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ABSTRACT

Let v be a closed subscheme of p;~' defined by a homogeneous ideel
IC A=k[X1,...,X»], and x obtained by blowing up p7~* aong v. Denote by
I. the degree ¢ part of 1 and assume that 1 is generated by forms of degree
<d. Thentherings k[(1¢).] are coordinate rings of projective embeddings of x
in Py ~", where N=dimy (I°). for ¢>de+1. The am of this paper is to study
the Gorenstein property of the rings k[(7¢).] . Under mild hypothesis we prove
that there exist at most a finite number of diagonals (c, ¢) such that k[(1¢).] is
Gorenstein, and we determine them for several families of ideals.

1. Introduction

Let Y be a closed subscheme of szl defined by a homogeneous ideal I C A =
k[X1,...,X,], and X obtained by blowing up IPZ_I along Y. Denote by I. the
degree c part of I and assume that I is generated by forms of degree < d. Then the
rings k[(I°).] are coordinate rings of projective embeddings of X in Py !, where
N = dimy(I¢). for ¢ > de + 1 (see [3], [2], [9]).

Among the projective varieties obtained in this way we have the Room surfaces,
which have been studied in detail by A. Geramita and A. Gimigliano in [5]. These
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384 LAVILA-VIDAL AND ZARZUELA

surfaces are obtained by blowing-up ]P’i along (dgl) points, d > 2, which do not lie
on any curve of degree d — 1, and then embedding in P2%*2. See also [6] and [7]
for other results about embedded rational surfaces obtained by blowing up a set of
points in P2.

Recently, the study of the Cohen-Macaulay property of the rings k[(/€).] has
received much attention. Considering the Rees algebra Ra(1) = @,,-, ["t" C A[t]
endowed with a natural bigrading, one can obtain the above rings as diagonals of
Ra(I). A useful strategy consists in assuming the Cohen-Macaulay property of
RA(I) and then to look for which diagonals inherit this property, see for instance
A. Simis, N.V. Trung and G. Valla [19], A. Conca, J. Herzog, N.V. Trung and G.
Valla [2] and O. Lavila—Vidal [17]. In particular it is known that if R4 (I) is Cohen-
Macaulay there are infinitely many pairs (¢, e) such that k[(1¢).] is Cohen-Macaulay
([17], Theorem 4.5).

Here we are interested in the (quasi) Gorenstein property of the rings k[(1¢).].
Recall that the a-invariant of a positively graded ring T over a local ring T} is defined
as a(T) = max {i | [H},(T)]; # 0}, where M is the maximal homogeneous ideal of
T and d = dimT. Assuming that 7' has a canonical module K1, T is said to be
quasi-Gorenstein if there exists a graded isomorphism Ky = T'(a) with a = a(T),
and Gorenstein if in addition 7" is Cohen-Macaulay.

Under appropriate hypothesis we are able to determine for which pairs (c,e)
the ring k[(I¢).] is quasi-Gorenstein. In order to state the result assume that I is
minimally generated by forms fi,..., f of degrees dq,...,d, respectively, and put
d=d,>..>dy. Supposen >r >2and ¢ >de+ 1. Let Gao(I) = @n>01n/1n+1
be the form ring of I. Then we prove the following: -

Theorem (Theorem 2.8)

Assume ht(I) > 2, dim(A/I) > 0, and Ga(I) is Gorenstein. Set a =
—a(Ga(I)). Then k[(I¢).] is quasi-Gorenstein if and only if 2 = =1 = Iy € Z.
In this case, a(k[(I¢).]) = —lo.

This result can be applied to several families of ideals. In particular, to any
complete intersection ideal (extending in this way a result by A. Conca et al. in [2]
for the case r = 2) and to the ideal generated by the maximal minors of a generic
matrix. Note also that under the assumptions of the above theorem there are at
most a finite number of rings k[(/¢).] which are quasi-Gorenstein. We show that
this holds in general:

Proposition (Proposition 3.1)

There exist at most a finite number of diagonals (c,e) such that k[(I¢).] is
quasi-Gorenstein.
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For a real number z, let us denote by [z] = min{m € Z | m > z}. Assuming
that the Rees algebra is Cohen-Macaulay we can give upper bounds for the diagonals
(c,e) such that k[(I¢).] is quasi-Gorenstein:

Proposition (Proposition 3.2)

Assume that ht(I) > 2 and Ra(I) is Cohen-Macaulay. Let a = —a(Ga(I)).
If k[(I°).] is quasi-Gorenstein, then e < a — 1 and ¢ < n. If dim(A/I) > 0 then
[2] =1= 2 =1 € Z. In particular, if a = 1 there are no diagonals (c,e) such that
k[(I¢).] is quasi-Gorenstein.

We also prove a converse of Theorem 2.8 by showing that, under some restric-
tions, the existence of a diagonal (c, e) such that k[(I¢).] is quasi-Gorenstein implies
that Ga(I) is Gorenstein. Denoting by [([) the analytic spread of an ideal I, we
have:

Theorem (Theorem 3.3)

Assume that Ra(I) is Cohen-Macaulay, ht(I) > 2, I(I) < n and I is equige-
nerated. If there exists a diagonal (c,e) such that k[(I¢).] is quasi-Gorenstein then
G (1) is Gorenstein.

Finally, by using a variation of Proposition 3.2, we study the case of the Room
surfaces. We show that the only Room surface which is Gorenstein is the del Pezzo
sestic surface in P%, so recovering that well known result (see [5], Example 1).

Throughout the paper we shall use the following notation: A = k[Xq, ..., X,,]
will denote the usual polynomial ring with coefficients in a field k, and I C A a
homogeneous ideal minimally generated by forms fi, ..., f of degrees dy, ...,d,.. We
putd=d, > .. >dy, u= 22:1 d;. If dy =dy = ... =d, we say that I is equige-
nerated. Let us consider the Rees algebra of I: Ra(I) = €D, I"t" C Aft] endowed
with the N2-grading given by RA(I) i) = (I7)it?. Let S = k[X1,..., X, Y1,..., Y} ]
be the polynomial ring with the N2-grading obtained by giving deg X; = (1,0) for
i=1,..,n,deg Y; = (d;,1) for j = 1,...,7. Then R4(I) can be seen in a natural
way as a bigraded S-module.

For any pair of positive integers A = (¢,e) and any bigraded S-module L =
@(i,j) L; 5y we may consider La := @,y L(cs,es) Which is a graded module over
the graded ring Sa := @, S(cs,es)- We call these modules the diagonals of L and
S along A. We shall always assume that e > 0,¢ > de + 1. It is then known ([2],
Section 1) that Sa is Cohen-Macaulay with dim Sa =n+r—1, Ra(I)a = k[(I°)]
and dim k[(I¢).] = n.
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Let T be a positively bigraded d-dimensional ring defined over a local ring, and
denote by M the maximal homogeneous ideal of T'. The bigraded a-invariant of T is
then defined by a(T) = (a1, az), where a; =max {n; | n=(n1,n2) € Z*,[H,(T)]n #

0}.

2. The case of ideals whose form ring is Gorenstein

Let S = k[X4,...,Xn,Y1,...,Y;] be the polynomial ring introduced before and
A = (c,e). Applying the diagonal functor, Sa is always a Cohen-Macaulay ring.
We begin this section by showing that, on the contrary, Sa is Gorenstein only for a
finite number of diagonals. Furthermore, we may determine them.

Proposition 2.1
S is Gorenstein if and only if £ = 2% = [ € Z. Then a(Sp) = —1.

Proof. Let T = Sx = @~ Us, where U, is the k-vector space generated by the
monomials X7 .. .be‘"Ylﬁ1 ... Y with ay, 3; > 0 satisfying the equations (%)

n r
ZO&Z' +Zdj5j =cs
=1 =1
r
Z Bj =es.
j=1

By [2], Lemma 3.1 and local duality, Kt = ,-; Vs with V; the k-vector space

generated by the monomials X" ...X,‘;“"Ylﬁ1 YA and o > 0,8; > 0 which
satisfy (). Since T"is Cohen-Macaulay, T"is Gorenstein if and only if Kp = T'(a(T)).
Assume first that © = ”—JCF" = [ € Z. Then, multiplication by X;...X,Y7...Y, €T,
induces an isomorphism 7' = Kp(l) and so T is Gorenstein with a(T) = —I.

To prove the converse set (o, ) = (ai,...,an, b1, ..., Br) With «;,3; > 0 and
assume the contrary. This means that (1,1) is not a solution of (x) for any s. On
the other hand, the set of solutions of (%) for some s is partially ordered by means
of (o, B) < (7,p) < a; < 75, Bj < pj, Vi,j. Then one can easily check that for
any i, j there exists a solution of (x) for some s such that a; = §; = 1. This implies
the existence of at least two minimal solutions, and so T is not Gorenstein. []

Remark 2.2. Note that the number of minimal elements in the set of solutions of
the system (x) coincides with the type of Sa. It is not difficult to see that if Sx is
not Gorenstein, then its type is > 7.
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This result leads to the question of when there exist diagonals (¢, e) such that
E[(I¢).] be quasi-Gorenstein, and how one can determine them.

Our answer will be partially based on the following proposition which links the
diagonal of the canonical module of R4(I) to the canonical module of the diagonal of
RA(I). Tt is stated and proved for complete intersection ideals in [2], Proposition 4.5
but in fact the same statement and proof are valid in general. We include the proof
for completeness.

Proposition 2.3
Proof. Let us denote by T' = Sa and R = R4(I). Consider a presentation of R as

S-module
0—-C—-S—R—0

which leads to the bigraded exact sequence of local cohomology modules
0 — HptH(R) — HpH2(C) — Hpt?(S) — 0,

where mg is the maximal homogeneous ideal of S.
Similarly, we get the graded exact sequence

0 — Hy, (Ra) = Hp N (Ca) — Hp i H(T) — 0,

where m7p is the maximal homogeneous ideal of T'.
On the other hand, by [2], Theorem 3.6 we have a commutative diagram
0 — HpT'(R)a — Hpf(C)a — Hp(S)a — 0

er 1 et 1 putt e

0 — Hp (Ra) — Hpf'(Ca) — HpfNT) — 0

where gogﬂ, cng are isomorphisms, and so ¢'; also is an isomorphism. Therefore

H' (Ra) = H}PH(R)a and we get
Kg, = Homy (H}, (Ra),k) = Homy, (H}tH(R) A, k)
= Homy, (H};EH(R), k) , = (KRr)a. O

Remark 2.4. The hypothesis n > r > 2 fixed in the introduction is only used in
this paper to prove Proposition 2.3, and of course its applications. Nevertheless, the
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isomorphism K RaDa = (K Ra(I) )a is also valid if n,r > 2, I is equigenerated
and R (I) is Cohen-Macaulay. To prove this, set R = R4(I) and assume 7 > n (if
n > r we may apply Proposition 2.3). Let

0—D,1—...-5 Dy —>Dy=85—Rs(I)—0

be the Z?-graded minimal free resolution of R over S. For every p, D, is a direct
sum of S-modules of the type S(a,b). Denote by b the maximum of the —b’s which
appear in the resolution. Since R is Cohen-Macaulay, we get from [17], Lemmas 3.6
and 3.7 that b = —1+r. On the other hand, from [2], Lemmas 3.1 and 3.3 (note that
hypothesis n > r is not used there) we have that H, _(S(a,b)a)s # 0 if and only if

U)*'?_d# <s< _be_r, hence s < 0. Also by [17], Proposition 4.1 —a > —bd and
so (b+7r)d—u—a=>bd—a>0.Soweget H), ((Dp)a)=0 for all p, and by [2],
Lemma 3.1 that H}, ((Dp)a) =0 for alln <i < n+r—1 and that go%';r_l is an
isomorphism for all p. By [2], Lemma 1.7 we then have ¢%, ¢ are isomorphisms
for all ¢ > n, and the same proof as in Proposition 2.3 shows that Kr, = (Kgr)a.
This means that all the results we are going to prove are also valid if n,r > 2,

I is equigenerated and R4 (I) is Cohen-Macaulay.

In view of Proposition 2.3 any information on the bigraded structure of K Ru(I)
will be of interest. Let B be a d-dimensional local ring, d > 1, which has a canon-
ical module Kp and I C B an ideal of positive height such that Rp(I) is Cohen-
Macaulay. In [21], Theorem 2.2 it is given a description of Kp, ) in terms of a fil-
tration of submodules of K 5. Assume now that B = @, -, By, is a positively graded
ring of positive dimension over a local ring By, which has a canonical module Kp.
Let I C B be a homogeneous ideal of positive height. Then, the Rees algebra Rp(I)
has a bigraded structure by means of [Rp(I)]¢ ;) = (I7)it/ for all i, j > 0. We also
have a bigraded structure on the form ring by means of [Gg(I)](; ;) = (I7);/(I7*1);
for all 4,5 > 0.

Then, the proof of [21], Theorem 2.2 may be “bigraded” and we thus obtain a
description of the bigraded structure of K, ). Namely, we get:

Theorem 2.5

With the notation above assume that Rp(I) is Cohen-Macaulay. Then there
exists a homogeneous filtration {K,,}m>0 of Kp and isomorphisms of bigraded

modules such that
Kry) = @ [Komli s
(I,m), m>1

Keoin= P [Kmali/[Kmi.

(l,m), m>1
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Several other results of [2] may also be “bigraded”. In particular [21], Lemma 4.1
which makes precise when the canonical module of the Rees algebra has the expected
form. Recall that Kg, ) has the expected form if

Kp,y=BteB’a&...eBleollT et e. ..,

for some | > 0. This definition was introduced by J. Herzog, A. Simis and W.
Vasconcelos in [14]. We still use the same notation and again omit the proof.

Corollary 2.6

Assume Rp(I) is Cohen-Macaulay and Gp(I) is quasi-Gorenstein. Let
a(Gp(I)) = (=b,—a) be the bigraded a-invariant of Gg(I). Then Kp = B(—b)
and

Kroany= € I i,

(Im), m>1

where I™ = B if n < 0.

Note that —a coincides with the usual a-invariant of G (I). By Ikeda-Trung’s
criterion [16] it is always negative if Rp(I) is Cohen-Macaulay, and it has been
calculated in many cases (see for instance [13], [10]). As for b, it is clear that
under the hypothesis of Corollary 2.6 we get —b = a(B). It is then also easy to
compute the bigraded a-invariant of Rp([). Namely, we get that if @ = 1 then
a(Rp(I)) = (—dy +a(B),—1), and if a > 1 then a(Rp(I)) = (a(B),—1).

Remark 2.7. Assume that B = A = k[Xy,...,X,,] and I is a complete intersec-
tion ideal. Then, the Eagon-Northcott complex provides a Z?-graded minimal free
resolution of R4 (I). Following the proof of Yoshino [24] it is possible to see that

K, =/((r=2)di —n,-1)

with J = (f 72, f1 2ty f{ 247 2)RA(]) .
Observe that in this case a(Ga(I)) =

Kp,n= @ "o

(l?m)7 mz]‘

(—n, —r) and by Corollary 2.6

A straightforward computation shows that, in fact, multiplication by f] ~2 provides
an explicit isomorphism

B s 2 I ((r - 2)ds —n,—1)

(l7m)7 mzl
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Let us now assume that I C A = k[Xy,...,X,] is a homogeneous ideal whose
form ring is Gorenstein. We are now ready to prove the main result of this section
determining the possible quasi-Gorenstein diagonals of R4(I). We use the same

notation as before, and note that in this case b = —a(A) = n. Then we get:
Theorem 2.8

Assume ht(I) > 2, dim(A/I) > 0, and G4(I) is Gorenstein. Then k[(I¢).] is
quasi-Gorenstein if and only if = %=1 = |, € Z. In this case, a(k[(I).]) = —lo.

Proof. Let R = R4(I). Recall that Ra = k[(I¢).] = @lzo[ﬂe]zc- Note that R
is Cohen-Macaulay by using a result of Lipman [18, Theorem 5|. By now applying
Corollary 2.6, Kr = @(l,m),mzl[lm_aﬂ}l*m so that by Proposition 2.3 we get
Kp, = (Kr)a = @l21[lel_“+1]cl_n. Letlp=min{l€ Z|1> 2%}, s =a—1—elo.
We shall now distinguish three cases.

If s = 0, then the first non-zero component of KRA is [[¢lo—atl], ., =
Aciy—n, so that if Ra is quasi-Gorenstein clyp —n = 0 and we get that Iy =
= :anl and a(Ra) = —lp. Conversely, if [p = 2 = "Tfl then [KRA]lo+m
=[[¢lo—atitem] i mn = [[™em = [Ra]m for all m and so Ra is quasi-
Gorenstein.

If s <0, let{y =min{l |el—a+1>0,el—n > di(el —a+1)}. Then
li > lp and the first non-zero component of Kp is [Kp, |1, = [[eh—atl], .

~

In particular, a(Ra) = —l;. Assume RaA is quasi-Gorenstein. Then Kp N
Ra (=l1) and so [Kp, |;; = k. This implies that cly —n = di(ely —a +1) : If
cly —=n —di(ely —a+1) =r > 0 we may choose two linearly independent forms
g,h € A, such that gffh—ot pfeh—atl ¢ [fehi—atl), = k which is a con-
tradiction. From the isomorphism one gets that Kp A is generated by ffll_a+1 as
R -module. Now let f; & rad(fi) (it exists because ht(I) > 2), and choose m
such that m(c — dje) > d;j — d; and there exists f € Ag,4em—d,(em+1) sSuch that
(f, fl) — 1. Then flellfafjem-i-lf c [Ieh—a+1+em]d1(el1_a+l)+cm — 1€l1fa+1[Iem]cm’
and we get f;me € (f1) which is a contradiction.

If s > 0, the first non-zero component of KRA is [[elo=atl] = Auy_n,
so if Ra is quasi-Gorenstein we get clp — n = 0. Furthermore, for all m > 1
we have [KRA]lO+m = [I57") o—ntem = LT em = [I¢™]em. Since s > 0
and [I°™].,, C [I~5T¢"].,, this isomorphism is possible if and only if [[¢™].,, =
[[=5T¢"],,. Now choose X; such that X; ¢ rad(I) (it always exists because
dim(A/I) > 0) and m with em — s > 1. For any j consider F; = Xiajfjem_s where
aj =cm—dj(em —s) = (¢ — dje)m + djs > 1, and assume [I°"]., = [[75T¢™"].,
Then Fj € [ ]y and so X7 f{™7° € I°". Now let f{'...f¢ such that

1
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1+ ...+ ¢ >r(em —s). This implies that there exists [ with ¢; > em — s and so
XP oo fer = XQ TS fE L fpTem s L fer € T teterts since ay >« for
all 4. Thus we get X®I" C I"*5 for h >> 0, which implies that X € I* C I since
R4 (I) is Cohen-Macaulay. But this contradicts X; ¢ rad(l) and so Ra cannot be
quasi-Gorenstein. [J

The remaining cases ht(I) = 1, n in the above theorem are studied separately
in the following remarks.

Remark 2.9. If ht(I) = 1 then k[(I¢).] is never quasi-Gorenstein. In fact, by [21]
Proposition 4.6, a(Ga(I)) = —1 and so a = 1. Following the same proof as in
Theorem 2.8 we have that s = —elyp < 0. On the other hand, since ht(I) = 1 we
may write I = gJ, with ht(J) > 2, J = (f,..., f,) and f; = fjg for all j. The

same argument as in Theorem 2.8 for the case s < 0 but taking fj ¢ rad(f,) and

f € Adivem—d;(em+1) such that (f, f;) = 1 leads to ijﬂf € (fy), which is a

contradiction.

Remark 2.10. When dim(A/I) = 0, the condition 2 = 2=1 = |; € Z is suf-
ficient but not necessary for k[(I¢).] to be quasi-Gorenstein. For instance, let
A = k[X1,X2,X3] and I = (X1, X5, X3). Set R = Ra(I). Note that a = —3
and by Corollary 2.6 K = @(Lm)’le[Im_z]l_g. By taking the (3,1)-diagonal,

KRA = ®121[1172]3(l—1) = ®l21 Ag(l_l) = (®l20 A3l)(—1) = RA(—l) and so

Ra = k[I3] is quasi-Gorenstein. In this case, n =a =3 =c, e =1and & =1 # 2
—a=1

As a consequence of Theorem 2.8 we obtain the following result for the case of
complete intersection ideals. It generalizes [2], Corollary 4.7 where the case of ideals
generated by two elements was considered.

Corollary 2.11

Let I C k[X4,...,X,] be a homogeneous complete intersection ideal minimally
generated by r forms of degrees dy < ... <d, =d, withr <n. Then for c > de+1,
k[(I°).] is Gorenstein if and only if % = =1 = |, € Z. In this case, a(k[(I°).]) =

.

Proof. Since a(Ga(I)) = —r we get by Theorem 2.8 that k[(I¢).] is quasi-Gorenstein
if and only if 2= =1 =l € Z. But then dim1dit(e—1)d—n<rdt+ed—d—n=

(r—=1)d+de—n=e%d+de—n= n(%) + de < de < ¢, and by [2], Theorem 4.3,
E[(I¢).] is also Cohen-Macaulay and so Gorenstein. [J
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We may also study the ideals generated by the maximal minors of a generic
matrix. We thank A. Conca for suggesting we consider this case.

EXAMPLE 2.12: Let X = (X;;),1 <i <n,1 <j < m be a generic matrix, with
m < n. Let us consider I C A = k[X,;;,1 <i <mn,1 <j < m)] the ideal generated
by the maximal minors of X, where k is a field of arbitrary characteristic. It is
well-known (see [4]) that the Rees algebra R4(I) is Cohen-Macaulay and the form
ring G4(I) is Gorenstein. Moreover, it has been proved by A. Conca (personal
communication) that all the diagonals of R4(I) are Cohen-Macaulay. Now we want
to study the Gorenstein property of these rings. Note that I is an equigenerated ideal
whose Rees algebra is Cohen-Macaulay, so one can apply Theorem 2.8. From the
fact that I is generically a complete intersection, one can easily see that a(Ga (1)) =
—ht(I) = —(n —m + 1). We shall distinguish two cases.

If m < n, then k[(I¢).] is Gorenstein if and only if »™ = =™ ¢ Z. So there is
always at least one diagonal which is Gorenstein by taking ¢ = nm,e = n — m.

If m = n, note that I is a principal ideal and so the Rees algebra is isomorphic
to a polynomial ring. Then it is easy to prove that the only diagonal which is
Gorenstein occurs when ¢ = n(n +1),e = 1.

3. Restrictions to the existence of Gorenstein diagonals. Applications

In the previous section we proved that under the assumptions of Theorem 2.8
there exist at most a finite number of diagonals (c,e) such that k[(1€).] is quasi-
Gorenstein. Our next result shows that this holds in general.

Proposition 3.1

There exist at most a finite number of diagonals (c,e) such that k[(I¢).] is
quasi-Gorenstein.

Proof. Let R = Ra(I) and wy,...,w,, € Kgr a system of generators of Kr as R-
module with degw; = (ay, 3;) for all 4, and so Kgr = Y .-, Rw;. Note that since R
is a domain Kp is torsion free. For A = (¢, e) we then have by Proposition 2.3 that

foralll >1
el— i
[KRAL - Z 177 ]clfaiwi'
i=1,...,m,el—03;>0
If R is quasi-Gorenstein there exists an integer I such that [Kp | = k and so

[1€1=Pi] o, # 0 for some i (x). We shall distinguish two cases.
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Assume first that I is an equigenerated ideal of degree d. Then condition (x)
implies that el — 3; = 0 and ¢l —a; > 0 or el — 3; > 0 and cl — o; > d(el — 3;).
If el — 3; = 0, then k = [KRA i D Ac—o,w; and since K is torsion-free we get
cl — a; = 0. Hence (c,e) satisfies ’% = % =1 € Z and the statement holds. If
el — B; > 0 then k = [KRA]l D [I°7F]_qa,w; which is impossible since Kp is
torsion free and ¢l — a; > d(el — f3;).

Assume now that I is not equigenerated. Condition (x) implies that el — 3; =
0and ¢l —a; > 0orel—pF; >0 and ¢l —a; > di(el — ;). In the first case
we may proceed as before to get the statement. In the second case we have that
k=[Kp,li D [I¢=Pi]_q,w; and so cl — a; = dyi(el — ;) and d; < da. Then
a; —d1B; =cl —dyel > c—dye > (d—dy)e since l > 1 and ¢ > de + 1 > de. Thus
we obtain the inequality e < O‘Z__—Cglm and for each e, we have ¢ < dyje + «o; — d15;.
In any case, these inequalities hold for at most a finite number of diagonals and so
we get the result. [J

If the Rees algebra R4(I) is Cohen-Macaulay we can also give bounds for the
diagonals (c,e) such that k[(I¢).] is quasi-Gorenstein.

Proposition 3.2

Assume that ht(I) > 2 and Ra(I) is Cohen-Macaulay. Let a = —a(G4(I)). If
E[(I°).] is quasi-Gorenstein, then e < a — 1 and ¢ < n. Moreover, if dim(A/I) >0
then [2] —1 =2 = € Z. In particular, if a = 1 there are no diagonals (c,e) such

c —

that k[(1¢).] is quasi-Gorenstein.

Proof. Set R = R4(I) and G = G 4(I). By Theorem 2.5, there exists a homogeneous
filtration { K, }m>0 of K4 such that Kr =2 €, ~, Ky and K¢ =2, <1 Kim—1/ K.
Bigrading the proof of [21], Corollary 2.5, we have that K,, = Homa (I, K,11)
for every m > 0. Note that K4 may be viewed as an ideal of A. Assume that
Ra is quasi-Gorenstein. Then there is an integer [y such that [Kp A li, = k. By
Proposition 2.3 we may find an element f € [Ke,lc, = [KRr](cio,e0)s f 7 0, KRA =
Ra f.

Claim. K, = Af.

To prove the claim we first show that for any g € K,;,, g # 0, then deg g > clp.
Assume the contrary: deg g = k < clp. Then [Agla, = Acip—k9 C [Keiplel, = k. But
since clyp — k > 0, dimyg Agy—x > 1, so we get a contradiction.

Now let g € K.j,. If deg g = clo, then g € Af because [K¢,)c, = k. Let
us assume that deg g = k > clp. Then, for each | > 0, [I?]f + [Ic(o+1)-19 C
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[Keto+0))e(to+1) = [1¢Y] ., as k-vector spaces, and so [IEZ]CUOH)_kg C [I¥)f. Now let
I¢l = (Fy,..., F}) where F; is a homogeneous polynomial of degree < del for all 4,
and set o = ¢(lp + 1) — k—degF;. Note that for I >> 0, o > c(lp +1) — k — del =
(c —de)l + clp — k > 0 and we can find h € A, such that (h,f) = 1. Then
hgF; € [Iel]c(loJrl)_kg C [I¥af C Af and we have that gF; € Af for all 5. Thus
I¢'g C (f) and writing g = dg, f = df with (f,g) = 1 we get I¢'g C Af. If g & Af,
then f ¢ k and so I°! C (f) which is absurd because ht(I) > 2.

Now, as grade(I) > 2 we have K, = K¢, for all m < ely, which implies that
K4 = K¢, and so ¢ < cly = n. Furthermore, e < elg <min{m | K, & Kp,—1}—1=
a—1.

Finally assume that dim(A/I) > 0. We shall distinguish two cases. If e = 1 we
have that Kj,11 G Kj,: If not, then I. = [Kj11]eqo4+1) = [Af]eo+1) = Ae which
is absurd if dim(A4/I) > 0. Therefore a = lp+1=2+1. Ife > 1, let A = (c,1)
and R = R(I°¢). Note that EZ = RA which is quasi-Gorenstein. Applying the case
before we obtain that —a(GA(I¢)) = 2 + 1. By [15], a(Ga(I¢)) =[] = —[2] and
so[¢]-1=2=]€eZ.0O

e &

Let us denote by m the maximal homogeneous ideal of A. Given a homogeneous
ideal I C A we define the fiber cone of I as Fin(I) = ,,~, I"/mI"™. Then I(I) =
dim Fi (1) is called the analytic spread of I. Note that if T is equigenerated in degree
d the fiber cone of I is nothing but k[l4].

Our next result shows that in some cases the existence of a diagonal (¢, e) such
that k[(/€).] is quasi-Gorenstein forces the form ring to be Gorenstein. It may be
seen as a converse of Theorem 2.8 for those cases.

Theorem 3.3

Assume that Ra(I) is Cohen-Macaulay, ht(I) > 2, [(I) < n and I is equigen-
erated. If there exists a diagonal (c,e) such that k[(I¢).] is quasi-Gorenstein then
G A(I) is Gorenstein.

Proof. Let R =Ra(I), G = G4(I) and A = (¢, e). Assume first that e = 1. We have
seen in the proof of Proposition 3.2 that there is a homogeneous filtration { K, }m>0
of K4 such that Kp = P,,~; Km and K¢ = @,,,~; Km—1/Km, and an integer [y =
—a(Rp ) such that Koy = ... = K;, = Af, with f € Kg and deg f = clo. It is then
clear that for all m >0, I f C Kijqm and so [I"|em f C [Kigtmleotm) = ™ lem
since Ra is quasi-Gorenstein. This implies that [Kjyym]eigtm) = L™ ]emf-

We want to show that Kj, 4, = I"™f for all m > 0. Suppose that there exists
mg such that I"™° f G Kjjym,. Then let g € Kijym,, g € I™° f be a homogeneous
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element of degree k. Note that from the inclusion Kj,4+,,, C K;, = Af one has
g=fgwithg¢ I™.

If & > c(lo + mp) then for all m > mgy we have I™f + I ™0g C Kj tm
and so [I™]emf + [T 7™ )cto4m)—k9 € [Kigrmleo4m) = [I™]em.  Hence
[Im_mo]c(loer)fkg - [Im]cmf and we get that [Im_mo]c(lo+m)fk§ - [Im]cm' Let
A=cllop+m)—k—dm—mg) = (c—dm+clp+dmng — k. For m >> 0 we
have that A > 0. Then, if Ayg € I"™° we would have that g € (I"°)* = {p € A |
pmk C ™o forsomek}, the saturation of I™o. It is well-known that if G 4(I) is
Cohen-Macaulay then inf{depth(A/I™)} = dim A — I(I) [4]. As {(I) < n, we then
get g € 1™ which is a contradiction. So there exist A > 0, h € A, such that
gh & I'™°. On the other hand, Gh[I™™™°]gm—me) € GUL™ ™ ™]cg4+m)—k C [ ]em-
So by using that I is equigenerated we have that gh € (I"™ : ["™~"™0) = [0 since
R is Cohen-Macaulay. This is a contradiction.

If £ < c(lo + mg), let us write k = ¢(lop + mo) — s with s > 0. Then
Asg C [Kigtmolelo+mo) = U™0]f, and g € (I™°)* = I™° which, as before, is a
contradiction.

Hence we have proved that Kj i, = I"™f for all m > 0 and Kr = f(At &
@At @ Ittt @ ) i.e. Kp has the expected form. By [21], Theorem 4.2 this
implies that both R4 (I') and G4 (I) are Gorenstein.

Finally assume e > 1, and denote by A = (¢, 1) and R = R(I¢). Then EZ = Ra
is quasi-Gorenstein and so there exists Iy such that R4 (I°°) is Gorenstein. By [21],
Theorem 4.2 this implies again that G4(I) is Gorenstein. [J

EXAMPLE 3.4 (Room surfaces): Let k be an algebraically closed field. Set t = (dgl),
with d > 2. We are going to study the rational projective surfaces which arise as
embeddings of blowing ups of P% at a set of ¢ distinct points P4, ..., P; not contained
in any curve of degree d — 1.

Let I be the ideal defining the set of points Py, ..., P;. It can be easily seen that
I is a homogeneous ideal equigenerated in degree d. For each ¢ > d+ 1, we obtain a
surface by the embedding associated to I.. For ¢ = d + 1 the resulting surfaces are
called Room surfaces. It has been proved by A. Geramita and A. Gimigliano that
they are arithmetically Cohen-Macaulay. Assume d > 3. Gimigliano [8] proved that
1,4 also defines an embedding of this blow up in the projective space IP’% with defining
ideal given by the 3 x 3 minors of a 3 x d matrix of linear forms, and that this ideal
has a linear resolution that comes from the Eagon-Northcott complex. From this
fact and applying [1], Example 3.6.15, one obtains that a(k[l4]) = —1 and so by [20]
the reduction number of I is 7(I) = a(k[l4]) + () = —1 + 3 = 2. Moreover the
analytic deviation of I is ad(l) = I(I) — ht(I) = 1 and I is generically a complete
intersection ideal. So we may conclude by [11] that G 4([) is Cohen-Macaulay and
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hence by [10], Proposition 2.4, a(Gs(I)) = r(I) — ht(I) — 1 = —1. By Ikeda-Trung’s
criterion, R4([) is also Cohen-Macaulay. From Proposition 3.2 we get that there
are not diagonals (c, e) such that k[(1¢).] is Gorenstein. In particular, k[I441] is not
Gorenstein for d > 3.

If d = 2, by choosing the points to be [1:0:0], [0:1:0] and [0:0:1], we have I =
(X1X5, X1X3,X2X3). Note that I is an almost complete intersection ideal such
that A/I is Cohen-Macaulay. Moreover, it is easy to check that p(I,) < ht(p) for all
prime ideals p. So one knows from [13] that G4 (I) is Gorenstein and a(GA(I)) =
—ht(I) = —2. By Theorem 2.8, k[(I°).] is quasi-Gorenstein if and only if 2 = 1 € Z.
So (3,1) is the only diagonal with the Gorenstein property. This corresponds to the
del Pezzo sestic surface in PS.
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