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Abstract

Let Y be a closed subscheme of P
n−1
k

defined by a homogeneous ideal
I⊂A=k[X1,...,Xn], and X obtained by blowing up P

n−1
k

along Y. Denote by
Ic the degree c part of I and assume that I is generated by forms of degree
≤ d. Then the rings k[(Ie)c] are coordinate rings of projective embeddings of X
in P

N−1
k

, where N=dimk(Ie)c for c≥ de+1. The aim of this paper is to study
the Gorenstein property of the rings k[(Ie)c] . Under mild hypothesis we prove
that there exist at most a finite number of diagonals (c, e) such that k[(Ie)c] is
Gorenstein, and we determine them for several families of ideals.

1. Introduction

Let Y be a closed subscheme of P
n−1
k defined by a homogeneous ideal I ⊂ A =

k[X1, . . . , Xn], and X obtained by blowing up P
n−1
k along Y. Denote by Ic the

degree c part of I and assume that I is generated by forms of degree ≤ d. Then the
rings k[(Ie)c] are coordinate rings of projective embeddings of X in P

N−1
k , where

N = dimk(Ie)c for c ≥ de + 1 (see [3], [2], [9]).
Among the projective varieties obtained in this way we have the Room surfaces,

which have been studied in detail by A. Geramita and A. Gimigliano in [5]. These
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surfaces are obtained by blowing-up P
2
k along

(
d+1
2

)
points, d ≥ 2, which do not lie

on any curve of degree d − 1, and then embedding in P
2d+2
k . See also [6] and [7]

for other results about embedded rational surfaces obtained by blowing up a set of
points in P

2.
Recently, the study of the Cohen-Macaulay property of the rings k[(Ie)c] has

received much attention. Considering the Rees algebra RA(I) =
⊕

n≥0 Intn ⊂ A[t]
endowed with a natural bigrading, one can obtain the above rings as diagonals of
RA(I). A useful strategy consists in assuming the Cohen-Macaulay property of
RA(I) and then to look for which diagonals inherit this property, see for instance
A. Simis, N.V. Trung and G. Valla [19], A. Conca, J. Herzog, N.V. Trung and G.
Valla [2] and O. Lavila–Vidal [17]. In particular it is known that if RA(I) is Cohen-
Macaulay there are infinitely many pairs (c, e) such that k[(Ie)c] is Cohen-Macaulay
([17], Theorem 4.5).

Here we are interested in the (quasi) Gorenstein property of the rings k[(Ie)c] .
Recall that the a-invariant of a positively graded ring T over a local ring T0 is defined
as a(T ) = max {i | [Hd

M(T )]i �= 0}, where M is the maximal homogeneous ideal of
T and d = dimT . Assuming that T has a canonical module KT , T is said to be
quasi-Gorenstein if there exists a graded isomorphism KT

∼= T (a) with a = a(T ),
and Gorenstein if in addition T is Cohen-Macaulay.

Under appropriate hypothesis we are able to determine for which pairs (c, e)
the ring k[(Ie)c] is quasi-Gorenstein. In order to state the result assume that I is
minimally generated by forms f1, ..., fr of degrees d1, ..., dr respectively, and put
d = dr ≥ ... ≥ d1. Suppose n ≥ r ≥ 2 and c ≥ de + 1. Let GA(I) =

⊕
n≥0 In/In+1

be the form ring of I. Then we prove the following:

Theorem (Theorem 2.8)
Assume ht(I) ≥ 2, dim(A/I) > 0, and GA(I) is Gorenstein. Set a =

−a(GA(I)). Then k[(Ie)c] is quasi-Gorenstein if and only if n
c = a−1

e = l0 ∈ Z.
In this case, a(k[(Ie)c] ) = −l0.

This result can be applied to several families of ideals. In particular, to any
complete intersection ideal (extending in this way a result by A. Conca et al. in [2]
for the case r = 2) and to the ideal generated by the maximal minors of a generic
matrix. Note also that under the assumptions of the above theorem there are at
most a finite number of rings k[(Ie)c] which are quasi-Gorenstein. We show that
this holds in general:

Proposition (Proposition 3.1)
There exist at most a finite number of diagonals (c, e) such that k[(Ie)c] is

quasi-Gorenstein.
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For a real number x, let us denote by x� = min {m ∈ Z | m ≥ x} . Assuming
that the Rees algebra is Cohen-Macaulay we can give upper bounds for the diagonals
(c, e) such that k[(Ie)c] is quasi-Gorenstein:

Proposition (Proposition 3.2)

Assume that ht(I) ≥ 2 and RA(I) is Cohen-Macaulay. Let a = −a(GA(I)).
If k[(Ie)c] is quasi-Gorenstein, then e ≤ a − 1 and c ≤ n. If dim(A/I) > 0 then

ae � − 1 = n
c = l ∈ Z. In particular, if a = 1 there are no diagonals (c, e) such that

k[(Ie)c] is quasi-Gorenstein.

We also prove a converse of Theorem 2.8 by showing that, under some restric-
tions, the existence of a diagonal (c, e) such that k[(Ie)c] is quasi-Gorenstein implies
that GA(I) is Gorenstein. Denoting by l(I) the analytic spread of an ideal I, we
have:

Theorem (Theorem 3.3)

Assume that RA(I) is Cohen-Macaulay, ht(I) ≥ 2, l(I) < n and I is equige-

nerated. If there exists a diagonal (c, e) such that k[(Ie)c] is quasi-Gorenstein then

GA(I) is Gorenstein.

Finally, by using a variation of Proposition 3.2, we study the case of the Room
surfaces. We show that the only Room surface which is Gorenstein is the del Pezzo
sestic surface in P

6, so recovering that well known result (see [5], Example 1).

Throughout the paper we shall use the following notation: A = k[X1, ..., Xn]
will denote the usual polynomial ring with coefficients in a field k, and I ⊂ A a
homogeneous ideal minimally generated by forms f1, ..., fr of degrees d1, ..., dr. We
put d = dr ≥ ... ≥ d1, u =

∑r
j=1 dj . If d1 = d2 = . . . = dr we say that I is equige-

nerated. Let us consider the Rees algebra of I: RA(I) =
⊕

n≥0 Intn ⊂ A[t] endowed
with the N

2-grading given by RA(I) (i,j) = (Ij)itj . Let S = k[X1, ..., Xn, Y1, ..., Yr]
be the polynomial ring with the N

2-grading obtained by giving deg Xi = (1, 0) for
i = 1, ..., n, deg Yj = (dj , 1) for j = 1, ..., r. Then RA(I) can be seen in a natural
way as a bigraded S-module.

For any pair of positive integers ∆ = (c, e) and any bigraded S-module L =⊕
(i,j) L(i,j) we may consider L∆ :=

⊕
s∈Z

L(cs,es) which is a graded module over
the graded ring S∆ :=

⊕
s≥0 S(cs,es). We call these modules the diagonals of L and

S along ∆. We shall always assume that e > 0, c ≥ de + 1. It is then known ([2],
Section 1) that S∆ is Cohen-Macaulay with dim S∆ = n+ r− 1, RA(I)∆ ∼= k[(Ie)c]
and dim k[(Ie)c] = n.
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Let T be a positively bigraded d-dimensional ring defined over a local ring, and
denote by M the maximal homogeneous ideal of T . The bigraded a-invariant of T is
then defined by a(T )=(a1, a2), where aj =max {nj | n=(n1, n2) ∈ Z

2 , [Hd
M(T )]n �=

0} .

2. The case of ideals whose form ring is Gorenstein

Let S = k[X1, ..., Xn, Y1, ..., Yr] be the polynomial ring introduced before and
∆ = (c, e). Applying the diagonal functor, S∆ is always a Cohen-Macaulay ring.
We begin this section by showing that, on the contrary, S∆ is Gorenstein only for a
finite number of diagonals. Furthermore, we may determine them.

Proposition 2.1

S∆ is Gorenstein if and only if r
e = n+u

c = l ∈ Z. Then a(S∆) = −l.

Proof. Let T = S∆ =
⊕

s≥0 Us, where Us is the k-vector space generated by the
monomials Xα1

1 . . . Xαn
n Y β1

1 . . . Y βr
r with αi, βj ≥ 0 satisfying the equations (%)

n∑
i=1

αi +
r∑

j=1

djβj = cs

r∑
j=1

βj = es .

By [2], Lemma 3.1 and local duality, KT =
⊕

s≥1 Vs with Vs the k-vector space
generated by the monomials Xα1

1 . . . Xαn
n Y β1

1 . . . Y βr
r , and αi > 0, βj > 0 which

satisfy (%). Since T is Cohen-Macaulay, T is Gorenstein if and only if KT
∼= T (a(T )).

Assume first that r
e = n+u

c = l ∈ Z. Then, multiplication by X1 . . . XnY1 . . . Yr ∈ Tl
induces an isomorphism T ∼= KT (l) and so T is Gorenstein with a(T ) = −l.

To prove the converse set (α, β) = (α1, ..., αn, β1, ..., βr) with αi, βj > 0 and
assume the contrary. This means that (1,1) is not a solution of (%) for any s. On
the other hand, the set of solutions of (%) for some s is partially ordered by means
of (α, β) ≤ (γ, ρ) ⇐⇒ αi ≤ γi, βj ≤ ρj , ∀i, j. Then one can easily check that for
any i, j there exists a solution of (%) for some s such that αi = βj = 1. This implies
the existence of at least two minimal solutions, and so T is not Gorenstein. �
Remark 2.2. Note that the number of minimal elements in the set of solutions of
the system (%) coincides with the type of S∆. It is not difficult to see that if S∆ is
not Gorenstein, then its type is ≥ r.
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This result leads to the question of when there exist diagonals (c, e) such that
k[(Ie)c] be quasi-Gorenstein, and how one can determine them.

Our answer will be partially based on the following proposition which links the
diagonal of the canonical module of RA(I) to the canonical module of the diagonal of
RA(I) . It is stated and proved for complete intersection ideals in [2], Proposition 4.5
but in fact the same statement and proof are valid in general. We include the proof
for completeness.

Proposition 2.3

KRA(I)∆ = (KRA(I) )∆.

Proof. Let us denote by T = S∆ and R = RA(I). Consider a presentation of R as
S-module

0 → C → S → R → 0

which leads to the bigraded exact sequence of local cohomology modules

0 → Hn+1
mS

(R) → Hn+2
mS

(C) → Hn+2
mS

(S) → 0 ,

where mS is the maximal homogeneous ideal of S.
Similarly, we get the graded exact sequence

0 → Hn
mT

(R∆) → Hn+1
mT

(C∆) → Hn+1
mT

(T ) → 0 ,

where mT is the maximal homogeneous ideal of T .
On the other hand, by [2], Theorem 3.6 we have a commutative diagram

0 → Hn+1
mS

(R)∆ → Hn+2
mS

(C)∆ → Hn+2
mS

(S)∆ → 0

ϕnR ↑ ϕn+1
C ↑ ϕn+1

S ↑

0 → Hn
mT

(R∆) → Hn+1
mT

(C∆) → Hn+1
mT

(T ) → 0

where ϕn+1
C , ϕn+1

S are isomorphisms, and so ϕnR also is an isomorphism. Therefore
Hn
mT

(R∆ ) ∼= Hn+1
mS

(R)∆ and we get

KR∆ = Homk

(
Hn
mT

(R∆), k
)

= Homk

(
Hn+1
mS

(R)∆, k
)

= Homk

(
Hn+1
mS

(R), k
)
∆

= (KR)∆. �

Remark 2.4. The hypothesis n ≥ r ≥ 2 fixed in the introduction is only used in
this paper to prove Proposition 2.3, and of course its applications. Nevertheless, the
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isomorphism KRA(I)∆ = (KRA(I) )∆ is also valid if n, r ≥ 2, I is equigenerated
and RA(I) is Cohen-Macaulay. To prove this, set R = RA(I) and assume r > n (if
n ≥ r we may apply Proposition 2.3). Let

0 → Dr−1 → . . . → D1 → D0 = S → RA(I) → 0

be the Z
2-graded minimal free resolution of R over S. For every p, Dp is a direct

sum of S-modules of the type S(a, b). Denote by b the maximum of the −b’s which
appear in the resolution. Since R is Cohen-Macaulay, we get from [17], Lemmas 3.6
and 3.7 that b = −1+r. On the other hand, from [2], Lemmas 3.1 and 3.3 (note that
hypothesis n ≥ r is not used there) we have that Hr

mS
(S(a, b)∆)s �= 0 if and only if

(b+r)d−u−a
c−ed ≤ s ≤ −b−r

e , hence s < 0. Also by [17], Proposition 4.1 −a ≥ −bd and
so (b + r)d − u − a = bd − a ≥ 0. So we get Hr

mT
((Dp)∆) = 0 for all p, and by [2],

Lemma 3.1 that Hi
mT

((Dp)∆) = 0 for all n < i < n + r − 1 and that ϕn+r−1
Dp

is an
isomorphism for all p. By [2], Lemma 1.7 we then have ϕiR, ϕiC are isomorphisms
for all i > n, and the same proof as in Proposition 2.3 shows that KR∆ = (KR)∆.

This means that all the results we are going to prove are also valid if n, r ≥ 2,
I is equigenerated and RA(I) is Cohen-Macaulay.

In view of Proposition 2.3 any information on the bigraded structure of KRA(I)
will be of interest. Let B be a d-dimensional local ring, d ≥ 1, which has a canon-
ical module KB and I ⊂ B an ideal of positive height such that RB(I) is Cohen-
Macaulay. In [21], Theorem 2.2 it is given a description of KRB(I) in terms of a fil-
tration of submodules of KB . Assume now that B =

⊕
n≥0 Bn is a positively graded

ring of positive dimension over a local ring B0, which has a canonical module KB .
Let I ⊂ B be a homogeneous ideal of positive height. Then, the Rees algebra RB(I)
has a bigraded structure by means of [RB(I)](i,j) = (Ij)itj for all i, j ≥ 0. We also
have a bigraded structure on the form ring by means of [GB(I)](i,j) = (Ij)i/(Ij+1)i
for all i, j ≥ 0.

Then, the proof of [21], Theorem 2.2 may be “bigraded” and we thus obtain a
description of the bigraded structure of KRB(I). Namely, we get:

Theorem 2.5

With the notation above assume that RB(I) is Cohen-Macaulay. Then there
exists a homogeneous filtration {Km}m≥0 of KB and isomorphisms of bigraded
modules such that

KRB(I)
∼=

⊕
(l,m),m≥1

[Km]l ,

KGB(I)
∼=

⊕
(l,m),m≥1

[Km−1]l/[Km]l .
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Several other results of [2] may also be “bigraded”. In particular [21], Lemma 4.1
which makes precise when the canonical module of the Rees algebra has the expected
form. Recall that KRB(I) has the expected form if

KRB(I)
∼= Bt⊕Bt2 ⊕ . . .⊕Btl ⊕ Itl+1 ⊕ I2tl+2 ⊕ . . . ,

for some l ≥ 0. This definition was introduced by J. Herzog, A. Simis and W.
Vasconcelos in [14]. We still use the same notation and again omit the proof.

Corollary 2.6

Assume RB(I) is Cohen-Macaulay and GB(I) is quasi-Gorenstein. Let

a(GB(I)) = (−b,−a) be the bigraded a-invariant of GB(I). Then KB
∼= B(−b)

and

KRB(I) =
⊕

(l,m),m≥1

[Im−a+1]l−b,

where In = B if n ≤ 0.

Note that −a coincides with the usual a-invariant of GB(I). By Ikeda-Trung’s
criterion [16] it is always negative if RB(I) is Cohen-Macaulay, and it has been
calculated in many cases (see for instance [13], [10]). As for b, it is clear that
under the hypothesis of Corollary 2.6 we get −b = a(B). It is then also easy to
compute the bigraded a-invariant of RB(I). Namely, we get that if a = 1 then
a(RB(I)) = (−d1 + a(B),−1), and if a > 1 then a(RB(I)) = (a(B),−1).

Remark 2.7. Assume that B = A = k[X1, . . . , Xn] and I is a complete intersec-
tion ideal. Then, the Eagon-Northcott complex provides a Z

2-graded minimal free
resolution of RA(I) . Following the proof of Yoshino [24] it is possible to see that

KRA(I) = J
(
(r − 2)d1 − n,−1

)

with J = (fr−2
1 , fr−2

1 t, ..., fr−2
1 tr−2)RA(I) .

Observe that in this case a(GA(I)) = (−n,−r) and by Corollary 2.6

KRA(I) =
⊕

(l,m),m≥1

[Im−r+1]l−n.

A straightforward computation shows that, in fact, multiplication by fr−2
1 provides

an explicit isomorphism
⊕

(l,m),m≥1

[Im−r+1]l−n ∼= J
(
(r − 2)d1 − n,−1

)
.
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Let us now assume that I ⊂ A = k[X1, . . . , Xn] is a homogeneous ideal whose
form ring is Gorenstein. We are now ready to prove the main result of this section
determining the possible quasi-Gorenstein diagonals of RA(I) . We use the same
notation as before, and note that in this case b = −a(A) = n. Then we get:

Theorem 2.8

Assume ht(I) ≥ 2, dim(A/I) > 0, and GA(I) is Gorenstein. Then k[(Ie)c] is

quasi-Gorenstein if and only if n
c = a−1

e = l0 ∈ Z. In this case, a(k[(Ie)c] ) = −l0.

Proof. Let R = RA(I) . Recall that R∆ = k[(Ie)c] =
⊕

l≥0[I
le]lc. Note that R

is Cohen-Macaulay by using a result of Lipman [18, Theorem 5]. By now applying
Corollary 2.6, KR =

⊕
(l,m),m≥1[I

m−a+1]l−n, so that by Proposition 2.3 we get
KR∆

= (KR)∆ =
⊕

l≥1[I
el−a+1]cl−n. Let l0 = min {l ∈ Z | l ≥ n

c } , s = a− 1− el0.
We shall now distinguish three cases.

If s = 0, then the first non-zero component of KR∆
is [Iel0−a+1]cl0−n =

Acl0−n, so that if R∆ is quasi-Gorenstein cl0 − n = 0 and we get that l0 =
n
c =a−1

e and a(R∆) = −l0. Conversely, if l0 = n
c = a−1

e then [KR∆
]l0+m

=[Iel0−a+1+em]cl0+cm−n = [Iem]cm = [R∆ ]m for all m and so R∆ is quasi-
Gorenstein.

If s < 0, let l1 = min {l | el − a + 1 > 0, cl − n ≥ d1(el − a + 1)} . Then
l1 ≥ l0 and the first non-zero component of KR∆

is [KR∆
]l1 = [Iel1−a+1]cl1−n.

In particular, a(R∆ ) = −l1. Assume R∆ is quasi-Gorenstein. Then KR∆
∼=

R∆ (−l1) and so [KR∆
]l1 ∼= k. This implies that cl1 − n = d1(el1 − a + 1) : If

cl1 − n − d1(el1 − a + 1) = r > 0 we may choose two linearly independent forms
g, h ∈ Ar such that gfel1−a+1

1 , hfel1−a+1
1 ∈ [Iel1−a+1]cl1−n ∼= k, which is a con-

tradiction. From the isomorphism one gets that KR∆
is generated by fel1−a+1

1 as
R∆ -module. Now let fj �∈ rad(f1) (it exists because ht(I) ≥ 2), and choose m

such that m(c − dje) > dj − d1 and there exists f ∈ Ad1+cm−dj(em+1) such that
(f, f1) = 1. Then fel1−a1 fem+1

j f ∈ [Iel1−a+1+em]d1(el1−a+1)+cm = fel1−a+1
1 [Iem]cm,

and we get fem+1
j f ∈ (f1) which is a contradiction.

If s > 0, the first non-zero component of KR∆
is [Iel0−a+1]cl0−n = Acl0−n,

so if R∆ is quasi-Gorenstein we get cl0 − n = 0. Furthermore, for all m ≥ 1
we have [KR∆

]l0+m = [I−s+em]cl0−n+cm = [I−s+em]cm ∼= [Iem]cm. Since s > 0
and [Iem]cm ⊂ [I−s+em]cm this isomorphism is possible if and only if [Iem]cm =
[I−s+em]cm. Now choose Xi such that Xi �∈ rad(I) (it always exists because
dim(A/I) > 0) and m with em − s ≥ 1. For any j consider Fj = X

αj

i fem−s
j where

αj = cm − dj(em − s) = (c − dje)m + djs ≥ 1, and assume [Iem]cm = [I−s+em]cm.
Then Fj ∈ [Iem−s]cm and so X

αj

i fem−s
j ∈ Iem. Now let fc11 . . . fcrr such that
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c1 + . . . + cr ≥ r(em − s). This implies that there exists l with cl ≥ em − s and so
Xα1
i fc11 . . . fcrr = Xα1

i fem−s
l fc11 . . . fcl−em+s

l . . . fcrr ∈ Ic1+...+cr+s, since α1 ≥ αi for
all i. Thus we get Xα

i Ih ⊂ Ih+s for h >> 0, which implies that Xα
i ∈ Is ⊂ I since

RA(I) is Cohen-Macaulay. But this contradicts Xi �∈ rad(I) and so R∆ cannot be
quasi-Gorenstein. �

The remaining cases ht(I) = 1, n in the above theorem are studied separately
in the following remarks.

Remark 2.9. If ht(I) = 1 then k[(Ie)c] is never quasi-Gorenstein. In fact, by [21]
Proposition 4.6, a(GA(I)) = −1 and so a = 1. Following the same proof as in
Theorem 2.8 we have that s = −el0 < 0. On the other hand, since ht(I) = 1 we
may write I = gJ , with ht(J) ≥ 2, J = (f1, . . . , fr) and fj = f jg for all j. The
same argument as in Theorem 2.8 for the case s < 0 but taking f j �∈ rad(f1) and

f ∈ Ad1+cm−dj(em+1) such that (f, f1) = 1 leads to f
em+1

j f ∈ (f1), which is a
contradiction.

Remark 2.10. When dim(A/I) = 0, the condition n
c = a−1

e = l0 ∈ Z is suf-
ficient but not necessary for k[(Ie)c] to be quasi-Gorenstein. For instance, let
A = k[X1, X2, X3] and I = (X1, X2, X3). Set R = RA(I) . Note that a = −3
and by Corollary 2.6 KR =

⊕
(l,m),m≥1[I

m−2]l−3. By taking the (3, 1)-diagonal,
KR∆ =

⊕
l≥1[I

l−2]3(l−1) =
⊕

l≥1 A3(l−1) = (
⊕

l≥0 A3l)(−1) = R∆(−1) and so
R∆ = k[I3] is quasi-Gorenstein. In this case, n = a = 3 = c, e = 1 and n

c =1 �= 2
=a−1

e .

As a consequence of Theorem 2.8 we obtain the following result for the case of
complete intersection ideals. It generalizes [2], Corollary 4.7 where the case of ideals
generated by two elements was considered.

Corollary 2.11

Let I ⊂ k[X1, . . . , Xn] be a homogeneous complete intersection ideal minimally

generated by r forms of degrees d1 ≤ . . . ≤ dr = d, with r < n. Then for c ≥ de+ 1,

k[(Ie)c] is Gorenstein if and only if n
c = r−1

e = l0 ∈ Z. In this case, a(k[(Ie)c] ) =
−l0.

Proof. Since a(GA(I)) = −r we get by Theorem 2.8 that k[(Ie)c] is quasi-Gorenstein
if and only if n

c= r−1
e =l0 ∈ Z. But then

∑r
j=1 dj +(e− 1)d−n ≤ rd+ ed−d−n =

(r− 1)d+ de−n = enc d+ de−n = n( ed−cc ) + de ≤ de < c, and by [2], Theorem 4.3,
k[(Ie)c] is also Cohen-Macaulay and so Gorenstein. �



392 Lavila-Vidal and Zarzuela

We may also study the ideals generated by the maximal minors of a generic
matrix. We thank A. Conca for suggesting we consider this case.

Example 2.12: Let X = (Xij), 1 ≤ i ≤ n, 1 ≤ j ≤ m be a generic matrix, with
m ≤ n. Let us consider I ⊂ A = k[Xij , 1 ≤ i ≤ n, 1 ≤ j ≤ m] the ideal generated
by the maximal minors of X, where k is a field of arbitrary characteristic. It is
well-known (see [4]) that the Rees algebra RA(I) is Cohen-Macaulay and the form
ring GA(I) is Gorenstein. Moreover, it has been proved by A. Conca (personal
communication) that all the diagonals of RA(I) are Cohen-Macaulay. Now we want
to study the Gorenstein property of these rings. Note that I is an equigenerated ideal
whose Rees algebra is Cohen-Macaulay, so one can apply Theorem 2.8. From the
fact that I is generically a complete intersection, one can easily see that a(GA(I)) =
−ht(I) = −(n−m + 1). We shall distinguish two cases.

If m < n, then k[(Ie)c] is Gorenstein if and only if nm
c = n−m

e ∈ Z. So there is
always at least one diagonal which is Gorenstein by taking c = nm, e = n−m.

If m = n, note that I is a principal ideal and so the Rees algebra is isomorphic
to a polynomial ring. Then it is easy to prove that the only diagonal which is
Gorenstein occurs when c = n(n + 1), e = 1.

3. Restrictions to the existence of Gorenstein diagonals. Applications

In the previous section we proved that under the assumptions of Theorem 2.8
there exist at most a finite number of diagonals (c, e) such that k[(Ie)c] is quasi-
Gorenstein. Our next result shows that this holds in general.

Proposition 3.1

There exist at most a finite number of diagonals (c, e) such that k[(Ie)c] is

quasi-Gorenstein.

Proof. Let R = RA(I) and w1, ..., wm ∈ KR a system of generators of KR as R-
module with degwi = (αi, βi) for all i, and so KR =

∑m
i=1 Rwi. Note that since R

is a domain KR is torsion free. For ∆ = (c, e) we then have by Proposition 2.3 that
for all l ≥ 1 [

KR∆

]
l
=

∑
i=1,...,m,el−βi≥0

[
Iel−βi

]
cl−αi

wi.

If R∆ is quasi-Gorenstein there exists an integer l such that [KR∆
]l = k and so

[Iel−βi ]cl−αi �= 0 for some i (%). We shall distinguish two cases.
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Assume first that I is an equigenerated ideal of degree d. Then condition (%)
implies that el − βi = 0 and cl − αi ≥ 0 or el − βi > 0 and cl − αi ≥ d(el − βi).
If el − βi = 0, then k = [KR∆

]l ⊃ Acl−αi
wi and since KR is torsion-free we get

cl − αi = 0. Hence (c, e) satisfies βi

e = αi

c = l ∈ Z and the statement holds. If
el − βi > 0 then k = [KR∆

]l ⊃ [Iel−βi ]cl−αi
wi which is impossible since KR is

torsion free and cl − αi ≥ d(el − βi).
Assume now that I is not equigenerated. Condition (%) implies that el − βi =

0 and cl − αi ≥ 0 or el − βi > 0 and cl − αi ≥ d1(el − βi). In the first case
we may proceed as before to get the statement. In the second case we have that
k = [KR∆

]l ⊃ [Iel−βi ]cl−αiwi and so cl − αi = d1(el − βi) and d1 < d2. Then
αi − d1βi = cl − d1el ≥ c − d1e ≥ (d − d1)e since l ≥ 1 and c ≥ de + 1 > de. Thus
we obtain the inequality e ≤ αi−d1βi

d−d1
and for each e, we have c ≤ d1e + αi − d1βi.

In any case, these inequalities hold for at most a finite number of diagonals and so
we get the result. �

If the Rees algebra RA(I) is Cohen-Macaulay we can also give bounds for the
diagonals (c, e) such that k[(Ie)c] is quasi-Gorenstein.

Proposition 3.2

Assume that ht(I) ≥ 2 and RA(I) is Cohen-Macaulay. Let a = −a(GA(I)). If

k[(Ie)c] is quasi-Gorenstein, then e ≤ a − 1 and c ≤ n. Moreover, if dim(A/I) > 0
then ae � − 1 = n

c = l ∈ Z. In particular, if a = 1 there are no diagonals (c, e) such

that k[(Ie)c] is quasi-Gorenstein.

Proof. Set R = RA(I) and G = GA(I). By Theorem 2.5, there exists a homogeneous
filtration {Km}m≥0 of KA such that KR

∼=
⊕

m≥1 Km and KG
∼=

⊕
m≥1 Km−1/Km.

Bigrading the proof of [21], Corollary 2.5, we have that Km = HomA(I,Km+1)
for every m ≥ 0. Note that KA may be viewed as an ideal of A. Assume that
R∆ is quasi-Gorenstein. Then there is an integer l0 such that [KR∆

]l0 = k. By
Proposition 2.3 we may find an element f ∈ [Kel0 ]cl0 = [KR](cl0,el0), f �= 0, KR∆

=
R∆ f .

Claim. Kel0 = Af.

To prove the claim we first show that for any g ∈ Kel0 , g �= 0, then deg g ≥ cl0.
Assume the contrary: deg g = k < cl0. Then [Ag]cl0 = Acl0−kg ⊂ [Kel0 ]cl0 ∼= k. But
since cl0 − k > 0, dimk Acl0−k > 1, so we get a contradiction.

Now let g ∈ Kel0 . If deg g = cl0, then g ∈ Af because [Kel0 ]cl0 ∼= k. Let
us assume that deg g = k > cl0. Then, for each l > 0, [Iel]clf + [Iel]c(l0+l)−kg ⊂
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[Ke(l0+l)]c(l0+l) ∼= [Iel]cl as k-vector spaces, and so [Iel]c(l0+l)−kg ⊂ [Iel]clf . Now let
Iel = (F1, . . . , Ft) where Fi is a homogeneous polynomial of degree ≤ del for all i,
and set α = c(l0 + l) − k−degFi. Note that for l >> 0, α ≥ c(l0 + l) − k − del =
(c − de)l + cl0 − k > 0 and we can find h ∈ Aα such that (h, f) = 1. Then
hgFi ∈ [Iel]c(l0+l)−kg ⊂ [Iel]clf ⊂ Af and we have that gFi ∈ Af for all i. Thus
Ielg ⊂ (f) and writing g = dg, f = df with (f, g) = 1 we get Ielg ⊂ Af . If g �∈ Af ,
then f �∈ k and so Iel ⊂ (f) which is absurd because ht(I) ≥ 2.

Now, as grade(I) ≥ 2 we have Km = Kel0 for all m ≤ el0, which implies that
KA = Kel0 and so c ≤ cl0 = n. Furthermore, e ≤ el0 ≤ min {m | Km ⊆/ Km−1}−1 =
a− 1.

Finally assume that dim(A/I) > 0. We shall distinguish two cases. If e = 1 we
have that Kl0+1 ⊆/ Kl0 : If not, then Ic ∼= [Kl0+1]c(l0+1) = [Af ]c(l0+1)

∼= Ac which
is absurd if dim(A/I) > 0. Therefore a = l0 + 1 = n

c + 1. If e > 1, let ∆̃ = (c, 1)
and R̃ = R(Ie). Note that R̃

∆̃
= R∆ which is quasi-Gorenstein. Applying the case

before we obtain that −a(GA(Ie)) = n
c + 1. By [15], a(GA(Ie)) = [−ae ] = −ae � and

so ae � − 1 = n
c = l ∈ Z. �

Let us denote by m the maximal homogeneous ideal of A. Given a homogeneous
ideal I ⊂ A we define the fiber cone of I as Fm(I) =

⊕
n≥0 In/mIn. Then l(I) =

dimFm(I) is called the analytic spread of I. Note that if I is equigenerated in degree
d the fiber cone of I is nothing but k[Id].

Our next result shows that in some cases the existence of a diagonal (c, e) such
that k[(Ie)c] is quasi-Gorenstein forces the form ring to be Gorenstein. It may be
seen as a converse of Theorem 2.8 for those cases.

Theorem 3.3

Assume that RA(I) is Cohen-Macaulay, ht(I) ≥ 2, l(I) < n and I is equigen-

erated. If there exists a diagonal (c, e) such that k[(Ie)c] is quasi-Gorenstein then

GA(I) is Gorenstein.

Proof. Let R = RA(I), G = GA(I) and ∆ = (c, e). Assume first that e = 1. We have
seen in the proof of Proposition 3.2 that there is a homogeneous filtration {Km}m≥0

of KA such that KR
∼=

⊕
m≥1 Km and KG

∼=
⊕

m≥1 Km−1/Km, and an integer l0 =
−a(R∆ ) such that K0 = . . . = Kl0 = Af , with f ∈ KR and deg f = cl0. It is then
clear that for all m ≥ 0, Imf ⊂ Kl0+m and so [Im]cmf ⊂ [Kl0+m]c(l0+m)

∼= [Im]cm
since R∆ is quasi-Gorenstein. This implies that [Kl0+m]c(l0+m) = [Im]cmf .

We want to show that Kl0+m = Imf for all m ≥ 0. Suppose that there exists
m0 such that Im0f ⊆/ Kl0+m0 . Then let g ∈ Kl0+m0 , g �∈ Im0f be a homogeneous
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element of degree k. Note that from the inclusion Kl0+m0 ⊂ Kl0 = Af one has
g = fg with g �∈ Im0 .

If k ≥ c(l0 + m0) then for all m > m0 we have Imf + Im−m0g ⊂ Kl0+m

and so [Im]cmf + [Im−m0 ]c(l0+m)−kg ⊂ [Kl0+m]c(l0+m)
∼= [Im]cm. Hence

[Im−m0 ]c(l0+m)−kg ⊂ [Im]cmf and we get that [Im−m0 ]c(l0+m)−kg ⊂ [Im]cm. Let
λ = c(l0 + m) − k − d(m − m0) = (c − d)m + cl0 + dm0 − k. For m >> 0 we
have that λ > 0. Then, if Aλg ∈ Im0 we would have that g ∈ (Im0)∗ = {p ∈ A |
pmk ⊂ Im0 , for some k}, the saturation of Im0 . It is well-known that if GA(I) is
Cohen-Macaulay then inf{depth(A/In)} = dimA − l(I) [4]. As l(I) < n, we then
get g ∈ Im0 which is a contradiction. So there exist λ > 0, h ∈ Aλ such that
gh �∈ Im0 . On the other hand, gh[Im−m0 ]d(m−m0) ⊂ g[Im−m0 ]c(l0+m)−k ⊂ [Im]cm.
So by using that I is equigenerated we have that gh ∈ (Im : Im−m0) = Im0 , since
R is Cohen-Macaulay. This is a contradiction.

If k < c(l0 + m0), let us write k = c(l0 + m0) − s with s > 0. Then
Asg ⊂ [Kl0+m0 ]c(l0+m0) = [Im0 ]f , and g ∈ (Im0)∗ = Im0 which, as before, is a
contradiction.

Hence we have proved that Kl0+m = Imf for all m ≥ 0 and KR = f(At ⊕
. . .⊕Atl0 ⊕ Itl0+1 ⊕ . . .), i.e. KR has the expected form. By [21], Theorem 4.2 this
implies that both RA(I l0) and GA(I) are Gorenstein.

Finally assume e > 1, and denote by ∆̃ = (c, 1) and R̃ = R(Ie). Then R̃
∆̃

= R∆

is quasi-Gorenstein and so there exists l0 such that RA(Iel0) is Gorenstein. By [21],
Theorem 4.2 this implies again that GA(I) is Gorenstein. �

Example 3.4 (Room surfaces): Let k be an algebraically closed field. Set t =
(
d+1
2

)
,

with d ≥ 2. We are going to study the rational projective surfaces which arise as
embeddings of blowing ups of P

2
k at a set of t distinct points P1, . . . , Pt not contained

in any curve of degree d− 1.
Let I be the ideal defining the set of points P1, . . . , Pt. It can be easily seen that

I is a homogeneous ideal equigenerated in degree d. For each c ≥ d+ 1, we obtain a
surface by the embedding associated to Ic. For c = d + 1 the resulting surfaces are
called Room surfaces. It has been proved by A. Geramita and A. Gimigliano that
they are arithmetically Cohen-Macaulay. Assume d ≥ 3. Gimigliano [8] proved that
Id also defines an embedding of this blow up in the projective space P

d
k with defining

ideal given by the 3× 3 minors of a 3× d matrix of linear forms, and that this ideal
has a linear resolution that comes from the Eagon-Northcott complex. From this
fact and applying [1], Example 3.6.15, one obtains that a(k[Id]) = −1 and so by [20]
the reduction number of I is r(I) = a(k[Id]) + l(I) = −1 + 3 = 2. Moreover the
analytic deviation of I is ad(I) = l(I) − ht(I) = 1 and I is generically a complete
intersection ideal. So we may conclude by [11] that GA(I) is Cohen-Macaulay and
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hence by [10], Proposition 2.4, a(GA(I)) = r(I)−ht(I)− 1 = −1. By Ikeda-Trung’s
criterion, RA(I) is also Cohen-Macaulay. From Proposition 3.2 we get that there
are not diagonals (c, e) such that k[(Ie)c] is Gorenstein. In particular, k[Id+1] is not
Gorenstein for d ≥ 3.

If d = 2, by choosing the points to be [1:0:0], [0:1:0] and [0:0:1], we have I =
(X1X2, X1X3, X2X3). Note that I is an almost complete intersection ideal such
that A/I is Cohen-Macaulay. Moreover, it is easy to check that µ(Ip) ≤ ht(p) for all
prime ideals p. So one knows from [13] that GA(I) is Gorenstein and a(GA(I)) =
−ht(I) = −2. By Theorem 2.8, k[(Ie)c] is quasi-Gorenstein if and only if 3

c = 1
e ∈ Z.

So (3, 1) is the only diagonal with the Gorenstein property. This corresponds to the
del Pezzo sestic surface in P

6.
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