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Abstract

Let S be a fibred surface. We prove that the existence of morphisms from non
countably many fibres to curves implies, up to base change, the existence of a
rational map from S to another surface fibred over the same base reflecting the
properties of the original morphisms. Under some conditions of unicity base
change is not needed and one recovers exactly the initial maps.

Introduction

Let S be a surface and let π : S −→ B be a fibration of curves of genus g ≥ 2.
Assume that for non countably many t ∈ B, the fibre Ft is endowed with a non-
constant morphism ϕt : Ft −→ Dt into a smooth curve. The goal of this note is to
show that the existence of these maps ϕt implies the existence of another fibration

1 Partially supported by CICYT PS93-0790 and HCM project n. ERBCHRXCT-940557.
2 Partially supported by HCM project n. ERBCHRXCT-940557.
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T −→ B and of a rational map over B from S to T reflecting the properties of many
ϕt. In fact we recover the original maps ϕt only for non countably many values of t
(even in the case that one applies this under the hypothesis of existence of ϕt for a
general t, one can not get better results as simple examples show).

To obtain the surface T we shall need base change in general. However under
some hypothesis of unicity this base change can be avoided.

We consider three cases: first we assume that the maps ϕt are automorphisms
(Theorem 1.2); secondly we suppose that 1 ≤ g(Dt) < g (Theorem 2.4), and finally
we study linear series (Theorem 3.1). We also obtain a similar result for abelian
schemes with abelian subvarieties in the general fibres (Theorem 2.5).

We use basically two standard techniques: relative Hilbert schemes and relative
Brill-Noether loci. We work over the field of the complex numbers, although most of
the results and constructions in sections 1 and 2 can be done for any non countable
algebraically closed field.

These kind of problems appear naturally in the study of fibrations (see e.g. [3]),
as Fernando Serrano pointed out to the first author. We consider this work as a
consequence of his encouragement.

We would like to thank G. Welters for giving us some useful suggestions.

Notation. By a fibration we mean a non constant morphism from a smooth com-
plete algebraic surface to a smooth complete algebraic curve with connected fibres.
We say that a fibration is of genus g if the smooth fibres have geometric genus g.
We say that the fibration is isotrivial if all smooth fibres are isomorphic.

If π : S −→ B is a fibration and B′ −→ B is a non constant map from another
smooth curve, we denote by SB′ the surface S ×B B′.

1. Glueing automorphisms

Let π : S −→ B be a fibration and denote by Ft the fibre of π in t ∈ B. The aim
of this section is to prove that the existence of automorphisms of many fibres of π
induces, up to base change, the existence of a birational automorphism of S. To
prove this, we shall need some standard facts on Hilbert schemes that we recall now.

We fix a relatively very ample sheaf OX(1) on X := S ×B S −→ B. Following
Grothendieck ([5]), we can consider the scheme AutS/B as an open subscheme of
HilbX/B representing the functor

Aut : B − schemes −→ Groups

T �−→ AutT (ST ).
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Then, giving a section σ of the natural map AutS/B −→ B corresponds, via the
identification

HomB(B,AutS/B) = AutB(S),

to an automorphism Φ of S over B such that for t ∈ B, Φ|Ft
= σ(t) ∈ Aut(Ft). We

recall that AutS/B is a group-scheme over B and, as in the case of Hilbert schemes,

decomposes as a disjoint union of schemes Autp(t)S/B obtained by fixing the Hilbert
polynomial p(t) ∈ Q[t].

Choosing a suitable Hilbert polynomial and considering only elements of m-
torsion one constructs a B-scheme Autm,r

S/B parametrizing the automorphisms of the
fibres of π of order m and with r fixed points.

Definition 1.1. Let F be a smooth curve of genus g ≥ 2 and let ϕ be an auto-
morphism of F . Assume ϕ �= Id. Consider the curve G := F/ < ϕ > and the map
f : F −→ G. If n is the order of ϕ we call the type of ϕ to the following data:

Λ = {(k, ak)}k|n, k �= 1

where ak is the number of ramification points of f of index k. Equivalently one can
give Λ′ = {(k, bk)}k|n, k �= 1 where bk is the number of fixed points of ϕn/k (notice
that

bk =
∑
k|k′|n

ak′).

Observe that one can consider the B-scheme of automorphisms of type Λ defin-
ing:

AutΛS/B :=
⋂

k|n,k �=1

H−1
k (Autn/k,bkS/B ),

where Hk : AutS/B −→ AutS/B sends x to xk.
The main result of this section is the following:

Theorem 1.2

Let π : S −→ B be a fibration of genus g ≥ 2. Assume that for non countably

many t ∈ B, Aut(Ft) �=Id. Then:

a) There exist a type Λ, a base change B′ −→ B and a birational automorphism Φ′

of the non singular model S̃ of SB′ such that the restriction of Φ′ to a general fibre

of S̃ −→ B′ is an automorphism of type Λ.

b) The type Λ of a) can be chosen previously, provided that for a non countably

many t ∈ B the fibre Ft has an automorphism of type Λ.

c) If, furthermore, for a non countably many t ∈ B, the automorphism of type Λ is

unique, then base change is not needed.
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Proof. As g ≥ 2, the fibres of AutS/B −→ B are finite. Since B is a curve, there
exists an irreducible component B′ of AutS/B , dominating B. We can assume B′

to be complete; otherwise the construction that follows will extend in a natural way
to a compactification of B′. Since AutS/B is a finite union of subschemes AutΛS/B ,
an infinite number of points (and hence a Zariski open set) of B′ correspond to
automorphisms of the same type Λ. Then

AutSB′/B′ = AutS/B ×B B′ −→ B′,

has an obvious section which produces a relative automorphism Φ′ of SB′ . Then Φ′

determines a birational automorphism of S̃. This proves a).
Observe that the same argument works for b) just fixing Λ and AutΛS/B from

the beginning. Finally, under the hypothesis of c), AutΛS/B −→ B is generically
one-to-one and has a section. �
Remark 1.3. In [3], the first author gives an example of a bielliptic fibration of genus
5 for which the general fibre has two different bielliptic involutions and such that
a non-trivial base change is needed in order to glue them into a global birational
involution. So, in general, c) does not hold without the hypothesis of unicity.

2. Glueing morphisms of curves

In this section we consider a fibration π : S −→ B such that for non countably
many t ∈ B, the fibres Ft have a map onto a non-rational smooth curve. The aim
is to produce, perhaps after base change, a rational map over B, S − − → T , such
that for non countably many fibres we recover the original morphisms, perhaps (if
T −→ B is an elliptic fibration) up to automorphisms on the image curve. The main
point of the construction is to observe that a morphism from Ft onto a curve of genus
≥ 1 induces an endomorphism of J(Ft), the Jacobian variety of F . Then we prove
that endomorphisms on many fibres of an abelian scheme produce an endomorphism
of the abelian scheme and from this the result follows quickly. As a by-product we
find that the existence of non-trivial abelian subvarieties on the fibres of an abelian
scheme implies the existence of a non-trivial abelian subscheme.

2.1. Let π : A −→ U be an abelian scheme and let σ be the zero section. The theory
of Hilbert schemes ensure the existence of a U-scheme EndU (A) parametrizing the
endomorphisms of the fibres of π. By taking the kernel of the following map of group
schemes over U ,

EndU (A) −→ EndU (A) × U Id×σ−−−−→ EndU (A) ×A evaluation−−−−−−→ A
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one obtains the existence of a U-scheme EndU (A) parametrizing the endomorphisms
of the fibres of π as abelian varieties. By construction one identifies the global
sections of this scheme with the group of endomorphisms of A over U as abelian
scheme.

To stay the main theorem we shall need the following definition:

Definition 2.2. Let f : C −→ D be a non-constant map of complete smooth
curves. We say that f is indecomposable if it does not exist a factorization of f
through a cyclic étale covering of D of degree n ≥ 2.

Now the Proposition 4.3 in [4], p. 337 reads:

2.3. Let f : C −→ D as above. The map f∗ : JD −→ JC is injective if and only if
f is indecomposable.

The main result of this section is the following theorem:

Theorem 2.4

Let π : S −→ B be a fibration of curves of genus g and fibres Ft, t ∈ B. Assume

that for non countably many t ∈ B there exist a non-constant map ϕt : Ft −→ Dt

on a curve of positive genus q < g. Then the following statements hold:

a) There exist a base change B′ −→ B, an integer q, 0 < q < g, a fibration T ′ −→ B′

of curves of genus q, and a rational map Ψ : SB′ − −− → T ′ over B′.

b) For non countably many t ∈ B one has Ψt = ϕt (up to automorphisms of Dt if

q0 = 1).

c) If the map ϕt is unique for non countably many t ∈ B, then base change is not

needed.

Proof. After base change and taking a suitable open subset U of B we can assume
the existence of a diagram

S|U
ε−−−→ J

π0
�

�
U ==== U ,

where J −→ U is the Jacobian fibration. The map ε is defined with the aid of a
section of π0 and fibre to fibre gives an inclusion of each Ft in its Jacobian variety.

Let us denote by EJ the U-scheme EndUJ introduced in (2.1). It is well-
known that an abelian variety has countably many endomorphisms, hence fibres of
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EJ −→ U are countable. Define ρt : JFt −→ JFt the endomorphism ϕ∗
t ◦ Nmϕt ,

where Nmϕt
is the norm map

Nmϕt : JFt −→ JDt[∑
niPi

]
�−→

[∑
niϕt(Pi)

]
.

By hypothesis one has an irreducible component W ⊂ EJ dominating U . By using
again base change and the functoriality of EJ , we can assume the existence of a
section of EJ −→ U , providing an endomorphism λ of the U-scheme J .

Define T ′ to be a desingularization of the closure of the image of

S|U
ε−→ J λ−→ J

in some compactification of J . By construction, one has the rational map we were
looking for and part a) is proved.

Observe that for non countably many t ∈ B, we recover the map Ft −→ ϕ∗
t (Dt).

If ϕt is an indecomposable map for non countably many t, then b) is clear from the
fact (2.3). Otherwise, we can write for a non countably many t ∈ B′ ϕt = αt ◦ βt,
where βt is indecomposable and αt : D′

t −→ Dt is an étale cyclic covering of degree
nt ≥ 2. For non countably many t the degree nt is constant and hence we can assume
constant the genus of the curves D′

t. Notice that the morphisms αt are determined
by automorphisms on the curves D′

t. Therefore we can apply the indecomposable
case proved above to glue the maps βt and then the part b) of the Theorem 1.2
finishes de proof of b) (perhaps after a new base change).

Assume now that ϕt is unique for non countably many t ∈ B. In particular the
curves Dt have not automorphisms (this forces q ≥ 2) and the automorphism of Ft
permute the fibres of ϕt.

As in b) we suppose first that the ϕt is indecomposable. The results of a) and
b) give a base change B′ −→ B, a fibration T ′ of curves of genus q over B′ and a
rational map from SB′ to T ′. The first step is to observe that there exists a fibration
T −→ B such that T ′ is obtained from T by base change (at least on an open set
of B′). Indeed, we consider the image B0 of B′ in the moduli space of curves of
genus q. If dimB0 = 0, then the fibration T ′ −→ B′ is isotrivial and (doing again
base change) we can assume that T ′ is the product B′ ×D. In this case one simply
defines T to be B ×D.

If dimB0 = 1, then one can construct a universal family of curves over an open
set of B0 (recall that Dt has not automorphisms). Fix a point t ∈ B such that
ϕt is unique and denote by t1, . . . , tr the preimages in B′. Since the curves Fti are
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isomorphic and by the unicity, one obtains that the fibres of T ′ −→ B′ at t1, . . . , tr
are isomorphic. From this one easily proves that the modular morphism from B′

to B0 factorizes through the morphism B′ −→ B. The pull-back of the universal
family over B0 to B allows to construct a surface T with a fibration over an open
set of B. One can assume as usual that T is fibred over B.

Now, by the existence of such a fibration T −→ B and the hypothesis of unicity,
one checks that the graph of the rational map from S′ to T ′ descents to a graph of
a rational map from S to T .

As in part b) we divide the proof of the general case into two parts. One
glue first the indecomposable maps and after one uses the part c) of Theorem 1.2.
Observe that the curves D′

t (with the notations of b)) have a unique automorphism
of this type due to the unicity of ϕt. �

Consider now a polarized abelian variety (A,L) of dimension a and let B be an
abelian subvariety of dimension b. Let Â be the dual abelian variety of A (i.e. the
Picard variety of A) and call λ : A −→ Â to the isogeny induced by the polarization.
Consider the map

α : A λ−→ Â
j−→ B̂

where j is the dual of the inclusion B ⊂ A. It is easy to see that the variety
P := Ker (α)0 ⊂ A is an abelian subvariety of dimension a − b and such that
I := B∩P is finite. In other words, the addition map s : B×P −→ A is an isogeny.
Let r ∈ N such that rI = 0. Then for any pair of integers (m,n) such that r|(m−n)
the endomorphism

B × P −→ B × P

(x, y) �−→ (mx, ny)

produces an endomorphism ψm,n of A. Observe that ψr,0(A) = B and ψ0,r(A) = P.

The same arguments used above allow to prove the following theorem:

Theorem 2.5

Let A −→ U an abelian scheme such that dimU=1. Assume that for non

countably many t ∈ U the abelian variety At has a non-trivial abelian subvariety

Bt of dimension bt. Then there exist a base change U ′ −→ U and a constant b such

that AU ′ has an abelian subscheme B −→ U ′ of relative dimension a and (B)t = Bt

for non countably many t ∈ U ′.
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Proof. We fix a relative polarization on A. As above, the existence of an abelian
subvariety in At induces the existence of an endomorphism ψrt,0 of At. Arguing
as in Theorem 2.4 we glue, up to base change, these endomorphisms to obtain an
endomorphism of A over U . The image of this endomorphism gives the abelian
subscheme. �

Remark 2.6. One easily checks that base change is not needed if for non countably
many t ∈ U there is a unique abelian subvariety of a given dimension b. If there is
more than one subvariety this is not true: consider the fibration of bielliptic curves
with two bielliptic maps constructed in [3]. The corresponding Jacobian fibration
(on an open set of the base) gives a counterexample.

3. Glueing linear series

Let π : S −→ B be a fibration such that for non countably many t, the fibre Ft is
d-gonal (i.e. Ft possesses a base point free g1

d). As in previous sections we want to
extend, after base change, the corresponding morphisms Ft −→ P1. More precisely,
we want to prove:

Theorem 3.1

Let π : S −→ B be a fibration such that for non countably many t ∈ B, Ft is

d-gonal; then

a) there exist a base change B′ −→ B, a ruled surface R′ over B′ and a rational

map Φ : S′ − −− → R′ over B′ such that degΦ = d.

b) If for non countably many t ∈ B, Ft has a unique g1
d (hence complete), then base

change is not needed.

Remark 3.2. This theorem is classical when d = 2 (cf., e.g., [10]). Recall that, for
hyperelliptic curves, all base point free g1

d are obtained by composing the hyperel-
liptic map with a Segre embedding of degree d/2 and then projecting. From this
one obtains immediately the theorem for hyperelliptic curves.

Proof. We consider the cases d ≥ g + 1, d = g and d ≤ g separately.

Assume d ≥ g + 1. After a base change we obtain a d-section D of π. By
Riemann-Roch h0(Ft, Dt) ≥ 2 for all smooth Ft. We can choose a rank 2 vector
bundle E ⊂ π∗OS(D) ⊗ A generically generated by two global sections, where A ∈
Pic(B) is of degree big enough. The natural map π∗(E) −→ OS(D)⊗π∗(A) induces
a rational map Φ : S − −− → R = P(E) over B such that Φ∗OP(1) is the image
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of π∗E −→ OS(D) ⊗ π∗(A). Fixing previously that Dt0 is base point free for some
t0 ∈ B (it is possible by hypothesis) and that the two sections generating E have no
base point at t0, we can conclude that such image has no horizontal base component.
Hence Φ has degree d and we are done (see, for example, [7] for details on these kind
of constructions).

Assume d = g. Note that the same proof of the case above works if we have
a d-section D such that for t ∈ B general h0(Ft, Dt) ≥ 2 and for some t0 ∈ B,
Dt0 is a base point free g1

d. Take D′ a (g − 2)-section of π (after base change if
necessary) such that KFt0

− D′
t0 is base point free. Then, if A ∈ PicB is ample

enough, take a global section D ∈ |KS − D′ + π∗(A)|. For t ∈ B general we have
h0(Ft, Dt) = h0(Ft, D′

t) + 1 ≥ 2 by Riemann-Roch.
Assume now that d ≤ g − 1. By Remark 3.2 we can assume that the generic

fibre is not hyperelliptic.
We consider the Brill-Noether loci W r

d (F ) of a fixed smooth d-gonal fibre F .
Since W 1

d (F ) is not contained in W 2
d (F ) (cf. [1], p. 182) we can assume that the

linear series g1
d is complete. Given a complete L ∈ W 1

d (F ), the projectivized tangent
cone WF,L of W 0

d (F ) at L is a minimal degree variety in Pg−1 = P(H0(F,KF )∗)
of dimension d − 1 ruled by (d − 2)-planes generated by the images of the divisors
of |L| by the canonical embedding (cf. [1], p. 241). The singular locus of WF,L is
the linear variety HF,L = P(TLW 1

d (F )) intersection of such (d − 2)-planes. Let us
denote by e(L) − 1 the dimension of HF,L and call W̃F,L = BlHF,L

WF,L. Observe
that W̃F,L is a smooth rational scroll ruled by (d− 2)-planes and with an endowed
map βF,L : W̃F,L −→ P1. If L is base point free we have F ↪→ W̃F,L and the
composition of this inclusion with the map βF,L determines L.

Recall that, being WF,L a scroll of dimension (d− 1), WF,L has more than one
system of (d− 2)-planes if and only if WF,L is a rank 4 quadric (see [6], pp. 49, 51)
and in this case it has two systems. We have then that d = g − 1 and WF,L =
WF,KF−L, L �= KF − L. Finally we note that every (d − 2)−plane contained in
WF,L must be a fibre of one of the rullings.

In order to consider the above constructions relatively, we apply base change.
Then we obtain the existence of enough sections and this fills-up the hypothesis in [9].
Hence, there exists a variety W r

d (π) over B, such that, for smooth Ft, W r
d (Ft) ∼=

W r
d (π)t. By hypothesis, α : W 1

d (π) −→ B is dominant.
Since the construction of W 1

d (π) is functorial, base change guarantees the ex-
istence of a section η of α such that η(t) is, for t general, a complete base point
free g1

d over Ft. Let us call D to the image of η and WD to the projectivized tan-
gent cone of W 0

d (π) at D. Note that WD contains the relative canonical image of
S − −− → PB(π∗ωS/B) (see [7]).
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We can consider that, after some blow-ups, µ : S −→ WD is a morphism
(generically of degree one onto the image). Let

G = Grassd−2
B

(
P(π∗ωS/B)

)
,

B0 = {t ∈ B | π is smooth at t},
ϕ : WD −→ B

U =
{
(p, [R]) ∈ WD ×B G | p ∈ R, R ⊂ WD, ϕ(p) ∈ B0

}
,

α1 : U −→ WD, α2 : U −→ G the natural projections,

M = α2(U) and

S̃ = S ×W U .

Note that α1 is birational if d < g − 1 and generically of degree ≤ 2 if d = g − 1.
Moreover, if d < g−1 and t ∈ B0 then α−1

1 (Wt) ∼= W̃Ft,η(t). The map α2 : U −→ M

is generically a Pd−2-bundle.
Let N be an irreducible horizontal component of a relative multihyperplane

section of WD over B of dimension two. Note that N is a ruled surface, and meets
every (d − 2)-plane of a general fibre of WD exactly at one point. Then, if Ñ is
the pull-back of N in U , we have that α2|Ñ : Ñ −→ M is birational. Then M is
a (possibly singular) ruled surface over B if degα1 = 1 or is a ruled surface over a
double cover of B if degα1 = 2.

More precisely, take M a horizontal irreducible component of a desingularization
of M and let M −→ B −→ B the Stein factorization of M −→ B. If we pull-back
S̃ −→ U −→ M to S −→ U −→ M we have a rational map ψ : S − −− → M

over a ruled surface over B. If degα1 = 1 then B = B and for t ∈ B0, the map
ψFt

corresponds to η(t). If the map B −→ B has degree 2 and t1 and t2 are the
preimages of t ∈ B0, then ψF

ti

corresponds to η(t) or KFt
− η(t). Finally note that,

by construction, S is birational to S ×B B.
In order to prove b) we only have to prove that the existence of W̃B′ over a

base extension B′ of π implies the existence of W̃ over B when the base point free
linear series is unique.

Let δ be a base change

S̃
γ′

−−−→ S′ γ−−−→ S

π′
�

�π

B′ δ−−−→ B,
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and let S̃ be a minimal desingularization of S′. Denote by π̃ to π′ γ′. Then, from
ωS ↪→ ωS⊗γ∗OS′ , applying δ∗π∗, base change and ramification formula for γγ′, one
obtains

0 −→ δ∗(π∗ωS) −→ π̃∗(ωS̃).

Since both are locally free sheaves of the same rank we get a birational map given
by a sequence of elementary transformations on suitable fibres

PB′(π̃∗ωS̃) − −− → PB′(δ∗π∗ωS),

which produces

ρ : PB′(π̃∗ωS̃/B′) ∼= PB′(π̃∗ωS̃) − −− →PB′(δ∗π∗ωS)−→PB(π∗ωS) ∼= PB(π∗ωS/B).

This map ρ is linear on fibres and restricts to the natural map from the relative
canonical image of π̃ : S̃ −→ B′ onto the relative canonical image of π : S −→ B.
Fix a general t ∈ B and consider δ−1(t) = {t1, . . . , tk}. Then ρ(W̃ti) is a variety
of minimal degree containing the canonical image of Ft, ruled by (d − 2)-planes
producing the linear series on Ft. By the unicity we have that all the images ρ(W̃ti)
agree. Hence (ρ(W̃B′))t = W̃Ft

for general t ∈ B. Then ρ(W̃B′) is the variety W̃ we
were seeking. Note that, if the g1

d is unique we are not in the case where WF,L is a
rank 4 quadric and then no new base change is needed in the proof of a). �

Remark 3.3. Observe that the hypothesis of having a unique g1
d is general for small

values of d. Indeed, according to [2], Theorem 2.6 a general d-gonal curve with
2 ≤ d < g

2 + 1 has a unique g1
d.
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