-\alpha_{i} \geq d_{1}\left(e l-\beta_{i}\right)$. In the first case we may proceed as before to get the statement. In the second case we have that $k=\left[K_{R_{\Delta}}\right]_{l} \supset\left[I^{e l-\beta_{i}}\right]_{c l-\alpha_{i}} w_{i}$ and so $c l-\alpha_{i}=d_{1}\left(e l-\beta_{i}\right)$ and $d_{1}<d_{2}$. Then $\alpha_{i}-d_{1} \beta_{i}=c l-d_{1} e l \geq c-d_{1} e \geq\left(d-d_{1}\right) e$ since $l \geq 1$ and $c \geq d e+1>d e$. Thus we obtain the inequality $e \leq \frac{\alpha_{i}-d_{1} \beta_{i}}{d-d_{1}}$ and for each e, we have $c \leq d_{1} e+\alpha_{i}-d_{1} \beta_{i}$. In any case, these inequalities hold for at most a finite number of diagonals and so we get the result.

If the Rees algebra $R_{A}(I)$ is Cohen-Macaulay we can also give bounds for the diagonals (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein.

Proposition 3.2

Assume that $h t(I) \geq 2$ and $R_{A}(I)$ is Cohen-Macaulay. Let $a=-a\left(G_{A}(I)\right)$. If $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein, then $e \leq a-1$ and $c \leq n$. Moreover, if $\operatorname{dim}(A / I)>0$ then $\left\lceil\frac{a}{e}\right\rceil-1=\frac{n}{c}=l \in \mathbb{Z}$. In particular, if $a=1$ there are no diagonals (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein.

Proof. Set $R=R_{A}(I)$ and $G=G_{A}(I)$. By Theorem 2.5, there exists a homogeneous filtration $\left\{K_{m}\right\}_{m \geq 0}$ of K_{A} such that $K_{R} \cong \bigoplus_{m \geq 1} K_{m}$ and $K_{G} \cong \bigoplus_{m \geq 1} K_{m-1} / K_{m}$. Bigrading the proof of [21], Corollary 2.5, we have that $K_{m}=H o m_{A}\left(I, K_{m+1}\right)$ for every $m \geq 0$. Note that K_{A} may be viewed as an ideal of A. Assume that R_{Δ} is quasi-Gorenstein. Then there is an integer l_{0} such that $\left[K_{R_{\Delta}}\right]_{l_{0}}=k$. By Proposition 2.3 we may find an element $f \in\left[K_{e l_{0}}\right]_{c l_{0}}=\left[K_{R}\right]_{\left(c l_{0}, e l_{0}\right)}, f \neq 0, K_{R_{\Delta}}=$ $R_{\Delta} f$.

Claim. $K_{e l_{0}}=A f$.
To prove the claim we first show that for any $g \in K_{e l_{0}}, g \neq 0$, then $\operatorname{deg} g \geq c l_{0}$. Assume the contrary: $\operatorname{deg} g=k<c l_{0}$. Then $[A g]_{c l_{0}}=A_{c l_{0}-k} g \subset\left[K_{e l_{0}}\right]_{c l_{0}} \cong k$. But since $c l_{0}-k>0, \operatorname{dim}_{k} A_{c l_{0}-k}>1$, so we get a contradiction.

Now let $g \in K_{e l_{0}}$. If deg $g=c l_{0}$, then $g \in A f$ because $\left[K_{e l_{0}}\right]_{c l_{0}} \cong k$. Let us assume that $\operatorname{deg} g=k>c l_{0}$. Then, for each $l>0,\left[I^{e l}\right]_{c l} f+\left[I^{e l}\right]_{c\left(l_{0}+l\right)-k} g \subset$
$\left[K_{e\left(l_{0}+l\right)}\right]_{c\left(l_{0}+l\right)} \cong\left[I^{e l}\right]_{c l}$ as k-vector spaces, and so $\left[I^{e l}\right]_{c\left(l_{0}+l\right)-k} g \subset\left[I^{e l}\right]_{c l} f$. Now let $I^{e l}=\left(F_{1}, \ldots, F_{t}\right)$ where F_{i} is a homogeneous polynomial of degree \leq del for all i, and set $\alpha=c\left(l_{0}+l\right)-k-\operatorname{deg} F_{i}$. Note that for $l \gg 0, \alpha \geq c\left(l_{0}+l\right)-k-d e l=$ $(c-d e) l+c l_{0}-k>0$ and we can find $h \in A_{\alpha}$ such that $(h, f)=1$. Then $h g F_{i} \in\left[I^{e l}\right]_{c\left(l_{0}+l\right)-k} g \subset\left[I^{e l}\right]_{c l} f \subset A f$ and we have that $g F_{i} \in A f$ for all i. Thus $I^{e l} g \subset(f)$ and writing $g=d \bar{g}, f=d \bar{f}$ with $(\bar{f}, \bar{g})=1$ we get $I^{e l} \bar{g} \subset A \bar{f}$. If $g \notin A f$, then $\bar{f} \notin k$ and so $I^{e l} \subset(\bar{f})$ which is absurd because $h t(I) \geq 2$.

Now, as $\operatorname{grade}(I) \geq 2$ we have $K_{m}=K_{e l_{0}}$ for all $m \leq e l_{0}$, which implies that $K_{A}=K_{e l_{0}}$ and so $c \leq c l_{0}=n$. Furthermore, $e \leq e l_{0} \leq \min \left\{m \mid K_{m} \nsubseteq K_{m-1}\right\}-1=$ $a-1$.

Finally assume that $\operatorname{dim}(A / I)>0$. We shall distinguish two cases. If $e=1$ we have that $K_{l_{0}+1} \varsubsetneqq K_{l_{0}}$: If not, then $I_{c} \cong\left[K_{l_{0}+1}\right]_{c\left(l_{0}+1\right)}=[A f]_{c\left(l_{0}+1\right)} \cong A_{c}$ which is absurd if $\operatorname{dim}(A / I)>0$. Therefore $a=l_{0}+1=\frac{n}{c}+1$. If $e>1$, let $\widetilde{\Delta}=(c, 1)$ and $\widetilde{R}=R\left(I^{e}\right)$. Note that $\widetilde{R}_{\widetilde{\Delta}}=R_{\Delta}$ which is quasi-Gorenstein. Applying the case before we obtain that $-a\left(G_{A}\left(I^{e}\right)\right)=\frac{n}{c}+1$. By [15], $a\left(G_{A}\left(I^{e}\right)\right)=\left[\frac{-a}{e}\right]=-\left\lceil\frac{a}{e}\right\rceil$ and so $\left\lceil\frac{a}{e}\right\rceil-1=\frac{n}{c}=l \in \mathbb{Z}$.

Let us denote by \mathfrak{m} the maximal homogeneous ideal of A. Given a homogeneous ideal $I \subset A$ we define the fiber cone of I as $F_{\mathfrak{m}}(I)=\bigoplus_{n \geq 0} I^{n} / m I^{n}$. Then $l(I)=$ $\operatorname{dim} F_{\mathfrak{m}}(I)$ is called the analytic spread of I. Note that if I is equigenerated in degree d the fiber cone of I is nothing but $k\left[I_{d}\right]$.

Our next result shows that in some cases the existence of a diagonal (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein forces the form ring to be Gorenstein. It may be seen as a converse of Theorem 2.8 for those cases.

Theorem 3.3

Assume that $R_{A}(I)$ is Cohen-Macaulay, $h t(I) \geq 2, l(I)<n$ and I is equigenerated. If there exists a diagonal (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein then $G_{A}(I)$ is Gorenstein.

Proof. Let $R=R_{A}(I), G=G_{A}(I)$ and $\Delta=(c, e)$. Assume first that $e=1$. We have seen in the proof of Proposition 3.2 that there is a homogeneous filtration $\left\{K_{m}\right\}_{m \geq 0}$ of K_{A} such that $K_{R} \cong \bigoplus_{m \geq 1} K_{m}$ and $K_{G} \cong \bigoplus_{m \geq 1} K_{m-1} / K_{m}$, and an integer $l_{0}=$ $-a\left(R_{\Delta}\right)$ such that $K_{0}=\ldots=K_{l_{0}}=A f$, with $f \in K_{R}$ and $\operatorname{deg} f=c l_{0}$. It is then clear that for all $m \geq 0, I^{m} f \subset K_{l_{0}+m}$ and so $\left[I^{m}\right]_{c m} f \subset\left[K_{l_{0}+m}\right]_{c\left(l_{0}+m\right)} \cong\left[I^{m}\right]_{c m}$ since R_{Δ} is quasi-Gorenstein. This implies that $\left[K_{l_{0}+m}\right]_{c\left(l_{0}+m\right)}=\left[I^{m}\right]_{c m} f$.

We want to show that $K_{l_{0}+m}=I^{m} f$ for all $m \geq 0$. Suppose that there exists m_{0} such that $I^{m_{0}} f q K_{l_{0}+m_{0}}$. Then let $g \in K_{l_{0}+m_{0}}, g \notin I^{m_{0}} f$ be a homogeneous
element of degree k. Note that from the inclusion $K_{l_{0}+m_{0}} \subset K_{l_{0}}=A f$ one has $g=f \bar{g}$ with $\bar{g} \notin I^{m_{0}}$.

If $k \geq c\left(l_{0}+m_{0}\right)$ then for all $m>m_{0}$ we have $I^{m} f+I^{m-m_{0}} g \subset K_{l_{0}+m}$ and so $\left[I^{m}\right]_{c m} f+\left[I^{m-m_{0}}\right]_{c\left(l_{0}+m\right)-k} g \subset\left[K_{l_{0}+m}\right]_{c\left(l_{0}+m\right)} \cong\left[I^{m}\right]_{c m}$. Hence $\left[I^{m-m_{0}}\right]_{c\left(l_{0}+m\right)-k} g \subset\left[I^{m}\right]_{c m} f$ and we get that $\left[I^{m-m_{0}}\right]_{c\left(l_{0}+m\right)-k} \bar{g} \subset\left[I^{m}\right]_{c m}$. Let $\lambda=c\left(l_{0}+m\right)-k-d\left(m-m_{0}\right)=(c-d) m+c l_{0}+d m_{0}-k$. For $m \gg 0$ we have that $\lambda>0$. Then, if $A_{\lambda} \bar{g} \in I^{m_{0}}$ we would have that $\bar{g} \in\left(I^{m_{0}}\right)^{*}=\{p \in A \mid$ $p \mathfrak{m}^{k} \subset I^{m_{0}}$, for some $\left.k\right\}$, the saturation of $I^{m_{0}}$. It is well-known that if $G_{A}(I)$ is Cohen-Macaulay then $\inf \left\{\operatorname{depth}\left(A / I^{n}\right)\right\}=\operatorname{dim} A-l(I)$ [4]. As $l(I)<n$, we then get $\bar{g} \in I^{m_{0}}$ which is a contradiction. So there exist $\lambda>0, h \in A_{\lambda}$ such that $\bar{g} h \notin I^{m_{0}}$. On the other hand, $\bar{g} h\left[I^{m-m_{0}}\right]_{d\left(m-m_{0}\right)} \subset \bar{g}\left[I^{m-m_{0}}\right]_{c\left(l_{0}+m\right)-k} \subset\left[I^{m}\right]_{c m}$. So by using that I is equigenerated we have that $\bar{g} h \in\left(I^{m}: I^{m-m_{0}}\right)=I^{m_{0}}$, since R is Cohen-Macaulay. This is a contradiction.

If $k<c\left(l_{0}+m_{0}\right)$, let us write $k=c\left(l_{0}+m_{0}\right)-s$ with $s>0$. Then $A_{s} g \subset\left[K_{l_{0}+m_{0}}\right]_{c\left(l_{0}+m_{0}\right)}=\left[I^{m_{0}}\right] f$, and $g \in\left(I^{m_{0}}\right)^{*}=I^{m_{0}}$ which, as before, is a contradiction.

Hence we have proved that $K_{l_{0}+m}=I^{m} f$ for all $m \geq 0$ and $K_{R}=f(A t \oplus$ $\ldots \oplus A t^{l_{0}} \oplus I t^{l_{0}+1} \oplus \ldots$), i.e. K_{R} has the expected form. By [21], Theorem 4.2 this implies that both $R_{A}\left(I^{l_{0}}\right)$ and $G_{A}(I)$ are Gorenstein.

Finally assume $e>1$, and denote by $\widetilde{\Delta}=(c, 1)$ and $\widetilde{R}=R\left(I^{e}\right)$. Then $\widetilde{R}_{\widetilde{\Delta}}=R_{\Delta}$ is quasi-Gorenstein and so there exists l_{0} such that $R_{A}\left(I^{e l_{0}}\right)$ is Gorenstein. By [21], Theorem 4.2 this implies again that $G_{A}(I)$ is Gorenstein.

Example 3.4 (Room surfaces): Let k be an algebraically closed field. Set $t=\binom{d+1}{2}$, with $d \geq 2$. We are going to study the rational projective surfaces which arise as embeddings of blowing ups of \mathbb{P}_{k}^{2} at a set of t distinct points P_{1}, \ldots, P_{t} not contained in any curve of degree $d-1$.

Let I be the ideal defining the set of points P_{1}, \ldots, P_{t}. It can be easily seen that I is a homogeneous ideal equigenerated in degree d. For each $c \geq d+1$, we obtain a surface by the embedding associated to I_{c}. For $c=d+1$ the resulting surfaces are called Room surfaces. It has been proved by A. Geramita and A. Gimigliano that they are arithmetically Cohen-Macaulay. Assume $d \geq 3$. Gimigliano [8] proved that I_{d} also defines an embedding of this blow up in the projective space \mathbb{P}_{k}^{d} with defining ideal given by the 3×3 minors of a $3 \times d$ matrix of linear forms, and that this ideal has a linear resolution that comes from the Eagon-Northcott complex. From this fact and applying [1], Example 3.6.15, one obtains that $a\left(k\left[I_{d}\right]\right)=-1$ and so by [20] the reduction number of I is $r(I)=a\left(k\left[I_{d}\right]\right)+l(I)=-1+3=2$. Moreover the analytic deviation of I is $a d(I)=l(I)-h t(I)=1$ and I is generically a complete intersection ideal. So we may conclude by [11] that $G_{A}(I)$ is Cohen-Macaulay and
hence by [10], Proposition 2.4, $a\left(G_{A}(I)\right)=r(I)-h t(I)-1=-1$. By Ikeda-Trung's criterion, $R_{A}(I)$ is also Cohen-Macaulay. From Proposition 3.2 we get that there are not diagonals (c, e) such that $k\left[\left(I^{e}\right)_{c}\right]$ is Gorenstein. In particular, $k\left[I_{d+1}\right]$ is not Gorenstein for $d \geq 3$.

If $d=2$, by choosing the points to be [1:0:0], [0:1:0] and [0:0:1], we have $I=$ $\left(X_{1} X_{2}, X_{1} X_{3}, X_{2} X_{3}\right)$. Note that I is an almost complete intersection ideal such that A / I is Cohen-Macaulay. Moreover, it is easy to check that $\mu\left(I_{\mathfrak{p}}\right) \leq h t(\mathfrak{p})$ for all prime ideals \mathfrak{p}. So one knows from [13] that $G_{A}(I)$ is Gorenstein and $a\left(G_{A}(I)\right)=$ $-h t(I)=-2$. By Theorem 2.8, $k\left[\left(I^{e}\right)_{c}\right]$ is quasi-Gorenstein if and only if $\frac{3}{c}=\frac{1}{e} \in \mathbb{Z}$. So $(3,1)$ is the only diagonal with the Gorenstein property. This corresponds to the del Pezzo sestic surface in \mathbb{P}^{6}.

References

1. W. Bruns and J. Herzog, Cohen Macaulay rings, Cambridge Stud. Adv. Math. 39, 1993.
2. A. Conca, J. Herzog, N.V. Trung and G. Valla, Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces, Amer. J. Math. 119 (1997), 859-901.
3. S.D. Cutkosky and J. Herzog, Cohen-Macaulay coordinate rings of blowup schemes, Comment. Math. Helv. 72 (1997), 605-617.
4. D. Eisenbud and C. Huneke, Cohen-Macaulay Rees algebras and their specializations, J. Algebra 81 (1983), 202-224.
5. A. Geramita and A. Gimigliano, Generators for the defining ideal of certain rational surfaces, Duke Math. J. 62(1) (1991), 61-83.
6. A. Geramita, A. Gimigliano and B. Harbourne, Projectively Normal but Superabundant Embeddings of Rational Surfaces in Projective Space, J. Algebra 169 (1994), 791-804.
7. A. Geramita, A. Gimigliano and Y. Pitteloud, Graded Betti numbers of some embedded rational n-folds, Math. Ann. 301 (1995), 363-380.
8. A. Gimigliano, On Veronesean surfaces, Proc. Kon. Nederl. Akad. Wetensch. 92 (1989), 71-85.
9. A. Gimigliano and A. Lorenzini, On the ideal of Veronesean surfaces, Can. J. Math. 45 (1993), 758-777.
10. S. Goto and S. Huckaba, On graded rings associated to analytic deviation one ideals, Amer. J. Math. 116 (1994), 905-919.
11. S. Goto and Y. Nakamura, On the Gorensteinness of graded rings associated to ideals of analytic deviation one, Contemp. Math., 159 (1994), 51-72.
12. M. Herrmann, E. Hyry and J. Ribbe, On the Cohen-Macaulay and Gorenstein properties of multigraded Rees algebras, Manuscripta Math. 79 (1993), 343-377.
13. M. Herrmann, J. Ribbe and S. Zarzuela, On the Gorenstein property of Rees and form rings of powers ideals, Trans. Amer. Math. Soc. 342 (1994), 631-643.
14. J. Herzog, A. Simis and W.V. Vasconcelos, On the canonical module of the Rees algebra and the associated graded ring of an ideal, J. Algebra 105 (1987), 285-302.
15. L.T. Hoa and S. Zarzuela, Reduction number and a-invariant of good filtrations, Comm. Alg. 22(4) (1994), 5635-5656.
16. S. Ikeda and N.V. Trung, When is the Rees algebra Cohen-Macaulay?, Comm. Alg. 17(12) (1989), 2893-2922.
17. O. Lavila-Vidal, On the Cohen-Macaulay property of diagonal subalgebras of the Rees algebra, Manuscripta Math. 95 (1998), 47-58.
18. J. Lipman, Cohen-Macaulayness in graded algebras, Math. Res. Letters 1 (1994), 149-157.
19. A. Simis, N.V. Trung and G. Valla, The diagonal subalgebra of a blow-up algebra, J. Pure Appl. Algebra 125 (1998), 305-328.
20. N.V. Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987), 229-236.
21. N.V. Trung, D.Q. Viêt and S. Zarzuela, When is the Rees Algebra Gorenstein?, J. Algebra 175 (1995), 137-156.
22. K. Watanabe, Certain invariant subrings are Gorenstein I, Osaka J. Math. 11 (1974), 1-8.
23. K. Watanabe, Certain invariant subrings are Gorenstein II, Osaka J. Math. 11 (1974), 379-388.
24. Y. Yoshino, The canonical modules of graded rings defined by generic matrices, Nagoya Math. J. 81 (1981), 105-112.

[^0]: * Supported by a grant FPI from Ministerio de Educación y Ciencia.
 \dagger Partially supported by DGICYT PB94-0850.

