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Abstract

We use hyperbolic geometry to study the limiting behavior of the average num-
ber of ways of expressing a number as the sum of two coprime squares. An
alternative viewpoint using analytic number theory is also given.

1. Introduction

Let N denote the set of all finite cardinals, and N+ the set of all nonzero finite
cardinals.

Poincaré series of Fuchsian groups have critical exponent one, which is connected
to the fact that they have the whole circle at infinity as their limit set, and this circle
has Hausdorff dimension one. For the Fuchsian group PSL2(Z), a Poincaré series is
given by P (s) = 2

∑
n≥1

bn
ns , where, for each n ∈ N+,

bn =
∣∣ {(c, d) ∈ N2 | c, d coprime, c2 + d2 = n}

∣∣ ,
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the number of primitive representations of n as the sum of two squares. Thus P (s)
converges if Re(s) > 1 and diverges if Re(s) < 1, which suggests that if we put

cn =
n∑
k=1

bk =
∣∣ {(c, d) ∈ N2 | c, d coprime, c2 + d2 ≤ n}

∣∣ ,
for n ∈ N+, then there should be restraints on the behavior of cn

n , that is, the
average number of ways of expressing a natural number as the sum of two coprime
squares. We found no explicit reference to this behavior in the literature. On omitting
the coprimeness condition, one has a sequence which was studied by Gauss, and
converges to π

4 . Thus, he was interested in the number of integer lattice points in a
circle of radius

√
n, while we are interested in the subset of those points which are

“visible from the origin”, and lie in the first quadrant. Resorting to simple computer
calculations, we were intrigued to see that cn

n seemed to be quite docile; for example,
the thousandth term is 478

1000 and the ten thousandth term is 4772
10000 . Eventually, using

hyperbolic geometry, we were able to prove that the cn
n converge to 3

2π = 0.477465....
These geometric techniques gave even more information, which we now describe.

For m,n ∈ N+, let

cm,n =
∣∣ {(c, d) ∈ N2 | c, d coprime, c2 + d2 ≤ n, c ∈ mN}

∣∣ .
For example, c1,n = cn. Define ψ: N+ → N+ by ψ(m) = m

∏
p|m

(1 + 1
p ), where the

product ranges over all prime numbers p which divide m.
Our main result is as follows.

Theorem 1.1

For each m ∈ N+, cm,n ∼ 3n
2πψ(m) as n tends to infinity.

That is, lim
n→∞

cm,n

n = 3
2πψ(m) ; we do not discuss the error term cm,n − 3n

2πψ(m)

at all. Our proof uses the action of the modular group PSL2(Z) on the upper half
plane {z ∈ C | Im(z) > 0}, viewed as the hyperbolic plane H2. We show that the
asymptotic behavior of cm,n is equivalent to the asymptotic behavior of subsets of
certain congruence subgroups of PSL2(Z). The asymptotic behavior can then be
computed in terms of the covolume of these subgroups. For example, for m = 1,
the theorem says that cn ∼ 3n

2π , which is related to the fact that the volume of
PSL2(Z)\H2 is π

3 .
The referee has kindly provided us with an alternative proof of Theorem 1.1

using analytic number theory, and Section 4 describes this proof and the relationship
with Eisenstein series.
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2. The Farey tessellation

Let H2 denote the upper half plane {z ∈ C | Im(z) > 0}, viewed as the hyper-
bolic plane with the metric ds2 = d|z|2

Im(z)2
. There is a natural boundary at infinity

∂H2 ∼= S1 which we identify with R ∪ {∞}.
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Figure 2.1. The Farey tessellation

The Farey tessellation, F , of H2 is a tessellation by ideal triangles with vertices
lying in Q ∪ {∞}, as in Figure 2.1. Two elements p

q and r
s of Q ∪ {∞} in lowest

terms (so ∞ = ±1
0 ) are joined by a (geodesic) edge in the Farey tessellation if and

only if ps−qr = ±1. Every edge having vertices p
q and r

s is adjacent to the triangles
with third vertices p+r

q+s and p−r
q−s . Using the Euclidean algorithm, one can prove that

this defines a tesselation, F , and it is clear that F is preserved by the action of
PSL2(Z).

Let R be the region {z ∈ H2 | 0 ≤ Re(z) ≤ 1}. Let E(F) denote the set of
oriented edges of the Farey tessellation, and E(F|R) the set of those oriented edges
which lie in R. Each e ∈ E(F|R) has an initial vertex a

c and a terminal vertex b
d ,

both in [0, 1]∪ {∞}, and we may assume these are in lowest terms, and that a, b, c,
d lie in N; here we set f(e) = (c, d) to define a map

f :E(F|R) →
{
(c, d) ∈ N2 | c, d coprime

}
.

Lemma 2.1

i) The action of PSL2(Z) on E(F) is transitive and faithful.

ii) The map f :E(F|R) → {(c, d) ∈ N2 | c, d coprime} is two-to-one.
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Proof. Assertion i) is well-known and easy to prove. Assertion ii) is equivalent
to the following fact, which is also easy to prove: given two coprime non-negative
integers c and d, there are exactly two pairs (a, b) ∈ N2 such that ad− bc = ±1 and
a
c ,

b
d ∈ [0, 1] ∪ {∞}. �

Corollary 2.2 ∣∣ {(c, d) ∈ N2 | c, d coprime, c2 + d2 = n}
∣∣

=
1
2

∣∣∣ {
γ ∈ PSL2(Z) | γi ∈ R and Im(γi) =

1
n

} ∣∣∣ .
Proof. Let e0 be the edge joining 0 = 0

1 to ∞ = 1
0 , and consider any γ ∈ PSL2(Z)

such that γe0 is contained in the interior of R. This is equivalent to γi ∈ R. If
f(γe0) = (c, d), then the imaginary part of γi is 1

c2+d2 . The result now follows from
the preceding lemma. �

3. The geometric proof

In this section we prove Theorem 1.1. We will need the following.

Theorem (Nicholls [4])

Let Γ be a Fuchsian group of finite covolume, r > 0 a real number, x ∈ H2,

and θ an interval in ∂H2. Let B(x, r) be the hyperbolic ball in H2 with center x

and radius r, B(x, r, θ) the set of points of B(x, r) whose projection to ∂H2 from x

lies in θ, and wx(θ) the angle of this cone, B(x, r, θ), at the point x. Then, for any

y ∈ H2,

∣∣ {γ ∈ Γ | γy ∈ B(x, r, θ)}
∣∣ ∼ wx(θ)

2π
volB(x, r)
vol(Γ\H2)

as r tends to ∞ . �

We shall use Nicholls’ Theorem about balls to obtain the following result about
horoballs.

Proposition 3.1

Let Γ be a Fuchsian group of finite covolume such that ∞ is a parabolic point

for Γ, let a < b and t > 0 be real numbers, and let

X(a, b, t) =
{
z ∈ H2 | Im(z) ≥ 1

t
, a ≤ Re(z) ≤ b

}
.
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Then, for any w ∈ H2,

∣∣ {γ ∈ Γ | γw ∈ X(a, b, t)}
∣∣ ∼ vol(X(a, b, t))

vol(Γ\H2)
as t tends to ∞ .

Proof. There exists a parabolic point (for Γ) c between a and b, and the desired
formula is additive, so we may assume that one of a or b is parabolic, and by
symmetry we may assume that b is parabolic.

By conjugating by an isometry of H2 fixing ∞, we may assume that a = 0 and
b = 1, so 1 is a parabolic point.

Let m ∈ N+, and let t > 0.
Define Pm to be the cone consisting of the points in H2 whose radial projection

from mi to ∂H2 lies in the unit interval [0, 1]. Set

Pm,t = X(0, 1, t) ∩ Pm,

Vm,t =
{
z ∈ Pm | d(z,mi) ≤ d

(
mi,

i

t

)}
,

Wm,t =
{
z ∈ Pm | d(z,mi) ≤ d(mi, zm,t)

}
,

where d denotes the hyperbolic distance, and zm,t is the point of the geodesic joining
mi to 1 whose imaginary part is 1

t ; see Figure 3.1. Notice that Vm,t ⊆ Pm,t ⊆ Wm,t.

0 1

mi

i/t

Vm,t

Wm,t
zm,t

Figure 3.1

Let pm,t (resp. vm,t, wm,t) denote the number of those elements γ of Γ such
that γw belongs to Pm,t (resp. Vm,t, Wm,t). Notice that vm,t ≤ pm,t ≤ wm,t.
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Since 1 and ∞ are parabolic points, for sufficiently large m, the set

{
γ ∈ Γ | γw ∈ X(0, 1, t) − Pm,t

}
has uniformly bounded cardinality. Hence, for sufficiently large m,

∣∣ {γ ∈ Γ | γw ∈ X(0, 1, t)}| ∼ pm,t as t tends to ∞ .

We claim that the following hold:
(i) For fixed m, vm,t

t (resp. wm,t

t ) tends to a limit v̄m (resp. w̄m) as t tends to ∞.
(ii) Both v̄m and w̄m tend to 1/vol(Γ\H2) as m tends to infinity.

Since vol(X(0, 1, t)) = t, these two claims imply the result.
Since d(mi, it ) = log(mt), and the volume of the ball of radius log(mt) is

π(mt + 1
mt −2), it follows from Nicholl’s Theorem that, for fixed m, vm,t

t converges
to

v̄m =
αmm

2vol(Γ\H2)
,

where αm is the angle of the cone Pm at mi. Similarly, since

d(mi, zm,t) = log

((
m+

1
m

)
t+

1
2

√(
m+

1
m

)2

t2 − 4

)
,

for fixed m, wm,t

t converges to

w̄m =
αm(m+ 1

m )
2vol(Γ\H2)

.

This proves Claim (i).
Finally, it follows from the equality

sin(αm) =
2

m+ 1
m

that v̄m and w̄m both converge to 1/vol(Γ\H2), which proves Claim (ii). �

Proof of Theorem 1.1. Let m ∈ N+. The congruence group of level m is defined as

Γ0(m) =
{(

a b
c d

)
∈ SL2(Z) | c ∈ mZ

}
.
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Let PΓ0(m) denote its projectivization, Γ0(m)/{±1}. Consider the oriented edge
e0 of the Farey tessellation joining ∞ to 0. Let F(m) denote the restriction of the
Farey tessellation whose set of oriented edges is the PΓ0(m)-orbit of e0, so

E
(
F(m)

)
= PΓ0(m)e0 .

Let

fm:E
(
F(m)|R

)
→

{
(c, d) ∈ N2 | c, d coprime, c ∈ mN

}
be the map obtained by restricting the two-to-one map

f :E(F|R) →
{
(c, d) ∈ N2 | c, d coprime

}
of Lemma 2.1. It follows that fm is also two-to-one. The same proof as for Corol-
lary 2.2 shows that

cm,n =
∣∣ {(c, d) ∈ N2 | c, d coprime, c2 + d2 ≤ n, c ∈ mN}

∣∣
=

1
2

∣∣∣{γ ∈ PΓ0(m) | γi ∈ R and Im(γi) ≥ 1
n

}∣∣∣
=

1
2

∣∣ {γ ∈ PΓ0(m) | γi ∈ X(0, 1, n)
∣∣ .

It now follows from Proposition 3.1 that

cm,n ∼ vol(X(0, 1, n))
2vol(PΓ0(m)\H2)

as n tends to ∞ .

It remains to calculate these volumes. It is well-known and easy to prove that

vol(X(0, 1, n)) = n ,

and that vol(PSL2(Z)\H2) = π
3 . The index of PΓ0(m) in PSL2(Z) is the value

ψ(m) described in Section 1; see, for example, [3, Proposition 9.3]. Hence

vol(PΓ0(m)\H2) =
πψ(m)

3
.

This proves cm,n ∼ 3n
2πψ(m) as n tends to ∞. �
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4. The referee’s proof using analytic number theory

Let m ∈ N+, let z ∈ H2, and let Γ denote Γ0(m), the congruence group of level m.
The Eisenstein series of weight 0, and level m, for the cusp ∞, evaluated at z,

is defined as

Em(z, s) =
∑

γ∈Γ∞\Γ
Im(γz)s, for Re(s) > 1 ,

where Γ∞ denotes the Γ-stabilizer of ∞.
This series has an analytic continuation to the whole complex s-plane, with no

singularities on Re(s) = 1 except for a simple pole at s = 1 with constant residue
equal to 3

πψ(m) ; see, for example, [1, p. 31] and [2, p. 239].
We now take z = i. A straightforward calculation shows that

Em(i, s) = 2
∑
n≥1

bm,n
ns

, for Re(s) > 1 ,

where, for all n in N+,

bm,n =
∣∣ {(c, d) ∈ N2 | c, d coprime, c2 + d2 = n, c ∈ mN}

∣∣ ,
so cm,n =

n∑
k=1

bm,k.

Since the bm,n are non-negative, we can apply the step-function version of Ike-
hara’s Theorem [5, Theorem 17, p. 130], and deduce that lim

n→∞
cm,n

n = 3
2πψ(m) , as

desired.
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