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Abstract

We describe how the graded minimal resolution of certain semigroup algebras
is related to the combinatorics of some simplicial complexes. We obtain charac-
terizations of the Cohen-Macaulay and Gorenstein conditions. The Cohen-
Macaulay type is computed from combinatorics. As an application, we compute
explicitly the graded minimal resolution of monomial both affine and simplicial
projective surfaces.

Introduction

The motivation for this paper is to study the relationships between the generators of
the ideals defining monomial varieties, i.e., affine varieties parameterized by mono-
mial equations. More precisely, one wants to study the minimal resolution of the
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algebra of a finitely generated semigroup viewed as a module over a polynomial
ring. The module structure corresponds to the choice of a generator system for the
semigroup.

It is well known that such defining ideals (also called toric ideals, see for in-
stance [16]) are generated by binomials and that one can derive some combinatorial
methods to construct minimal systems of binomial generators ([10], [9], [2], [13], [11],
[6], [7], [3], [14], [16]). One can see (see [5] and 2.1 below), how the graded minimal
resolution of the semigroup algebra is related to the combinatorics of some simplicial
complexes associated to the semigroup elements for commutative cancellative finitely
generated semigroups S with S ∩ (−S) = {0}. In particular, when the algebra is
Cohen-Macaulay (see [15], [17] and 2.2 below for characterization of that condition)
the Cohen-Macaulay type can be computed from combinatorics (2.2) and the Goren-
stein case can be characterized by a symmetry property on S (2.3) similar to the
well known case for numerical semigroups due to Kunz ([12]). Methods to compute
the homology of these complexes are developed in [4] using further combinatorics.

In section 3, we give, in terms of the homology of above simplicial complexes,
an explicit construction of the minimal graded resolution of the algebra of such a
semigroup. Thus, one concludes that, in practice, combinatorics can be applied to
construct minimal systems of generators not only for the ideal but also for modules
of higher order syzygies. Such a construction was first considered and applied in [1].

In section 4, we apply the above construction to compute explicitly the graded
minimal resolution of monomial both affine and simplicial projective surfaces.

1. The minimal resolution

Let S denote a commutative semigroup with a zero element 0 ∈ S. The associated
abelian group is a pair (G(S), i) where G(S) is an abelian group and i : S → G(S)
a semigroup homomorphism such that, for any other such pair (H, j) one has a
unique group homomorphism ϕ : G(S) → H such that ϕ ◦ i = j. The associated
abelian group G(S) exists and it is unique disregarding isomorphism, and is a finitely
generated group if S is a finitely generated semigroup. The map i is injective if
and only if S is cancellative, i.e., if m + n = m + n′, m,n, n′ ∈ S, implies n =
n′. Equivalently, S is cancellative if and only if it is isomorphic to an additive
subsemigroup of some abelian group.

For the purpose of this paper, we will say that a semigroup S is combinatorially
finite (c.f.) if for any m ∈ S there are only a finite number of expressions of type
m = m1 + · · ·+mq with q ∈ N and mi ∈ S−{0}. Proposition 1.1 in [3] characterizes



Combinatorics of syzygies for semigroup algebras 241

the property c.f. for finitely generated cancellative semigroups, and provides the
Nakayama lemma for S-graded modules (Proposition 1.4 in [3]).

Assume S is cancellative and combinatorially finite, and let A = ⊕m∈SAm be
a commutative ring graded over S. Let P = ⊕m∈S−{0}Am be its irrelevant ideal.
Thus, if N = ⊕m∈SNm is a graded A-module and G is a subset of homogeneous
elements in N , then G is a system of generators of the module N if and only if the
classes module PN of the elements of G are a system of generators of the A0 = A/P -
module N/NP . In particular, when A0 is a field, the minimal sets of homogeneous
generators of N all have the same cardinality and are exactly those subsets G giving
rise to bases of the vector space N/PN .

From now on, S denote a semigroup that is: finitely generated, combinatorially
finite, cancellative, and commutative (f.g.c.f.c.c. in short). Let us fix a system of
generators n1, ..., nr for S with ni ∈ S − {0}. Let also fix a commutative field k.

Associated with this situation one has the algebra of S, i.e. the vector space

R =
⊕
m∈S

Rm, Rm := k{m} ,

endowed with a multiplication which is k-linear and such that {m} · {n} := {m +
n} for the symbols {m}, {n} of m,n ∈ S. The choice of generators provides an
S-graduation over the polynomial algebra in r indeterminates A := k[X1, ..., Xr],
assigning the weight ni to variable Xi. That is,

A =
⊕
m∈S

Am,

where Am is the vector subspace of A generated by all the monomials X l1
1 · · ·X lr

r

with
∑r

i=1 lini = m. The condition c.f. means precisely that the vector spaces Am

are finitely dimensional. One has the surjective S-graded k-algebra homomorphism

ϕ0 : A → R

which takes Xi to the symbol {ni}, giving on R an S-graded A-module.
By the S-graded Nakayama lemma and using recurrence, one constructs S-

graded k-algebra homomorphisms

ϕj+1 : Abj+1 → Abj

corresponding to a choice of a minimal set of homogeneous generators for the module
Nj := ker(ϕj) (b0 = 1, N0 is the ideal ker(ϕ0) which will be denoted by I). Here,
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if mi is the degree of the i-th generator for Nj , then, the grading on Abj+1 has as
homogeneous elements the bj+1-tuples whose entries are homogeneous elements in
A the i-th one being of degree m−mi for each i.

Thus, one gets a minimal free S-graded resolution for the A-module R of type

· · · → Abj+1
ϕj+1→ Abj → · · · → Ab2 ϕ2→ Ab1 ϕ1→ A

ϕ0→ R → 0

where bj+1 :=
∑

m∈S dimkVj(m) with Vj(m) := (Nj)m/(PNj)m.
The above summation is finite by the noetherian property on A. The dimension

of the vector space Vj(m) can be interpreted as the number of generators of degree
m in a minimal system of generators of j-th syzygy module Nj .

The Auslander-Buchbaum theorem guarantees that bj = 0 for j > p = r −
depthAR and bp �= 0. The depth of R is bounded by its dimension as k-algebra,
this dimension being nothing but the rank of the abelian group G(S). The bound
is reached exactly when R is Cohen-Macaulay. On the other hand, if S �= {0} the
condition c.f. yields a depthAR of at least 1. We will assume S �= {0} throughout
the rest of the paper.

2. Simplicial complexes and Koszul homology

Let S be a f.g.c.f.c.c. semigroup and n1, ..., nr a system of generators of S with
ni ∈ S − {0}. Set Λ := {1, ..., r} and for each subset F ⊂ Λ, nF :=

∑
i∈F ni,

(n∅ = 0). For each m ∈ S one has an abstract simplicial complex (subcomplex of
the simplex of parts of Λ) given by

∆m :=
{
F ⊂ Λ | m− nF ∈ S

}
.

We will consider the reduced homology H̃·(∆) of the complexes ∆ of P(Λ) with
values in a field k (fixed from now on for the rest of the paper). To fix notations, write
dim F =card F−1 for a face F and choose the orientation on each face F of ∆m taken
the elements of F in increasing order. Then, C̃j(∆m) is the k-vector space generated
(freely) by the j-dimensional faces of ∆m and, H̃j(∆m) ∼= (ker δj)/(Im δj+1) where

δj(F ) =
∑

F ′∈∆m

dimF ′=j−1

εF ′F · F ′

for a j-dimensional face F and εF ′F = 0, 1,−1 are the coefficients given by the above
choice of orientations. Notice that εF ′F = 0 if and only if F ′ �⊂ F .
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The choice of the generators in S gives us the sequences X1, ..., Xr of homo-
geneous elements of the S-graded algebra A, as well as the sequence of symbols
{n1}, ..., {nr} which are also homogeneous elements of R. Since X := (X1, ..., Xr)
is a regular sequence in A, then the Koszul complex for it is the exact sequence

0 →
r∧
Ar → · · · →

j+1∧
Ar λj→

j∧
Ar λj−1→ · · · → Ar λ0→ A → k → 0

which is S-graded of degree 0 if one gives to the element ei1 ∧ · · · ∧ eij ({ei} the
standard basis of Ar) the degree ni1 + · · · + nij .

Notice that, according to the choice of orientations made about the subsimplices
of parts of Λ, if for F = {i0 < · · · < ij} ⊂ Λ one writes eF := ei0 ∧ · · · ∧ eij , then λj

is given by

λj(eF ) =
∑

F ′∈∆m

dimF ′=j−1

εF ′F
XF

XF ′
eF ′

where XF stands for
∏

i∈F Xi (X∅ = 1).
The Koszul homology of symbols {n} := ({n1}, ..., {nr}) in R is related to the

homology of ∆m. Notice that, since {ni} is homogeneous, again the Koszul complex
is S-graded and therefore one has a graded decomposition for the homology

Kj

(
{n}, R

)
=

⊕
m∈S

Kj

(
{n}, R

)
m

For each degree m, the definitions of ∆m and the Koszul homology gives iso-
morphisms

Kj

(
{n}, R

)
m

∼= H̃j

(
∆m

)

Theorem 2.1

Let S be a f.g.c.f.c.c. semigroup. Fix a system of generators n1, ..., nr for S in

S − {0} and a commutative field k and consider the minimal S-graded resolution

of R and the complexes ∆m associated to the choice of generators. Then one has

k-vector space isomorphisms

H̃j(∆m) ∼= Vj(m)

for every m ∈ S and j ≥ 0.
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Proof. Both R = A/I and k = A/P are S-graded A-modules, so one has S-graded
A-module isomorphisms TorjA(R, k) ∼= TorjA(k,R) for j ≥ 0. In particular, degree by
degree one has k-vector space isomorphisms TorjA(R, k)m ∼= TorjA(k,R)m for every
m ∈ S and j ≥ 0.

Now, to compute TorjA(R, k)m, one can tensor the minimal resolution of R by
k. This yields TorjA(R, k)m ∼= Vj(m). In the same way, to compute TorjA(k,R)m,
one can tensor the Koszul complex of X by R. Since the image of Xi in R is
nothing but {ni}, one gets the Koszul complex for {n} in R and hence, one has
TorjA(k,R)m ∼= H̃j(∆m). Thus the isomorphism H̃j(∆m) ∼= Vj(m) as required. �

Corollary 2.2

Given the same assumptions as Theorem 2.1, the depth of the semigroup algebra

R is equal to r−p where p is the least integer such that H̃p(∆m) = 0 for every m ∈ S.

In particular, R is Cohen-Macaulay if and only if H̃r−s(∆m) = 0 for every m ∈ S,

where s = rank G(S). If R is Cohen-Macaulay then the Cohen-Macaulay type τR
of R is given by

τR =
∑
m∈S

dimkH̃r−s−1(∆m) .

Furthermore, R is Gorenstein if and only if R is Cohen-Macaulay and if

H̃r−s−1(∆m) �= 0 exactly for one m for which

dimkH̃r−s−1(∆m) = 1 .

Proof. The above follows from the Auslander-Buchbaum theorem. The formula for
τR follows from the fact that τR = br−s in the Cohen-Macaulay case. �

The following result reflects in terms of combinatorial symmetry the Gorenstein
condition on the ring R. This can be seen as a generalization of the well known
characterization of Gorensteiness for numerical semigroups due to Kunz [12].

To state the result, notice that ∆m makes sense for m in G(S). It is clear
that for m ∈ G(S) − S, ∆m is the empty simplicial complex and that therefore
H̃j(∆m) = 0 for such an m and j = −1, 0, 1, 2. Also, notice that ∆0 is the only
complex among the ∆m’s with the property that H̃−1(∆m) �= 0 (in fact it is a one
dimensional space). Finally, let us set Hj(∆m) = 0 for j ∈ Z, j < −1 and m ∈ G(S)

Corollary 2.3

Given the same assumptions a 2.1, assume that the semigroup algebra R is

Gorenstein and let n ∈ S be the element such that H̃r−s−1(∆n) �= 0. Then for any

pair of elements m,m′ ∈ G(S) with m+m′ = n and j ∈ Z one has

H̃j(∆m) ∼= H̃r−s−j(∆m′).
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Proof. This follows from 2.1 and the symmetry of the graded resolution in the
Gorenstein case. �

Remarks 2.4

(i) If for some n ∈ S one has the isomorphisms in Corollary 2.3, then R is Goren-
stein. In fact, by the symmetry in 2.3 one has H̃j(∆m) = 0 for m ∈ S and
j > r−s, so R is Cohen-Macaulay. Now, since H̃−1(∆0) ∼= k and H̃−1(∆m) = 0
for m �= 0, it follows from the symmetry that H̃r−s−1(∆m) = 0 for m �= n and
H̃r−s−1(∆m) ∼= k, hence R is Gorenstein.

(ii) If S is a numerical semigroup, i.e. a subsemigroup of N with N − S finite,
then the isomorphisms in 2.3 are an equivalent condition to the fact that S is
a symmetric semigroup, i.e. satisfying the property that if m,m′ ∈ Z and such
that m+m′ = c−1, where c is the conductor of S, then either m ∈ S or m′ ∈ S

(see [5] for details). Thus, Corollary 2.3 for numerical semigroups is equivalent
to the criteria by Kunz that R is Gorenstein if and only if S is symmetric.

(iii) Further characterizations of Cohen-Macaulayness in combinatorial ways can be
found in [15], [17], [4].

3. Computing syzygies from combinatorics

In this section we will put form the isomorphisms in Theorem 2.1 in an explicit way.
As a consequence, one can construct minimal systems of homogeneous generators
for the successive syzygy modules only by taking the images of the base elements
for the homology spaces H̃j(∆m). For j = 0 such isomorphisms are not difficult
to construct and they were already used in [3] for computing minimal systems of
generators for the ideal of the semigroup.

As in the above sections, let S be a f.g.c.f.c.c. semigroup. Fix a commutative
field k and a system of generators n1, ..., nr of S with ni ∈ S − {0}. Keep all the
notations in the above two sections and denote by Lj = Abj , L′

t =
∧t

Ar, Lt,j(m)
the degree m component of L′

t ⊗ Lj , ϕt,j : Lt,j(m) → Lt,j−1(m), 0 ≤ j ≤ r − 1,
−1 ≤ t ≤ r − 1 (resp. λt,j : Lt,j → Lt−1,j ,−1 ≤ j ≤ r − 1, 0 ≤ t ≤ r − 1),
the linear map induced by ϕj (resp. λt). Notice that, as above ϕt,j is nothing
but the degree m part of the map IdL′

t
⊗ ϕj (resp. λt ⊗ IdLj

). Hence, one has
λt,j−1 ◦ ϕt,j = ϕt−1,j ◦ λt,j ,for any j, t with 0 ≤ j, t ≤ r − 1. Moreover, one has the
exact sequences

0 → Lr−1,j(m)
λr−1,j→ Lr−2,j(m) → · · · → L0,j(m)

λ0,j→ L−1,j(m)
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for 0 ≤ j ≤ r − 1 and

0 → Lt,r−1(m)
ϕt,r−1→ Lt,r−2(m) → · · · → Lt,0(m)

ϕt,0→ Lt,−1(m) .

Now, consider the vector subspace Tt,j(m) of Lt,j(m) given by

Tt,j(m) = ker(λt,j) ∩ ker(ϕt,j) if j ≥ 0 and t ≥ 0 ,

Tt,−1(m) = ker(λt,−1) ∩ Im(ϕt,0) for t ≥ 0 ,

T−1,j(m) = Im(λ0,j) ∩ ker(ϕ−1,j) for j ≥ 0 .

Notice that one has ker(λt,j) = Im(λt+1,j) and ker(ϕt,j) = Im(ϕt,j+1) for j ≥ 0 and
t ≥ 0.

Lemma 3.1

(i) For t ≥ 0, Tt,−1(m) is canonically isomorphic to the zycle space Z̃t(∆m).
(ii) For j ≥ 0, one has T−1,j(m) = (Nj)m ⊂

(
Abj

)
m

= L−1,j(m).

Proof. Since ϕt,0 is surjective, one has Tt,−1(m) = ker(λt,−1). Now, Tt,−1(m) is
canonically isomorphic to the order t chain vector space and λt,−1 corresponds to
the boundary of the reduced homology for ∆m. Thus, one has Tt,−1(m) = Z̃t(∆m)
which shows (i).

Since ker(ϕ−1,j) = (Nj)m, to prove (ii) it is enough to shows that (Nj)m is
included in Im(λ0,j) = (PAbj )m. Let a = (a1, ..., abj ) ∈ (Nj)m. Then a is a
syzygy of the S-graded module Nj−1 relative to a minimal system of homogeneous
generators, so one should have al ∈ P for each l. This shows a ∈ (PAbj )m as
required. �

In the sequel we will use the following two basic correspondences

σt,j = (λt,j+1) ◦ (ϕt,j+1)−1 for j ≥ −1, t ≥ 0 ,

γt,j = (ϕt+1,j) ◦ (λt+1,j)−1 for j ≥ 0, t ≥ −1 .

Since ϕt,j+1 (resp. λt,j+1) is not necessarily an injective map, the correspondence
σt,j (resp. γt,j) is seen as a multivalued function from Im(ϕt,j+1) (resp. Im(λt+1,j))
to Lt−1,j+1(m) (resp. Lt+1,j−1(m)).

Lemma 3.2

(i) The correspondence σt,j takes Tt,j(m) to Tt−1,j+1(m).
(ii) The correspondence γt,j takes Tt,j(m) to Tt+1,j−1(m).
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Proof. If t ≥ 0, j ≥ −1 one has Tt,j(m) = ker(λt,j) ∩ Im(ϕt,j+1) and Tt−1,j+1(m) =
Im(λt,j+1) ∩ ker(ϕt−1,j+1). Thus, in particular, σt,j is defined on Tt,j(m). On the
other hand, since each element of Tt,j(m) is in ker(λt,j), the image by λt,j+1 of any
inverse image in Lt,j+1(m) of such an element belongs to Im(λt,j+1)∩ ker(ϕt−1,j+1) =
Tt−1,j+1(m). This shows (i).

In the same way, if j ≥ 0, t ≥ −1 one has Tt,j(m) = Im(λt+1,j) ∩ ker(ϕt,j)
and Tt+1,j−1(m) = ker(λt+1,j−1) ∩ Im(ϕt+1,j). Again, in particular γt,j is defined
on Tt,j(m). On the other hand, since each element in Tt,j(m) is in ker(ϕt,j), the
image by ϕt+1,j of any inverse image of such an element in Lt+1,j(m) belongs to
ker(λt+1,j−1) ∩ Im(ϕt+1,j). This shows (ii). �

We now come to the main construction of the section. If one fixes j ≥ 0 and m ∈
S, then Lemmas 3.1 and 3.2 show that one has the following two correspondences

σj := (σ0,j−1) ◦ (σ1,j−2) ◦ · · · ◦ (σj,−1) : Z̃j(∆m) → (Nj)m ,

γj := (γj−1,0) ◦ (γj−2,1) ◦ · · · ◦ (γ−1,j) : (Nj)m → Z̃j(∆m) .

By composing σj (resp. γj) with the quotient maps (Nj)m → (Nj)m/(PNj)m =
Vj(m) (resp. Z̃j(∆m) → H̃j(∆m)) one gets two new correspondences

σj : Z̃j(∆m) → Vj(m),

γj : (Nj)m → H̃j(∆m) .

A priori, the correspondences σj and γj are multivalued functions. The next theorem
shows how they are, in fact, linear univalued functions inducing the isomorphisms
in Theorem 2.1.

Theorem 3.3

Given the same assumptions and notations as above, for any m ∈ S and j ≥ 0
one has

(1) The correspondences σj and γj are well defined k-linear maps. The map σj takes

boundaries for the reduced homology to zero. The map γj takes elements in (PNj)m
to zero. σj takes boundaries for the reduced homology to 0. γj takes elements in

(PNj)m to 0.

(2) The k-linear maps H̃j(∆m) → Vj(m) and Vj(m) → H̃j(∆m) induced, respec-

tively, by σj and γj are inverse to one another.
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Proof. Assume t ≥ 1. Since λt−1,j+2 ◦ λt,j+2 = 0, it is clear that the images
of any element in Tt,j(m) by the correspondence σt−1,j+1 ◦ σt,j do not depend on
the concrete choice of the inverse image by ϕt,j+1 made for such an element. By
recurrence, for j ≥ 0 the images by σj of a cycle c ∈ Z̃j(∆m) only depend on
the choice of the inverse image by ϕ0,j of any of the elements in the set (σ1,j−2) ◦
(σ2,j−3) ◦ · · · ◦ (σj,−1)(c) ⊂ T0,j−1(m). The difference of two such choices is in
ker(ϕ0,j) = ⊕r

i=1(Nj)m−ni . Hence, the image by λ0,j of this difference belongs to
(PNj)m. This shows that the set σj(c) consists of only one element in Vj(m). The
linearity of σj follows from that of λ’s and ϕ’s taking into account that the choices
of inverse images by the ϕ’s can be done linearly.

The above argument applied to γj (changing the roles of ϕ’s and λ’s) shows that
for any class in Vj(m), its image by γj only depends on the choice of an inverse image
by λj,0 of any element in the image set by (γj−2,1) ◦ · · · ◦ (γ−1,j) of the class. Again,
the difference of two choices is in ker(λj,0) =Im(λj+1,0), and, hence, the image by
ϕ0,j of the difference is a boundary for the reduced homology. One concludes that
γj is well defined and k-linear as above.

Now, if c is a boundary (i.e., if c = λj+1,−1(c′) with c′ ∈ Tj+1,−1(m)) then,
since ϕ0,j+1 is surjective (λj,0 ◦ λj+1,0 = 0) it follows that 0 ∈ (σj,−1)(c). By the
definition of σj one has σj(c) = 0. In the same way, if an element b ∈ (Nj)m is in
(PNj)m, then it has an inverse image by λ0,j which is in ker(ϕj,0), so, as above, one
has 0 ∈ (γ−1,j)(b) and hence γj(b) = 0. This shows (1). (2) follows from (1) and the
definitions of σj and γj . �

Corollary 3.4

Given the same assumptions as 3.3, one can successively construct minimal

systems of homogeneous generators for the syzygy modules Nj (i.e., the minimal

resolution of R) in terms of the reduced homology of the simplicial complexes ∆m.

Proof. Take j ≥ 0. By recurrence, assume that one has already constructed minimal
systems of homogeneous generators for N0 = I,N1, . . . , Nj−1. It follows that, in
practice, for each homogeneous syzygy b ∈ Ni, 0 ≤ i ≤ j−1, one can find an inverse
image of b by ϕi+1. Thus, taking into account that the λ’s are explicit maps, one has
that for each m ∈ S an each c ∈ H̃j(∆m) one can find an element in σj(c) ⊂ (Nj)m.

To find a minimal system of generators for Nj , it is enough to do the following.
For any m over the set of elements in S with H̃j(∆m) �= 0:

1. Take a set Bj(m) of cycles of Z̃j(∆m) inducing a basis in the homology.
2. Construct a syzygy in σj(c) for c ranging over Bj(m). �
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Remark 3.5. The proof of 3.4 shows how, in practice, it is possible to take inverse
images by the Φ’s. If one knows how to find inverse images by the λ’s, then one
could also have images by the γj ’s.

Remark 3.6. 3.4 shows the existence of an algorithmic method, based on combina-
torics, to write down the minimal resolution of R. Let us detail the first step and
the recurrence one of such method.

1.- For each m with H̃0(∆m) �= 0, i.e., with non connected ∆m, a set B0(m) can be
constructed by picking, for each component v of ∆m, a point ( i.e. a 0-dimensional
face) Pv in it and, then, taking as B0(m) a set of differences Pv − Pv′ where the
involved pairs (v, v′) are the edges of a tree for the set of connected components.

Now, for a cycle c =
∑

P λPP in Z̃0(∆m) (i.e.
∑

P λP = 0), one has an element
F in σ0(c) ⊂ Im by setting G =

∑
P λPXPMP , where MP is any monomial of

degree m− nP . In particular, for a cycle of type P − P ′ the polynomial F ∈ Im is
a binomial and so, the minimal system of generators of I associated with the above
choice of B0(m)’s is a set of binomials.

2.- By recurrence, assume that one already has minimal systems of homogeneous
generators {G(i)

1 , . . . , G
(i)
bi+1

} for the modules Ni, 0 ≤ i ≤ j − 1. Again, to construct
such a system for Nj it is enough to compute images by σj of the cycles in Bj(m),
for those m with H̃j(∆m) �= 0. Now, for a cycle c =

∑
F λF · F ∈ Z̃j(∆m), one can

compute a syzygy in σj(c) in j steps as follows. First, for any F ′ with dimF ′ = j−1,
consider bF ′ ∈ Im−nF ′ given by

bF ′ =
∑
F

εF ′F
XF

XF ′
MF

where MF is a monomial of degree m − nF for any F ∈ ∆m. Now, take aF ′ =
(alF ′) ∈ (Ab1)m−nF ′ with bF ′ =

∑
alF ′ .G

(0)
l , and for each F ′′ with dimF ′′ = j − 2

consider bF ′′ ∈ (N1)m−nF ′′ given by

bF ′′ =
∑
F ′

εF ′′F ′
XF ′′

XF ′
aF ′

Again construct aF ′′ ∈ (Ab2)m−nF ′′ by the same method and continue in the same
way. In the j-th step, for the dimension −1 one gets an element b in (Nj)m given
by

b =
∑
P

XP aP

where aP ∈ (Abj
j )m−nP

corresponds to the face dimension 0.
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Remark 3.7. To apply the algorithm in 3.6 one needs to find finite sets Ct ⊂ S,
t ≥ 0, such that H̃t(∆m) = 0 if m �∈ Ct and, for each m ∈ Ct a basis for the vector
space H̃t(∆m). A general method to find these sets and vector bases is given in [4].
For the cases of affine and projective curves, this method is applied ([4]) to compute
the sets Ct in terms of the semigroup generators. Vector bases for H̃t(∆m) can be
also computed in terms of some finite graphs. This computation obviously depends
on the characteristic of the field.

In the next section we show how the method in [4] can be also used to compute
finite sets Ct and homology vector bases for monomial affine and simplicial projective
surfaces. Thus, the algorithm in 3.6 is able to compute the syzygies for such surfaces.

4. Syzygies of monomial surfaces

We take an affine monomial surface to be an affine surface of type k[S] where S is a
subsemigroup of N

2 containing at least two elements of type e1 = (d1, 0), e2 = (0, d2)
with d1 > 0, d2 > 0. Obviously S is a f.g.c.f.c.c. semigroup. We take a simplicial
projective monomial surface to be a projective surface of type Proj(k[S]) where
S is a subsemigroup of N

3 containing the elements e1 = (d, 0, 0), e2 = (0, d, 0),
e3 = (0, 0, d), d > 0, and generated by elements in the hyperplane of Z

3 given by
x+ y + z = d. Again S is a f.g.c.f.c.c. semigroup.

Let us consider a system of generators e1 = (d1, 0), e2 = (0, d2), a1 =
(a11, a12),. . ., as = (as1, as2) for the semigroup of an affine monomial surface,
or a system of generators e1 = (d, 0, 0), e2 = (0, d, 0), e3 = (0, 0, d), a1 =
(a11, a12, a13),. . ., as = (as1, as2, as3) with ai1 + ai2 + ai3 = d, i = 1, 2, . . . , s,
for the semigroup of a simplicial projective surface. Write A := {a1, . . . , as} and
E := {e1, e2} in the affine case and E := {e1, e2, e3} in the projective one.

For each subset I ⊂ A (resp. J ⊂ E) denote by aI (resp. eJ) the element
aI :=

∑
i∈I ai (resp. eJ :=

∑
j∈J ej). For each m ∈ S consider the simplicial

subcomplex Tm of P(E) given by

Tm := {J ⊂ E | m− eJ ∈ S} .

For j ≥ −1, let D(j) be the subset of S given by

D(j) := {m ∈ S | H̃j(Tm) �= 0} .

Notice that D(−1) = {m ∈ S | m − e �∈ S ∀e ∈ E}, and that D(j) = ∅ for j ≥ 1
in the affine case, and for j ≥ 2 in the projective case. Thus, one only has three
significative sets D(−1), D(0), D(1).
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Now, for every t ≥ −1 set

Ct := {m ∈ S | m = d+ aI with d ∈ D(j) for some j and card(I) = t− j} .
For m ∈ S also consider the simplicial subcomplexes of P(Λ) given by

Km := {F ∈ ∆m | F ∩ E �= ∅ or F ⊂ A and m− aF ∈ S −D(−1)} ,
Km := Km ∪ {I ∪ J | I ⊂ A, J ⊂ E, m− aI − eJ �∈ S, m− aI − e ∈ S ∀e ∈ J} .

Two of the main results proved in [4] are summarized in the following proposi-
tion.

Proposition 4.1

(1) The simplicial complexes Km are acyclic.
(2) The sets Ct are finite.

Using reduced relative homology for the pair (Km,Km), it follows from (1) that
one has an isomorphism H̃t(Km) ∼= H̃t+1(Km,Km). Moreover, direct and inverse
images by this isomorphism can be computed explicitly as shown in [4]. Combining
the above isomorphisms with the reduced relative homology for the pair (∆m,Km)
one gets the following long exact sequence in homology

(∗) · · ·→H̃t+1(∆m,Km)
µt+1→ H̃t+1(Km,Km)

jt→ H̃t(∆m)
ρt→ H̃t(∆m,Km) → · · ·

where the images of elements by the maps µ·, j·, ρ·, can be computed in practice.
One concludes that, for each m, a basis for the homology H̃t(∆m) can be computed
(in terms of linear algebra) from the knowledge of bases for the relative homologies
H̃j(∆m,Km) and H̃j(Km,Km) for j = t, t+ 1.

Now, take m �∈ Ct. Since m−aF �∈ D(−1) for every F ⊂ A, with card F = t+1,
it follows that H̃t(∆m,Km) = 0. Moreover, the homology H̃t+1(Km,Km) can be
described by using the filtration of Km = M

(−1)
m ⊂ M

(0)
m ⊂ · · · ⊂ M

(s)
m = Km, where

M (i)
m = Km ∪

{
I ∪ J ∈ Km | I ⊂ A, J ⊂ E and card I ≤ i

}
.

Since, from definitions, one has (see again [4]),

H̃t+1

(
M (i)

m ,M (i−1)
m

) ∼=
⊕
I⊂A

card I=i

H̃t−i(Tm−aI
) ,

if follows that m �∈ Ct, also implies H̃t+1(Km,Km) = 0.
Thus, one leads to the following two results.

Proposition 4.2 ([4])
With above assumptions one has

(3) H̃t(∆m) = 0, if m �∈ Ct.
(4) For m ∈ Ct a basis for the homology H̃t(∆m) can be obtained from the exact
sequence (∗), if one knows bases for H̃j(∆m,Km), H̃j(Km,Km) for j = t, t+ 1.
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The chain complex for both pairs (∆m,Km) and (Km,Km) has, in practice,
much less faces than that of ∆m. In [4] is shown how the homologies H̃j(∆m,Km),
H̃j(Km,Km) can be computed from the data in certain graphs.

Remark 4.3. From results (1)-(4) in the propositions, it follows that to describe
the syzygies of monomial surfaces that what one needs is to compute the sets D(j),
j = −1, 0, 1, and, from them, the sets Ct. Then, for any m ∈ Ct, one calculates bases
for the relative homologies for the pairs (∆m,Km), (Km,Km) and hence, by using
(∗), the homology H̃t(∆m). Notice that the computation of bases for those vector
spaces depends on the characteristic of the field k, as the involved linear system of
equations to derive the homologies has integer coefficients. Finally, by Remark 3.6
one can obtain the syzygies.

Next, we will give the explicit description of the sets Ct for monomial surfaces.
First, consider the case of affine monomial surface. Set Q := D(−1) and D :=

D(0). Fix a class c in the group G := G(S)/(d1Z ⊕ d2Z) given by a representative
(α, β) with 0 ≤ α < d1, 0 ≤ β < d2. Denote by Qc (resp. Dc) the set of elements of
Q (resp. D) which are in the class c. Notice that one has Q = ∪c∈GQc, D = ∪c∈GDc.

Lemma 4.4

Qc �= ∅ and card Qc = card Dc + 1, for every c ∈ G.

Proof. Let Sc be the set of elements of S in the class c. Then, Sc + Ne1 + Ne2 = Sc

where N is the set of non negative integers. It follows that Sc is a ladder whose
vertices (i.e. the elements in the minimal set Vc such that Vc + Ne1 + Ne2 = Sc)
are the elements of Qc. Between two vertices with consecutive abscise there is only
one element of Dc (the point for which each coordinate is the maximum of the
corresponding coordinates of both vertices). This proves that card Qc =card Dc+1.
To see that Qc �= ∅, notice that for every i, 1 ≤ i ≤ s, there exists an integer
Ni such that Niai ∈ Nd1 ⊕ Nd2. Thus if the class c is represented by the element
m =

∑s
i=1 liai + t1e1 + t2e2 ∈ G(S) where li, t1, t2 ∈ Z, then c is also represented

by m′ = m+Me1 +Me2 where M ∈ N is chosen to be sufficiently large in order to
have m′ =

∑s
i=1 l

′
iai + t′1e1 + t′2e2 with l′i ≥ 0, t′1 ≥ 0, t′2 ≥ 0. Thus, m′ ∈ S and it

is in the class c, so Qc �= ∅. �

Now, let S1 be the semigroup generated by the integers a11, . . ., as1, d1. Notice
that above generators need not be different and that some of the ai1 can be equal
to 0.

Fix n ∈ S1 with n ≡ α(mod d1). Consider the integer Lc(n) given by the least
integer l ∈ N with l ≡ β(mod d2) and such that there exist i1, . . . , ip with 1 ≤ it ≤ s
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for t = 1, . . . , p and k ≥ 0 such that l = ai12+· · ·+aip2 and n = ai11+· · ·+aip1+kd1.
If such l does not exist, set Lc(n) = ∞. Also, set Lc(n) = ∞, if n �∈ S1, or if n ∈ S1

and n �≡ α(mod d1).

Lemma 4.5

With assumptions and notations as above, take n ∈ S1, n ≡ α(mod d1). Then

one has (n, l) ∈ Qc for some integer l if and only if one has Lc(n − d1) > Lc(n)
and, in that case, one has l = Lc(n). The elements of Dc are exactly those of type

(n,Lc(n− d1)) where (n,Lc(n)) ∈ Qc and Lc(n− d1) < ∞.

Proof. If (n, l) ∈ Qc then one has (n, l)− e1 �∈ S, (n, l)− e2 �∈ S, so, by definitions of
Lc(n) and Lc(n−d1), one should have l = Lc(n) and Lc(n−d1) > Lc(n). Conversely,
if Lc(n − d1) > Lc(n) and n ∈ S1, then (n,Lc(n)) ∈ Qc, again by the definition of
Lc(n) and Lc(n− d1).

On the other hand, it is clear that elements of Dc should be those of type
(n,Lc(n− d1)) where (n,Lc(n)) ∈ Qc and Lc(n− d1) < ∞. �

Lemma 4.5 shows how the sets Q and D can be computed in arithmetical terms
from the semigroup generator system. Thus, by using the exact sequences (∗) and
Remark 4.3 one gets the following result.

Theorem 4.6

The syzygies of an affine monomial surface can be determined from the the

knowledge of the semigroup generators and the characteristic of the field.

Now, let us consider the projective case. As above set Q := D(−1). Consider
the subsemigroup S12 of N

2 generated by the elements

Λ12 :=
{
(a11, a12), . . . , (as1, as2), (d, 0), (0, d)

}
.

Notice that S12 is nothing but the projection of S on the plane corresponding to
the two first coordinates. The semigroup S12 defines an affine monomial surface,
so by the computation of the set Q = Q12 for S12 in Lemma 4.5, and taking into
account the proof of Lemma 4.4, the elements of S12 in a class modulo dZ⊕ dZ can
be determined.

For each (a, b) ∈ S12 denote by l(a, b) the minimum integer l such that (a, b) =
n1+· · ·+nl with ni ∈ Λ12 for i = 1, . . . , l. Set l(a, b) = ∞ if (a, b) �∈ S12. Next,we will
characterize those (a, b) for which there exists some integer t such that (a, b, t) ∈ Q

(resp. (a, b, t) ∈ D(0)) (resp. (a, b, t) ∈ D(1)).
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For this, notice that one has m ∈ Q if and only if Tm = {∅}, and m ∈ D(1) if
and only if Tm = T where

T =
{
∅, {e1}, {e2}, {e3}, {e1, e2}, {e1, e3}, {e2, e3}

}
.

If m ∈ D(0), then Tm should be one of the following seven complexes (the only
possible non connected complexes with three vertices).

U1 = {∅, {e1}, {e2}, {e3}}
U2 = {∅, {e1}, {e2}}
U3 = {∅, {e1}, {e3}}
U4 = {∅, {e2}, {e3}}
U5 = {∅, {e1}, {e2}, {e3}, {e1, e2}}
U6 = {∅, {e1}, {e2}, {e3}, {e1, e3}
U7 = {∅, {e1}, {e2}, {e3}, {e2, e3}} .

Let us denote by D(0)j the subset of D(0) consisting of those m ∈ S such that
Tm = Uj . Let Q, D(1), D(0)j be the respective projections of Q, D(1), D(0)j on
the (1,2)-plane.

Lemma 4.7

The projections Q → Q, D(1) → D(1), D(0)j → D(0)j for j = 1, . . . , 7 are

bijective maps.

Proof. The maps are obviously surjective. To prove that they are injective we will
use the following fact: each one of the simplicial complexes ∆ = {∅}, T, U1, . . . , U7

has associated a face J ∈ P(E) such that e3 ∈ J , J �∈ ∆ and J −{e3} ∈ ∆. Now, let
∆ be any one of the above nine simplicial complexes and let H be the set Q, D(1)
or D(0)j which correspond to the complex ∆. Take (a, b) ∈ H. Denote by t the
least integer such that, if m = (a, b, t), then Tm = ∆ (i.e. m ∈ H). Elements of S in
the fiber of (a, b) by the projection on the (1,2)-plane are of type m′ = (a, b, t+ λd)
with λ ∈ Z. If λ < 0, then Tm′ �= ∆ by the minimality of t. If λ > 0 then Tm′ �= ∆
as one has J �∈ Tm and J ∈ Tm′ , J being a face associated to ∆ with the property
indicated in the fact at the beginning of the proof. This shows that the projection
H → H is injective as required. �

Lemma 4.7 shows that in order to compute the sets Q, D(1), D(0)j , it is
sufficient to compute the finite sets Q, D(1), D(0)j and, for each element (a, b) on
each one of those sets, the value of t such that the semigroup element (a, b, t) realizes
the corresponding simplicial complex {∅}, T , Uj .
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Lemma 4.8

With assumptions and notations as above, for (a, b) ∈ S12 one has:

(i) (a, b) ∈ Q if and only if l(a, b) ≤ l(a− d, b) and l(a, b) ≤ l(a, b− d).
(ii) (a, b) ∈ D(1) if and only if l(a−d, b−d) ≥ l(a−d, b), l(a−d, b−d) ≥ l(a, b−d),

and l(a− d, b− d) < ∞.

(iii) (a, b) ∈ D(0)1 if and only if l(a, b) ≤ l(a − d, b) = l(a, b − d) ≤ l(a − d, b − d)
and l(a− d, b) < ∞.

(iv) (a, b) ∈ D(0)2 if and only if l(a, b) > l(a, b− d) = l(a− d, b) ≤ l(a− d, b− d).
(v) (a, b) ∈ D(0)3 if and only if l(a, b) ≤ l(a− d, b) < l(a, b− d).
(vi) (a, b) ∈ D(0)4 if and only if l(a, b) ≤ l(a, b− d) < l(a− d, b).
(vii) (a, b) ∈ D(0)5 if and only if l(a, b) ≤ l(a−d, b) = l(a, b−d) and l(a−d, b−d) <

l(a− d, b).
(viii) (a, b) ∈ D(0)6 if and only if l(a, b) ≤ l(a, b−d) ≤ l(a−d, b−d) and l(a−d, b) <

l(a, b− d).
(ix) (a, b) ∈ D(0)7 if and only if l(a, b) ≤ l(a−d, b) ≤ l(a−d, b−d) and l(a, b−d) <

l(a− d, b).

The value of t such that (a, b, t) ∈ Q,D(1), D(0)j respectively in (i)-(ix) is given

by ld−a−b where l is given by (i) l(a, b), (ii) l(a−d, b−d)+2, (iii) l(a−d, b)+1, (iv)

l(a, b), (v) l(a− d, b) + 1, (vi) l(a, b− d) + 1, (vii) l(a− d, b) + 1, (viii) l(a, b− d) + 1,

(ix) l(a− d, b) + 1.

Proof. Let (a, b, t) satisfy a + b + t = ld, then (a, b, t) ∈ S if and only if l ≥ l(a, b).
Using the above fact, (i)-(ix) follow by inspection case by case using the definition
of l(a, b) and the same kind of arguments than in the proof of Lemma 4.5. �

Lemma 4.8 allows to compute the sets Q, D(1), D(0) in arithmetic terms from
the generator system of the semigroup. Again, by using (∗) and Remark 4.3, one
gets the following result.

Theorem 4.9

The syzygies of a simplicial projective monomial surface can be determined

from the knowledge of the semigroup generators and the characteristic of the field.
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