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Abstract

Complex projective elliptic surfaces endowed with a numerically effective line
bundle of arithmetic genus two are studied and partially classified. A key role
is played by elliptic quasi-bundles, where some ideas developed by Serrano in
order to study ample line bundles apply to this more general situation.

Introduction

Polarized surfaces with sectional genus 2 have been studied and classified in [2], [5],
[17], [7]. Elliptic surfaces play an interesting an delicate role in this classification;
in particular, papers by Serrano [17] and Fujita [7] pointed out the relevance of
certain relatively minimal elliptic surfaces, named elliptic quasi-bundles, arising in
this setting. On the other hand Maeda [16] recently started to study projective
surfaces endowed with a nef line bundle of low arithmetic genus g. In particular
he obtained a classification for g ≤ 1, generalizing what was known for surfaces
polarized by an ample line bundle. In this paper we consider elliptic projective
surfaces endowed with a nef line bundle with g = 2. We would like to stress that
some ideas of Serrano (partially extended in [13]) developed to study ample line
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bundles on relatively minimal elliptic surfaces also apply in this wider setting. Note
that elliptic surfaces already occur in Maeda’ s classification for g = 1, but in that
case one can say very little. Actually any normal semipolarized surface of sectional
genus 1 is birationally equivalent to a pair (S,L) where S is a smooth minimal
elliptic surface and L is a nef line bundle satisfying L2 = LKS = 0 ([16], Theorem 3,
(1)). For instance, any linear combination of fibres of S satisfies these conditions.
On the contrary, when g = 2 we can say much more; actually in this case we show
that (L2, LKS) = (1, 1) or (0, 2). In particular the equality LKS = 0 cannot occur.

Here is an outline of our approach. As a first step we prove that up to contract-
ing all (−1)-curves not intersecting L, either S is minimal or (S,L) admits a simple
reduction (S′, L′) where S′ is minimal and L′ is still a nef line bundle of genus two
satisfying L′KS′ = 1. Then we analyze minimal surfaces by means of the canonical
bundle formula. Due to the fact that LKS > 0 we have that L has positive inter-
section with the fibres of the elliptic fibration ψ : S → C. This allows us to apply
the same procedure working in the case of ample line bundles and determine all the
numerical invariants of S: the geometric genus pg, the irregularity q, the genus g(C)
of the base curve C and the multiplicities of the multiple fibres of ψ. The results are
summarized in several tables along the paper. In particular we provide examples
of nef non ample line bundles of genus 2, but, unfortunately, we have no concrete
example satisfying LKS = 1. In fact in this subcase we get just few possibilities in
addition to those occurring when L is an ample line bundle. Moreover it turns out
that in most cases a minimal elliptic surface S allowing a nef line bundle L with
g = 2 is an elliptic quasi-bundle over a smooth curve C of genus ≤ 1. When C = P1

there exists a structure theorem for Num(S) and then the values of L2 and LKS

allow us to also determine explicitly the numerical class of L. In particular it turns
out that for elliptic quasi-bundles over P1 if LKS = 1 then L nef implies L ample.

The paper is organized as follows. In Section 1 we collect some background
material. Section 2 is devoted to the first step of the classification. In Section 3 we
discuss the case of minimal surfaces with no multiple fibres. Minimal elliptic surfaces
with multiple fibres are studied in Sections 4 and 5, the latter being devoted to the
special case of elliptic quasi-bundles. The paper is concluded by an Appendix where
a result in [12] is improved, showing that the lowest possible genus of an ample and
spanned line bundle on an elliptic surface is 4.

1. Background material

We work over the complex number field C. We use standard notation and termino-
logy in algebraic geometry: in particular we denote additively the tensor products of
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line bundles and we use the symbol ≡ to denote the numerical equivalence. Following
a current abuse we do not distinguish between line bundles and invertible sheaves.

As we said in the Introduction we are interested in the classification of elliptic
projective surfaces endowed with a nef line bundle of arithmetic genus 2. To make
our set-up clear let us fix some more terminology. Let X be a projective surface and
L a line bundle on X. If L is nef, i. e. LC ≥ 0 for all integral curves C on X, we
call the pair (X,L) a semipolarized surface. Two semipolarized surfaces (X1,L1),
(X2,L2) are said to be birationally equivalent if there exist a projective surface Y

and birational morphisms fi : Y → Xi (i = 1, 2) such that f∗
1L1 = f∗

2L2. If X is
normal, the sectional genus g(X,L) of the semipolarized normal surface (X,L) is
defined by the formula 2g(X,L) − 2 = (ωX + L)L, where ωX denotes the canonical
sheaf of X. Let (X,L) be a semipolarized normal surface with g(X,L) > 0. Then,
by [16], Theorem 1, there exist a smooth surface S and a nef line bundle L on S

such that the semipolarized surface (S,L) is birationally equivalent to (X,L) and
KS + L is nef, where KS is the canonical bundle of S. Moreover, by [6], Lemma
1.8, (see also [16], Lemma 3.1) we have g(S,L) = g(X,L). In particular this shows
that to study semipolarized normal surfaces of sectional genus 2 up to birational
equivalence it is enough to consider smooth semipolarized surfaces (S,L) where

(1.0.1) 2 = 2g(S,L) − 2 = (KS + L)L = KSL + L2.

So from now on the word surface will mean smooth projective surface. In particular,
in this paper we deal with properly elliptic surfaces, i. e. κ(S) = 1.

Hereafter we recall some general properties of properly elliptic surfaces over a
smooth curve C and especially of elliptic quasi-bundles, which we need throughout
the paper.

(1.1) Let ψ : S → C be a relatively minimal elliptic surface over a smooth curve C

of genus g(C). We assume that κ(S) = 1: hence ψ is the unique elliptic fibration
of S (e. g. see [10], Proposition 7); moreover χ(OS) ≥ 0 by the Castelnuovo-De
Franchis theorem. Let F0 =

∑s
j=1 njBj be a singular fibre of ψ, where the Bj ’s are

the irreducible components and the nj ’s denote their multiplicities. We say that F0

is a multiple fibre of ψ of multiplicity m if m := g.c.d.{nj} ≥ 2. In this case F0 = mf ,
where f is an effective divisor on S such that f2 = 0. We recall that ψ : S → C is
said to be an elliptic quasi-bundle if all smooth fibres of ψ are isomorphic to each
other and every singular fibre is a multiple of a smooth irreducible curve. Let q(S)
denote the irregularity of S; the following facts hold (see [18], (1.5), (1.6), see also
[19], Section 4).
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(1.1.1) If χ(OS) > 0 then q(S) = g(C).

(1.1.2) If χ(OS) = 0 then there are two possibilities: either ψ has trivial monodromy,
in which case q(S) = g(C) + 1, or q(S) = g(C).

(1.1.3) χ(OS) = 0 if and only if ψ : S → C is an elliptic quasi-bundle.

(1.1.4) Let m1, . . . ,mt be the multiplicities of the multiple fibres of ψ. If q(S) =
g(C) + 1 then either t = 0 or t ≥ 2 and for every i the integer mi divides the
l.c.m.{m1, . . . , m̂i, . . . ,mt}, where ˆ means suppression.

We will refer to (1.1.4) as the Katsura-Ueno divisibility property ([11], Corol-
lary 4.1), though this statement, which is slightly more general, is due to Serrano
([17], Proposition 1.3).

We also recall the canonical bundle formula ([1], p. 161). If the multiple fibres
of ψ : S → C are Fi = mifi, i = 1, . . . , t, then

(1.1.5) KS = ψ∗(KC + N) +
t∑

i=1

(mi − 1)fi,

where N is a line bundle on C of degree degN = χ(OS).

(1.2) The structure of elliptic quasi-bundles satisfying q(S) = g(C) + 1 is very well
understood ([17], Theorem 1.2) (see also the review in [7], Section 1). There exist a
smooth curve B of genus g(B) ≥ 2, a smooth curve E of genus 1 and a finite abelian
group G := Zm × Zn acting faithfully on B and E, and by translations on E, such
that S ∼= (B × E)/G where G acts diagonally on the product. Moreover C ∼= B/G

and under these identifications ψ is the morphism S → B/G induced by the first
projection of B × E. We denote by F the general fibre of ψ and by D the general
fibre of S → E/G. Note that F ∼= E and D ∼= B. We also have DF = γ, the order
of G.

Moreover, in the special case when C ∼= P1 we have the following

Theorem 1.3 ([13])

Let ψ : S → P1 be an elliptic quasi-bundle as above; let µ = l.c.m.{mi} be the

least common multiple of the multiplicities of the fibres and let γ be the order of G.

Then Num(S) is generated by the classes of

1
µ
F and

µ

γ
D +

δ

2µ
F,
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where δ = 0 or 1 according to whether (2g(B) − 2)µγ is even or odd. Furthermore a

line bundle on S of type (a, b), (i.e. whose class is the linear combination of these

generators with integral coefficients a and b) is ample if and only if

2a + δb > 0 and b > 0.

We conclude this Section with a very useful remark. Recall that if L is a nef
line bundle on a surface, then L2 ≥ 0; as usual we say that L is big if the above
inequality is strict.

Lemma 1.4

Let S be a properly elliptic surface and let L ∈ Pic(S) be a nef and big line

bundle. Then LKS > 0.

Proof. Since S is properly elliptic, a suitably high positive multiple of KS is effective,
so that LKS ≥ 0, L being nef. By contradiction, assume that LKS = 0. Then L is
effective. Actually, since L is big, (KS − L)L = −L2 < 0, hence KS − L cannot be
effective and then by Serre duality we get h2(L) = 0. Thus, since χ(OS) ≥ 0, the
Riemann-Roch theorem gives

h0(L) = h1(L) + χ(OS) +
1
2

(L2 − LKS) ≥ 1
2
L2.

Hence h0(L) > 0, since L is big. Now let η : S → S0 be a birational morphism from
S to the relatively minimal model S0. Then KS = η∗KS0 +E , where E is an effective
divisor contracted by η to a 0-dimensional subset. We have

0 = LKS = Lη∗KS0 + LE ,

both summands being nonnegative since both E and mKS0 for m >> 0 are effective.
Therefore Lη∗KS0 = 0. Since KS0 is numerically equivalent to a positive rational
multiple of a fibre of S0 we thus conclude that also LF = 0, for F a fibre of S. So
any effective divisor D ∈ |L| is contained in a union of fibres of S. We can thus write
D = D1 + . . . + Dr, where the Di’s (i = 1, . . . , r) are effective divisors contained in
distinct fibres of S, whence DiDj = 0 for i �= j. Moreover D2

i ≤ 0 for every i, by
Zariski’s lemma ([1], p. 90). But this implies that D2 ≤ 0, contradicting the bigness
of L. �
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2. Reduction to the relatively minimal model

Let (S,L) be a properly elliptic semipolarized surface with g(S,L) = 2; then both
summands in the right hand of (1.0.1) are non negative since L is nef. A priori
this gives the following three possibilities for (LKS , L

2): (2,0), (1,1), (0,2); however
Lemma 1.4 rules out the last one. So we have

Fact. 2.1

Let (S,L) be a properly elliptic semipolarized surface with g(S,L) = 2. Then

(LKS , L
2) = (2, 0) or (1, 1).

Now suppose that S is not relatively minimal. Then there exists a (−1)-curve
E contained in a fibre of S; let σ : S → S′ be the contraction of E and let p = σ(E).

Remark 2.2. If L is a nef line bundle on S, then there exists a nef line bundle
L′ ∈ Pic(S′) such that

(2.2.1) L = σ∗L′ − rE, where r = LE ≥ 0.

Proof. Since Pic(S) ∼= σ∗Pic(S′) ⊕ Z, the second summand being generated by E,
there exists L′ ∈ Pic(S′) satisfying (2.2.1); of course LE ≥ 0 since L is nef. So
we just need to prove that L′ is nef. To see this let C ′ ⊂ S′ be any irreducible
curve. Then σ∗C ′ = C+mE, where C = σ−1(C ′) is the proper transform of C ′ and
m = multp(C ′) ≥ 0. We thus get

LC = (σ∗L′ − rE)(σ∗C ′ −mE) = L′C ′ − rm ≤ L′C ′.

So L′ is nef, due to the nefness of L. �

Let (S,L) and (S′, L′) be as above. By adapting the terminology of adjunc-
tion theory for ample line bundles to our setting we say that (S′, L′) is the simple
reduction of (S,L) if r = 1. Note that in this case g(S′, L′) = g(S,L).

Our aim in this Section is to use birational equivalence to reduce the study of
our pairs (S,L) to the case when S is a relatively minimal surface. To do this we
need the following

Definition 2.3. Let E ⊂ S be a (-1)-curve. We say that E is relevant (unrelevant)
if LE > 0 (LE = 0). According to Fukuma ([8], Definition 1.9) we say that (S,L)
is L-minimal if all (-1)-curves in S are relevant.

By using (2.2) it is easy to check the following
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Fact. 2.4

For any semipolarized surface (S,L) there exist a birational morphism η : S →
S0 onto a surface S0 and a nef line bundle L0 ∈ Pic(S0) such that L = η∗L0 and

(S0, L0) is L0-minimal.

Note that (KSL,L
2) = (KS0L0, L

2
0).

So, since we are working up to birational equivalence, we can confine ourselves
to consider pairs (S,L) which are L-minimal.

Theorem 2.5

Let (S,L) be a properly elliptic semipolarized surface of sectional genus 2. If

(S,L) is L-minimal then either

i) S is relatively minimal and (LKS , L
2) = (2, 0) or (1, 1), or

ii) (S,L) has a simple reduction (S0, L0), where S0 is relatively minimal and

(L0KS0 , L
2
0) = (1, 1).

Proof. If S is relatively minimal then the assertion follows from Fact 2.1. If S is not
relatively minimal, then there exists a (-1)-curve E contained in a fibre of S. Let
σ : S → S′ be the contraction of E, set p = σ(E) and consider the line bundle L′ on
S′ such that L = σ∗L′ − rE as in Remark 2.2. Since (S,L) is L-minimal we have
r = LE > 0. Hence from

0 ≤ L2 = (σ∗L′ − rE)2 = L′2 − r2

we see that L′ is nef and big. Moreover

(2.5.1) LKS = (σ∗L′ − rE)(σ∗KS′ + E) = L′KS′ + r.

Note that the first summand in the right hand of (2.5.1) is positive in view of
Lemma 1.4 applied to (S′, L′). Since r > 0, recalling Fact 2.1 we get from (2.5.1)
that

(2.5.2) LKS = 2 and L′KS′ = r = 1.

This shows that (S′, L′) is the simple reduction of (S,L). Now assume that S′ is
not relatively minimal and let E′ ⊂ S′ be a (-1)-curve. Note that since L′KS′ = 1,
E′ cannot be a relevant (-1)-curve; otherwise by repeating the argument leading to
(2.5.2) we would get L′KS′ = 2, a contradiction. Thus

(2.5.3) L′E′ = 0.
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(2.5.4) Claim. E′ does not contain the point p.

To prove the claim suppose, by contradiction, that p ∈ E′. Then σ∗E′ = Ẽ′+E,
where Ẽ′ = σ−1(E′). Let τ : S′ → S′′ be the contraction of E′. By Remark 2.2
there exists a nef line bundle L′′ ∈ Pic(S′′) such that L′ = τ∗L′′, in view of (2.5.3).
So L = σ∗L′−E = σ∗(τ∗L′′)−E = (τ ◦σ)∗L′′−E and then L′′2 = L′2 = L2+1 > 0.
So L′′ is nef and big and then L′′KS′′ > 0, by Lemma 1.4. Recalling (2.5.2) we thus
get

2 = LKS = L(σ∗KS′ + E)

= L
(
σ∗(τ∗KS′′ + E′) + E

)

= L
(
(τ ◦ σ)∗KS′′

)
+ LẼ′ + 2LE

=
(
(τ ◦ σ)∗L′′ − E

) (
(τ ◦ σ)∗KS′′

)
+ LẼ′ + 2LE

= L′′KS′′ + LẼ′ + 2LE ≥ 3,

a contradiction. This proves the claim. Coming back to S, (2.5.4) shows that both
E and Ẽ′ are exceptional curves on S and EẼ′ = 0. This means that Ẽ′ = σ∗E′.
But then we get

LẼ′ = (σ∗L′ − E)σ∗E′ = L′E′ = 0

by (2.5.3), which contradicts the L-minimality of (S,L). It thus follows that S′ is
relatively minimal. �

Remark 2.6. Let (S,L) be as in Theorem 2.5, case ii), and let p = σ(E) be the
point of S0 at which σ : S → S0 contracts the (-1)-curve E satisfying the condition
LE = 1. If C ⊂ S0 is a curve having a point of multiplicity m ≥ 1 at p, then

Lσ−1(C) = (σ∗L0 − E)(σ∗(C) −mE) = L0C −m.

So, starting from the semipolarized surface (S0, L0) and blowing-up the point p we
see that L is nef if and only if ε(L0, p) ≥ 1, where

ε(L0, p) = inf
C�p

L0C

multp(C)

is the Seshadri constant of L0 at p ([4], Section 6). For instance, assume that
L0F = 1, F being the general fibre of the elliptic fibration ψ of S0. If p is a singular
point of a reduced fibre of ψ then ε(L0, p) ≤ 1

2 , hence the corresponding line bundle
L is not nef.

What we proved in this Section is summed-up by the following
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Corollary 2.7

Let (S,L) be a properly elliptic semipolarized surface of sectional genus 2. Then

there exist a birational morphism f : S → Ŝ and a nef line bundle L̂ ∈ Pic(Ŝ) such

that L = f∗L̂ and (Ŝ, L̂) is a semipolarized surface of sectional genus 2 satisfying

one of the following conditions:

(1) Ŝ is relatively minimal and (L̂KŜ , L̂
2) = (2, 0) or (1, 1), or

(2) (Ŝ, L̂) has a simple reduction (S0, L0), where S0 is relatively minimal and

(L0KS0 , L
2
0) = (1, 1).

Conversely, let L̂ be a nef line bundle of genus 2 on an elliptic surface Ŝ;

(a) for any birational morphism f : S → Ŝ, f∗L̂ is a nef line bundle of genus 2 on

S while

(b) if Ŝ is relatively minimal, L̂2 = L̂KŜ = 1, σ : S → Ŝ is the blowing-up at

a point p ∈ Ŝ and ε(L̂, p) ≥ 1, then σ∗L̂− E is a nef line bundle of genus 2 on

S, where E = σ−1(p).

This reduces our problem to investigating semipolarized surfaces (S,L) of sec-
tional genus 2 where S is a relatively minimal elliptic surface and, in view of Fact
2.1, L satisfies

(2.8) (LKS , L
2) = (1, 1) or (2, 0).

This is what we are doing in the next sections.

3. Elliptic surfaces without multiple fibres

Let S be relatively minimal. Since KS is a positive rational multiple of the general
fibre F , from LKS > 0 we see that LF > 0. If ψ : S → C has no multiple fibres then
it may happen that LF = 1, even if some fibre is reducible; this is really a different
feature with respect to the case of ample line bundles. Actually, when there are no
multiple fibres (1.1.5) becomes

(3.0.1) KS = ψ∗(KC + N)

where N is a line bundle on C of degree degN = χ(OS) ≥ 0. For shortness set
g = g(C), χ = χ(OS), q = q(S) and pg = pg(S); thus KS ≡ (2g − 2 + χ)F . Now
look at (2.8).

If LKS = 1 then LF = 1 and we get (g, χ) = (0, 3), or (1, 1). In both cases
q = g, by (1.1.1), whence pg = χ + g − 1 = 2 or 1 respectively.
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If LKS = 2 there are two possibilities according to whether LF = 1 or 2. If
LF = 2, then

(g, χ) = (0, 3), (1, 1), q = g and pg = 2 or 1

accordingly, as before. If LF = 1, then

(g, χ) = (0, 4), (1, 2), (2, 0).

In the first two cases we have q = g by (1.1.1) again, and then pg = χ + g − 1 = 3
or 2. In the third case S is quasi-bundle by (1.1.3), but since there are no multiple
fibres it is in fact a holomorphic fiber bundle. Hence q = g + 1 = 3, by (1.1.2) and
then pg = 2.

The above discussion is summarized in Tables 3.1 and 3.2.

Table 3.1

no multiple fibres: case LKS = 1

g χ q pg FL

0 3 0 2 1
1 1 1 1 1

Table 3.2

no multiple fibres: case LKS = 2

g χ q pg FL

0 3 0 2 2
1 1 1 1 2
0 4 0 3 1
1 2 1 2 1
2 0 3 2 1

Both cases occurring when LF = 2 are effective, as shown by the following

Example 3.1: Let C be a smooth curve of genus γ ≤ 1. Consider the product
Σ := C ×P1 and let σ and f denote the fibres of the projections of Σ on the factors
P1 and C respectively. Since the line bundle [4σ + (6 − 4γ)f ] ∈ 2Pic(Σ) is ample
and spanned, its linear system contains a smooth divisor ∆. Let π : Xγ → Σ be the
double cover branched along ∆. By the ramification formula we see that KXγ = π∗f .
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So Xγ is a smooth minimal surface with κ(Xγ) = 1, the elliptic fibration ψ : Xγ → C

being obtained by composing π with the first projection of Σ. Moreover, since

hi(KXγ
) = hi(π∗KXγ

) = hi(KΣ) + hi(f),

for i = 0, 1 we get (pg(Xγ), q(Xγ)) = (2, 0) or (1, 1) respectively, according to
whether γ = 0 or 1. Now the line bundle Lb := π∗[σ + bf ] is nef for any integer
b ≥ 0. Note that it is in fact spanned if γ = 0 and in addition it is ample for b ≥ 1.
We have

2g(Lb) − 2 = (KXγ
+ Lb)Lb = π∗(σ + (b + 1)f)π∗(σ + bf) = 2(2b + 1),

hence g(Lb) = 2b + 2. Since LbKXγ = 2, the pair (Xγ , L0) gives examples as in the
first and second cases of Table 3.2 (according to the values of γ).

As to the cases with LF = 1, an obvious example of the last one in Table 3.2
is the following: take S := C × F , the product of a smooth curve C of genus 2 and
an elliptic curve F , with the line bundle L corresponding to a fibre C of the second
projection. This is essentially the only example since we have

Proposition 3.2

If (S,L) is as in the last case of Table 3.2 then S ∼= C × F , ψ being the first

projection and L ≡ C, a fibre of the second projection.

Proof. Set L = L + F ; then L2 = 2LF = 2, hence L is nef and big. Moreover,
since LKS = LKS = 2, we get g(L) = 3 = q. Note also that S is minimal, being
relatively minimal with g = 2. Then, by a result of Fukuma ([8], Theorem 3.1), we
conclude that S ∼= C × F with L ≡ C + F . This gives the assertion. �

In the remaining cases listed for LF = 1 we have no examples. Note that
χ > 0 in these cases; hence ψ has some singular fibres, possibly reducible, according
to Kodaira’s table ([1], p. 150). However, if we assume that all fibres of ψ are
irreducible, then the numerical possibilities listed above reduce and we can provide
some description of L.

Proposition 3.3

Let (S,L) be as above with S relatively minimal with no multiple fibres and

assume that all fibres are irreducible. Suppose furthermore that LF = 1. Then

there are just two possibilities:

(1) if LKS = 1 then g = 1 and L ≡ Z + F , where Z is a section with Z2 = −1;

(2) if LKS = 2 then (S,L) is as in Proposition 3.2.
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Proof. We adapt an argument by Fujita ([7], (1.2), p. 156). Due to the assumptions,
every fibre is irreducible, reduced and of arithmetic genus 1; since LF = 1 we thus get
h0(LF ) = 1 for every fibre F and so F := ψ∗L is an invertible sheaf. Moreover the
scheme theoretic support Z of the Cokernel of the natural homomorphism ψ∗F → L

is a section of ψ. Then L = Z + ψ∗F . Note that ψ∗F ≡ eF , for some integer e,
which we want to determine. So L ≡ Z+eF . Since ψ|Z : Z → C is an isomorphism,
recalling (3.0.1) we get

KSZ = ψ∗(KC + N)Z ≥ ψ∗KCZ = degψ∗
|ZKC = 2g(Z) − 2.

Hence the genus formula gives Z2 = 2g(Z)−2−KSZ ≤ 0. On the other hand, since
L is nef, we have

0 ≤ LZ = (Z + eF )Z = Z2 + eFZ = Z2 + e,

hence
e ≥ −Z2 ≥ 0.

Now, if LKS = 1 then also ZKS = (L − eF )KS = LKS = 1 so that Z2 is odd;
moreover from 1 = L2 = L(Z + eF ) = LZ + eLF we conclude that e = 1, giving
−1 ≤ Z2 ≤ 0, hence Z2 = −1. Finally the genus formula gives g = g(Z) =
1 + 1

2 (Z2 + ZKS) = 1. Similarly, if LKS = 2, then also ZKS = 2; moreover from
0 = L2 = L(Z + eF ) = LZ + eLF we see that e = 0, which implies Z2 = 0. Finally
the genus formula again gives g = g(Z) = 2. Hence (S,L) is as in the last case of
Table 3.2 and Proposition 3.2 applies. �

We have no examples as in (1) of Proposition 3.3. Note that in this case
LZ = (Z +F )Z = 0; so if this case should really occur it would provide an example
of a nef non-ample line bundle L of genus two with LKS = 1.

4. Elliptic surfaces with multiple fibres

Now assume that ψ : S → C has t > 0 multiple fibres Fi = mifi, i = 1, . . . , t. As
we already said, the fact that LKS > 0 implies LF > 0 for any fibre F of S; this in
turn implies that Lfi > 0 for every i. Hence for the general fibre F we have LF ≥ µ,
where µ := l.c.m.{mi} is the least common multiple of the multiplicities. This allows
us to apply the same argument as in the case of ample line bundles ([13], see also
[3]) in order to investigate the genus g = g(C), the numerical characters q = q(S),
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pg = pg(S) of S and the possible multiplicities of the multiple fibres. Hereafter we
give some detail.

Order the multiplicities so that 2 ≤ m1 ≤ m2 ≤ . . . ≤ mt and put for shortness
l = LKS ; so l = 1 or 2 in view of (2.8). Recalling (1.1.5) we have

(4.0.1) l =
(
2g − 2 + χ +

t∑
i=1

mi − 1
mi

)
FL.

Since FL ≥ mt and
∑t−1

i=1
1
mi

≤ t−1
2 , (4.0.1) gives

l ≥
(
2g − 2 + χ + t−

t−1∑
i=1

1
mi

− 1
mt

)
mt ≥

(
2g − 2 + χ +

t + 1
2

)
mt − 1 ;

hence we get

(4.0.2) 2(l + 1) ≥ (4g + 2χ + t− 3)mt

which, for given l, g, χ and t, supplies an upper bound for the higher multiplicity
mt, except when (4g + 2χ + t− 3) ≤ 0 (implying g = 0 and either χ = 0 and t ≤ 3
or χ = t = 1); we will deal with this case separately.

Assuming (4g + 2χ + t− 3) > 0, we now show how to bound g, χ and t. From
(4.0.1), since FL ≥ 2, we get

(4.0.3) 2g − 2 + χ +
t∑

i=1

mi − 1
mi

≤ l

2

which implies g ≤ 1 (indeed, if l = 1 and χ > 0, it also implies g = 0). Hence we
have only to consider the following possibilities: (l, g) = (1, 0), (2, 0), (1, 1), or (2, 1).
Inequality (4.0.3) yields

χ ≤
t∑

i=1

1
mi

− 2g + 2 − t +
l

2
≤ t

2
− 2g + 2 − t +

l

2
=

l + 4 − 4g − t

2
,

hence
if (l, g) = (1, 0), then t ≤ 5 and χ ≤ 5 − t

2
;

if (l, g) = (2, 0), then t ≤ 6 and χ ≤ 6 − t

2
;

if (l, g) = (1, 1), then t = 1 and χ = 0;

if (l, g) = (2, 1), then t ≤ 2 and χ = 0.
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Having an upper bound on t, (4.0.1) gives upper bounds for all the mi’s stronger
than (4.0.2), as one can see by proceeding in decreasing order on the mi’s (e. g. see
[3], p. 227). This procedure leads to a finite number of possibilities for the sequence
of integers (l, g, χ, t,m1, . . . ,mt). For them one has to check (4.0.1), and, in case
q = g + 1, the Katsura-Ueno divisibility property (1.1.4). This can be done quite
easily so that we finally get a maximal list of possible numerical characters.

Finally assume (4g + 2χ + t− 3) ≤ 0. As we have already noticed, this implies
g = 0 and either χ = 0 and t ≤ 3 or χ = t = 1. Case g = 0, χ = t = 1 is easily
excluded by (4.0.1). Cases g = 0, χ = 0, t = 1, 2, 3 can be handled with an ad hoc
argument. Just to give an example, assume l = 1, g = 0, χ = 0 and t = 3. From
(4.0.1) one gets 1 − 1

m1
− 1

m2
− 1

m3
≤ 1

2 , hence 1
2 ≤ 1

m1
+ 1

m2
+ 1

m3
≤ 3

m1
, which

implies m1 ≤ 6. For each value of m1 = 2, 3, 4, 5, 6 one applies similar arguments to
bound m2 and m3 as well. So, even in this case, we get a finite number of possible
sequences, for which conditions (4.0.1) and (1.1.4) have to be checked.

All this leads to a maximal list of possible characters for elliptic surfaces with
multiple fibres. Hereafter we give the result in the non quasi-bundle case, i.e. when
χ > 0, postponing the case of quasi-bundles to Section 5.

Table 4.1

non quasi-bundles: case LKS = 1

g χ q pg FL (m1, . . . ,mt)
0 2 0 1 2 (2)
0 1 0 0 6 (2, 3)
0 1 0 1 4 (2, 4)
0 1 0 0 3 (3, 3)
0 1 0 0 2 (2, 2, 2)

Table 4.2

non quasi-bundles: case LKS = 2

g χ q pg FL (m1, . . . ,mt)
0 2 0 1 4 (2)
0 2 0 1 3 (3)
0 2 0 1 2 (2, 2)
0 1 0 1 12 (2, 3)
0 1 0 1 8 (2, 4)
0 1 0 0 6 (2, 6)
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Remark 4.1. Note that the first line in Table 4.1 doesn’t appear in the same situation
when L is ample ([17], Theorem 2.1). The invariants

g = 0, χ = 2, t = 1,m1 = 2 and LF = 2

come out from the discussion above. Since χ = 2 we thus get q = 0 by (1.1.1), hence
pg = 1 and in fact KS = f , where 2f is the unique fibre of multiplicity 2. In this
case, since L is nef and big we have hi(KS + L) = 0 for i = 1, 2. So, looking at the
exact cohomology sequence

0 → H0(L) = H0(KS + L− f) → H0(KS + L) r→ H0
(
(KS + L)f

)
→ H1(L) → 0,

we see that h1(L) ≤ 1 since (KS + L)f = Lf = 1 and g(f) = 1; moreover equality
holds if and only if r is trivial, which cannot happen because h0(KS + L) = pg +
g(L) − q = 3 and so |KS + L| contains divisors intersecting f . We thus conclude
that h1(L) = 0, hence h0(L) = 2. So |L| is a pencil having a single base point, say
x, since L2 = 1. Note that x is forced to lie on f , since Lf = 1 and g(f) = 1. Now
let y be a point on f distinct from x. Then the divisor D ∈ |L − y| = |L − x − y|
has the form D = f + R where R is an effective divisor in |L − f |. Of course this
situation cannot occur if L is ample ([2], Lemma 2.1), because since L2 = 1 every
element in |L| has to be irreducible and reduced. However it is not contradictory
in our case, L simply being a nef line bundle: it only implies that h0(L − f) > 0,
which is compatible with the nefness of L since (L − f)L = 1 − 1 = 0. Note also
that R2 = (L− f)2 = −1. Since RKS = (L− f)f = 1, this gives g(R) = 1.

5. Quasi-bundles with multiple fibres

Here we assume that t > 0 and ψ : S → C is an elliptic quasi-bundle. The discussion
made in Section 4, in case g > 0 gives the following table.

Table 5.1

quasi-bundles: case g > 0

LKS g χ q pg FL (m1, . . . ,mt)
1 1 0 1 0 2 (2)
2 1 0 1 0 4 (2)
2 1 0 1 0 3 (3)
2 1 0 1 0 2 (2, 2)
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In the first three cases of Table 5.1 the equality q = 1 follows from (1.1.4) since
there is a single multiple fibre. On the other hand the fact that q = 1 in the last
case follows from [7], (2.3). Examples as in the first cases have been constructed by
Fujita ([7], (2.6)-(2.8) ) in the setting of ample line bundles.

When C ∼= P1 we get the following cases which for convenience are grouped
into two tables according to the values of LKS .

Table 5.2

quasi-bundles: case g = 0, LKS = 1

χ q pg FL (m1, . . . ,mt)
0 1 0 6 (2, 6, 6)
0 1 0 4 (4, 4, 4)
0 1 0 2 (2, 2, 2, 2, 2)

Table 5.3

quasi-bundles: case g = 0, LKS = 2

type χ q pg FL (m1, . . . ,mt)
a) 0 1 0 10 (2, 5, 10)
b) 0 1 0 12 (2, 6, 6)
c) 0 1 0 8 (2, 8, 8)
d) 0 1 0 6 (3, 6, 6)
e) 0 1 0 8 (4, 4, 4)
f) 0 1 0 5 (5, 5, 5)
g) 0 1 0 6 (2, 2, 3, 3)
h) 0 1 0 4 (2, 2, 4, 4)
i) 0 1 0 3 (3, 3, 3, 3)
j) 0 1 0 2 (2, 2, 2, 2, 2)
k) 0 1 0 2 (2, 2, 2, 2, 2, 2)

When C ∼= P1, we can improve the above results also describing the numerical
class of the nef line bundle L in terms of the generators of Num(S).

To do this recall that S ∼= (B × E)/G with B, E and G as in (1.2) and that
ψ : S → B/G = P1 is the morphism induced by the first projection of B ×E. As in
(1.2) denote by F the general fibre of ψ and by D the general fibre of the Albanese
map S → E/G and recall that F ∼= E and D ∼= B.
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Now, in view of Theorem 1.3 we can assume that L is of type (a, b) for suitable
integers a and b; hence

L ≡ bµ

γ
D +

2a + δb

2µ
F.

To compute intersections on S recall that D2 = F 2 = 0, while DF = γ, the order
of G. Note that in every case in Tables 5.2, 5.3 we can write KS ≡ s

µF for some
positive integer s. A close inspection of these tables with the help of (1.1.5) shows
that s = 1 in the three cases of Table 5.2, which also appear as types (b), (e), (j) in
Table 5.3, while s = 2 in all the remaining cases. We have

(5.0.1) LKS = bs,

hence b > 0, since LKS > 0.
Now recall (2.8). First let LKS = 1. Then we have

(5.0.2) 1 = L2 = (2a + δb)b

and in view of Theorem 1.3 we conclude that L is ample. Moreover, in the three
cases of Table 5.2, g(B) and the structure of the group G are known: actually(
g(B), G

)
= (2,Z2×Z6), (3,Z4×Z4), and (2,Z2×Z2) respectively ([17], Theorem 2.2,

(iv) ). Then it is immediate to check that δ = 1 in these cases. As a consequence
(5.0.2) immediately gives (a, b) = (0, 1). This shows the following

Proposition 5.1
Let S be an elliptic quasi-bundle over P1 and L ∈ Pic(S) as in Table 5.2 with

g(L) = 2. Then the following conditions are equivalent:
(1) L is nef;
(2) L is ample;
(3) L ≡ µ

γD + 1
2µF .

Note that (3) is equivalent to the expression provided by Serrano ([17], Theo-
rem 2.2, (iii) ) (see also [7], p. 158).

Finally let LKS = 2. Recalling that b > 0, the condition 0 = L2 = (2a + δb)b
implies

(5.0.3) 2a + δb = 0.

There are two possibilities according to the values of δ. Let δ = 1; thus b = −2a
and so (5.0.1) gives (s, a, b) = (1,−1, 2). As we observed before the only types in
Table 5.3 corresponding to s = 1 are (b), (e), (j) (the same as in Table 5.2) and in
these cases, as we said, δ = 1. This shows in particular that δ = 1 if and only if
s = 1, if and only if S is as in (b), (e), (j) of Table 5.3 and L ≡ 2µ

γ D. Let δ = 0.
Then (5.0.3) and (5.0.1) give (s, a, b) = (2, 0, 1). So S is as in the remaining eight
cases of Table 5.3 and L ≡ µ

γD. Conversely, note that in every case L is actually
nef, so being D. We thus get
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Proposition 5.2

Let (S,L) be a semipolarized elliptic quasi-bundle over P1 as in Table 5.3 with

g(L) = 2. Then L ≡ 2µ
γ D in cases (b), (e), (j), while L ≡ µ

γD in the remaining

cases.

To conclude we give an explicit example in which we are able to supply g(B)
and the group G. In fact, contrary to what happens for types (b), (e), (j), in the
remaining cases of Table 5.3 there is only a partial description of the possible groups
G giving rise to S [13]. However, following closely ([17], Example 2.6), we can
construct the following

Example 5.3: Let C = P1 and consider six distinct points p1, . . . , p6 ∈ C. Let
ρ1 : Γ1 → C, ρ2 : Γ2 → C be two double covers, branched at p1, p2, p3, p4 and
at p3, p4, p5, p6 respectively, such that the two elliptic curves Γ1 and Γ2 are not
isomorphic. Let B be the normalization of the fibre product Γ1 ×C Γ2. We claim
that B is a smooth irreducible curve of genus g(B) = 3. Of course B is smooth,
hence, were B reducible, it would be disconnected. Since both maps θi : B → Γi

induced by the projections have degree 2 then B would consist of two connected
components, each one being isomorphic to Γ1 and Γ2 at the same time. But this
is clearly impossible since Γ1 �∼= Γ2. Finally look at the map θ1 : B → Γ1. Taking
the normalization separates the branches at the singular points of Γ1 ×C Γ2, which
lie on the fibres over p3 and p4; hence θ1 is branched only at the 4 points of Γ1

constituting the fibres of ρ1 over p5 and p6. Thus the Riemann-Hurwitz formula
gives g(B) = 3. Now the actions of Z2 on Γ1 and Γ2 yielding C define an action of
G := Z2 ×Z2 on the fibre product, which can be lifted to B, giving B/G = C. Now
take any elliptic curve E and make G act on it faithfully by translations. Consider
the diagonal action of G on B×E and set S := (B×E)/G. Denote by D and F the
general fibres of the morphisms S → E/G and S → B/G = C respectively. Then
S → B/G = C is an elliptic quasi-bundle with six multiple fibres with multiplicity
2 and KS ≡ F ; hence according to Theorem 1.3 1

2D is a divisor, its class being a
generator of Num(S). In any case, for sake of completeness, here we give a direct
proof of this. Note that 1

2F is a divisor whose class in Num(S) is not further divisible
([17], Proposition 1.4). By Poincaré duality and since pg = 0 we infer that there
exists a line bundle M ∈ Pic(S) such that 1

2FM = 1. Put M ≡ aD + bF with
a, b ∈ Q. Since DF = 4, we get a = 1

2 , and so, M2 + MKS = 4b + 2 being even,
we see that 2b is an integer. Hence 1

2D = M − 2b( 1
2F ) is a divisor. Then the pair

(S,L := 1
2D) gives an example of type (k) in Table 5.3.
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Appendix. The lowest genus of an ample
and spanned line bundle

Antonio Lanteri

Stimulated by a renewed interest on the genus of ample and spanned line bundles
(e. g. see [9], Appendix), I take this opportunity for improving a result in [12] fol-
lowing an idea essentially due to Serrano [13].

Proposition A.1

Let L be an ample and spanned line bundle on a properly elliptic surface S.

Then g(L) ≥ 4.

Proof. First of all we can assume that

(A.1.1) L2 ≥ 3.

This follows e. g. from ([14], Lemma 0.6.1) and the fact that if S is a double cover
of P2 with κ(S) > 0, then KS is ample, which implies κ(S) = 2, a contradiction.
Since LKS > 0 we thus see from the genus formula that g(L) ≥ 3. So we have only
to show that case g(L) = 3 does not occur. Note that if g(L) = 3, in view of (A.1.1)
the genus formula gives LKS = 1, and then the same argument as in the proof of
Lemma 1.4 shows that S is a minimal surface. Surfaces polarized by an ample and
spanned line bundle of genus three have been studied in [12]. The possible pairs
(S,L) with κ(S) = 1 are described in [12], Proposition 3.3. In fact those listed in
(3.3.1) there do not occur in view of the Katsura-Ueno divisibility property (1.1.4).
So the surface S can only be as follows [12], (3.3.2):

(A.1.2) S is minimal, pg(S) = q(S) = 0, the elliptic fibration ψ : S → C has C = P1

as basis and exactly two multiple fibres of multiplicities 2 and 3.
Let F and F0 = 3f be the general fibre and the fibre of multiplicity 3 of ψ

respectively. By the canonical bundle formula we get KS ≡ 1
6F ≡ 1

2f . Hence
condition LKS = 1 gives Lf = 2. Assume that h0(L − f) > 0; then there exists
an effective divisor R ∈ |L − f |. Since L is ample and spanned, from the equality
LR = L2 − Lf = 1 we see that R is a smooth rational curve. On the other hand,
since 1 = LR = R2 +Rf = R2 + (R+ f)f = R2 +Lf = R2 + 2 we conclude that R
is a (−1)-curve, contradicting the minimality of S. This shows that h0(L− f) = 0.
Hence from the cohomology sequence induced by

0 → L− f → L → Lf → 0

we get
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(A.1.3) h0(L) ≤ h0(Lf ).

Now, since L is ample and Lf = 2, according to [1], p. 151, f can only be either
smooth elliptic, rational with a node, or consisting of two (-2)-curves intersecting at
two distinct points. In all cases, using the Riemann-Roch theorem for the embedded
curve f ⊂ S ([1], p. 51), we easily see that

(A.1.4) h0(Lf ) = degLf + χ(Of ) + h1(Lf ) = 2.

But (A.1.3) combined with (A.1.4) gives a contradiction since h0(L) ≥ 3, L being
ample and spanned. So case (A.1.2) does not occur. �

Recall that if L is simply an ample line bundle on S then g(L) ≥ 2, while if L
is very ample then g(L) ≥ 6 ([15], §4). Both bounds are effective; also the bound
provided by (A.1) is effective, as shown by the pair (X0, L1) in Example 3.1.
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