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Abstract

We show that the motive of the quotient of a scheme by a finite group coincides
with the invariant submotive.

Introduction

Let k be a field and Vk the category of smooth projective varieties over k. In the
60’s Grothendieck proved there exists a categoryMk called the category of motives
and a functor h : Vk −→Mk that factorises the different Weil cohomology theories,
such as the �-adic, singular or de Rham cohomologies.

If X is a smooth projective variety over k acted on by a finite group G, the
quotient variety X/G is no longer necessarily smooth so, a priori, the Grothendieck
motive of X/G is not defined, however one can reasonably define h(X/G) to be the
G-invariant part of h(X), which is an object of Mk, this definition is consistent
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204 del Baño and Navarro

with the realisation functors and Chow groups. Recently, in the case char k = 0,
Guillén and Navarro Aznar have given in [4] an extension of the functor h to arbitrary
schemes taking values in the homotopy category of complexes of motives, HoCbMk,
in particular it provides with another possible definition of h(X/G). The main result
of this note is that these two definitions coincide. In particular if we call pure the
objects in the essential image of the functor Mk −→ HoCbMk, then h(X/G) is
pure as expected.

Contents We start in Section 1 by extending the theory of Chow motives to the
category of varieties that are quotients of a smooth projective varieties by finite
groups. In the next section we present a variant of the extension principle in [4],
and as a corollary we obtain the equality h(X/G) = h(X)G in the introduction. In
Section 3, given a finite group G, we prove there exist functors from the category
of G-schemes to a certain category of G-motives, and that a morphism of groups
defines restriction functors on both categories of schemes and motives. Given a
morphism of finite groups in Section 4 we define induction functors on both categories
of schemes and of motives. We prove that these induction functors are adjoint
of the restriction functors. Section 5 is devoted to the proof of the isomorphism
hc(X/G) � hc(X)G for an arbitrary scheme X. This equality is consequence of a
more general, functorial statement. In the last section we present some applications
of the ideas developed so far. We start considering decompositions of a G-motive
induced by an irreducible representation of G. At the level of the Grothendieck
group, K0Mk, these decompositions were considered by Denef and Loeser in [1], we
can prove an assertion conjectured in loc. cit. (Corollary 6.3). We end this section
studying the concept of a motive with coefficients in a local system of motives with
finite monodromy.

Acknowledgments. This note originated from a question of F. Loeser to the second
named author about the coincidence of the two definitions in the Introduction. We
are grateful to him for sharing this problem with us.

1. The pure motive of quotient varieties

In this section we generalise the theory of Chow motives to varieties which are
quotients of smooth projective varieties by finite groups. For this recall how the
category of motives,Mk, is constructed (see [6], [7]): one first considers the category
of correspondences, CVk, defined by

Ob(CVk) = Ob(Vk)
HomCVk(X,Y ) = CHdimX

Q (X × Y ) ,
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where CHn stands for the group of algebraic cycles of codimension nmodulo rational
equivalence and CHn

Q is CHn tensored by Q. Composition of correspondences is
given by

(1) f ◦ g = pXZ∗ (p∗XY f · p∗Y Zg)

for f ∈ HomCVk(X,Y ) and g ∈ HomCVk(Y,Z), where pXY , pY Z and pXZ are the
projections pXY : X×Y ×Z −→ X×Y, . . . . This makes CVk into an additive tensor
category. The category of effective motives,Mk, is the pseudoabelian closure of CVk.
There is a natural contravariant functor h : Vk −→Mk defined by h(X) = (X,∆X).

Formula (1) makes sense and verifies the axioms of a category thanks to the
following facts:

1. If X is a smooth projective variety CH∗(X) has a natural ring structure
given by intersection theory.

2. Given X, Y smooth projective varieties and a morphism f : X −→ Y there
is natural ring morphism

f∗ : CH∗(Y ) −→ CH∗(X)

and a natural morphism of CH∗(Y )-modules

f∗ : CH∗(X) −→ CH∗−dimX+dimY (Y )

(CH∗(X) is a CH∗(Y )-module via f∗).

This is not available in general for arbitrary varieties, but in [2], 17.4.10, it is
proved to hold for varieties of the type X/G, with X smooth and projective and G
a finite group, provided we tensor these groups by Q.

Let V ′k be the category of varieties of the type X/G, with X ∈ ObVk and G a
finite group. The previous paragraph shows that the definition of CVk still makes
sense using V ′k and one obtains the category of correspondences CV ′k. Let M′k the
pseudoabelian closure of CV ′k: its objects are of the form (X, p), with X ∈ ObV ′k
and p ∈ EndCV′

k
(X) a projector, i.e. p2 = p. Morphisms in M′k are defined, as in

Mk, by

HomM′
k

(
(X, p), (Y, q)

)
= q ◦HomCV′

k
(X,Y ) ◦ p .

Also in this case there is a natural contravariant functor h′ : V ′k −→M′k.
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As in the case of motives in Mk, by defining

CH∗Q(X, p) = Im
(
p∗ : CH∗Q(X) −→ CH∗Q(X)

)
we obtain a functor CH∗Q : M′k −→ VECQ that factorises CH∗Q : V ′k −→ VECQ,
here VECQ stands for the category of vector spaces over Q of arbitrary dimension.
The following is a version of part of Manin’s identity principle ([6]) for the category
M′k.

Lemma 1.1

A morphism f ∈ HomM′
k
(M,N), is an isomorphism if, and only if, the induced

morphisms in Chow groups

CH∗Q(f ⊗ Id) : CH∗Q
(
M ⊗ h′(S)

)
−→ CH∗Q

(
N ⊗ h′(S)

)
are isomorphisms for any S ∈ ObV ′k.

Proof. The proof is the same as in Mk:
By Yoneda’s lemma the functor

M′k −→ (M′k,Sets)

M 
−→
(
N 
→ HomM′

k
(N,M)

)
is fully faithful. This implies that M −→ N is an isomorphism if, and only if, for
any P ∈ ObM′k the induced morphism

HomM′
k
(P,M) −→ HomM′

k
(P,N)

is an isomorphism. The lemma results now from the fact that HomM′
k
(P,M) =

CH0
Q(M∨ ⊗ P ) and that any motive is a direct factor of a motive of the type h′(S)

for S ∈ ObV ′k (see [7]). �
From the definition we get a commutative diagram of functors

Vk−−−−→ CVk−−−−→Mk�
�

�Φ

V ′k−−−−→ CV ′k−−−−→M′k

Proposition 1.2

The functor Φ is an equivalence of categories.
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Proof. It is clear that Φ is fully faithful, for morphisms are defined in the same
way in Mk and in M′k, thus it remains to see that Φ is essentially surjective.
Let (X ′, p′) ∈ ObM′k, there exists a finite group G acting on a smooth projective
variety X, such that X ′ � X/G. Let π : X −→ X ′ be the quotient morphism and
p = (π × π)∗p′, we claim π∗ induces an isomorphism

(X ′, p′) π∗
−−→
�

(
X,

p

|G| ◦
1
|G|

∑
[g]

)

for this it is enough to see that the diagram

h′X ′
π∗

−−−−→
(
X, 1
|G|

∑
[g]

)
p′

�
� p
|G|

h′X ′
π∗

−−−−→
(
X, 1
|G|

∑
[g]

)
commutes and that its horizontal arrows are isomorphisms. By [7] (1.10) we have

π∗ ◦ p′ = (IdX′ × π)∗ p′

p ◦ π∗ = (π × IdX)∗ p = (π × IdX)∗ (π × π)∗ p′

= |G| · (IdX′ × π)∗ p′

this proves that the previous diagram commutes. By [2] 1.7.6 the morphism

(π × IdS)∗ : CH∗Q(X ′ × S) −→ CH∗Q(X × S)G

is an isomorphism for any S ∈ ObV ′k, so from Manin’s identity principle, extended
toM′k in Lemma 1.1, it follows that

h′X ′
π∗
−−→

(
X,

1
|G|

∑
[g]

)

is an isomorphism. �

Choose an inverse to Φ, this gives an extension of h : Vk −→Mk to a functor

h′ : V ′k −→Mk

such that h′(X/G) � h(X)G for any smooth projective variety, X, acted on by a
finite group G.
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In some of the considerations that will arise later in the note it is convenient
to use motives with coefficients in fields larger than Q. This is the content of the
following definition.

Definition. The category of Chow motives over k with coefficients in an extension
field E of Q, Mk,E , is defined to be the pseudoabelian closure of the category of
E-correspondences, CVk,E , defined by

Ob CVk,E = Ob CVk
HomCVk,E (X,Y ) = HomCVk(X,Y )⊗Q E .

Note that there is a faithful functorMk −→Mk,E that may not be essentially
surjective.

The results in this note extend immediately to this new category of motives.

2. The extension principle

In [4] an extension criterion has been devised that allows to extend a functor defined
on a category of schemes M with values in a descent category (D, E, s) to a larger
category of schemes W that contains M as a full subcategory. We shall briefly recall
the set up in which this criterion applies, and refer to [4] for further details.

First recall that a category of descent is a triple (D, E, s) where D is a category,
E is a class of morphisms of D and s is a functor that associates to any cubical
diagram in D, X• : � −→ D, an object in D called its simple, s�X•. This triple
is required to verify some axioms ([4] (1.5)). The descent category we consider in
this note is the following: let A be an additive category, take D = CbA to be the
category of bounded complexes in A, E the homotopy equivalences and s the functor
that takes a multiple complex to its associated simple complex. In [4] (1.10) it is
proved that this is a descent category.

Let W = Schk be the category of separated schemes of finite type over a field
k of zero characteristic and M = Regk the full subcategory of smooth schemes.
Define an acyclic diagram in W to be a cartesian diagram of the type

(2)

Ỹ c−−−−→ X̃�
�

Y c−−−−→ X
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in which the vertical arrows are proper, horizontal arrows are closed immersions
and the vertical arrow on the right induces an isomorphism X̃ − Ỹ � X − Y . An
elementary acyclic diagram will be a blow up diagram in M.

The main theorem in [4] is:

Theorem 2.1 ([4] (2.2))

Given F a functor from M to a descent category

F : M −→ (D, E, s)

such that

(F1) F (∅) = 0.

(F2) The natural morphism F (X � Y ) −→ F (X)× F (Y ) is an isomorphism.

(F3) For any elementary acyclic diagram, X•, the object sF (X•) is acyclic.

There exists an essentially unique extension of F to a functor

F : W −→ HoD

such that the following descent property holds.

(D) For any acyclic diagram X•, the object sF (X•) is defined and is acyclic.

The proof of this theorem relies, via the theory of cubical hyperresolutions of [5],
on the following two results of Hironaka:

(H) For any object X in W there is an acyclic diagram as in (2) in which X̃ ∈ ObM
and dimY,dim Ỹ ′ < dimX.

(CH) For any acyclic diagram as (2) with X, X̃ ∈ ObM there is a sequence of ele-
mentary diagrams X̃0 −→ X̃1 −→ · · · −→ X that factors via a morphism
X̃0 −→ X̃.

As well as the following obvious fact:

(0) All the objects in W of dimension zero are in M.

As remarked in [4] (2.5), these results, and hence the extension theorem, are
available for other instances of pairs (M,W).

For example, if M = Vk is the category of smooth projective varieties and
W = Schk,comp is the category of schemes proper over k then (H), (CH) and (0)
hold and Theorem 2.1 is valid for these categories. This example is of particular
relevance for the theory of motives, for the functor h : Vk −→Mk −→ CbMk clearly
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verifies (F1) and (F2) whereas (F3) is a consequence of Manin ([6], [4] (6.1)). This
yields an essentially unique extension h : Schk,comp −→ HoCbMk.

We want to present a version of Theorem 2.1 for the categories M = V ′k and
W = Schk,comp, for this we need to define acyclic diagrams and elementary acyclic
diagrams in this set up. Define an acyclic diagram in Schk,comp in the same way as
in Schk, that is, as a cartesian diagram of the type

Ỹ c−−−−→ X̃�
�

Ỹ c−−−−→ X

in which the vertical maps are proper, horizontal maps are closed immersions and the
right vertical map induces an isomorphism X̃− Ỹ � X−Y . But now an elementary
acyclic diagram in V ′k will be a diagram, X ′•, as the previous one obtained by taking
the quotient by a finite group G acting on a blow up diagram of smooth projective
varieties X•, that is X ′• = X•/G.

Our result is

Theorem 2.2

If F is a functor from V ′k to a descent category (D, E, s) such that (F1), (F2)

and (F3) hold, then there exists an essentially unique extension of F to a functor

F : Schk,comp −→ HoD satisfying (D).

Proof. The proof is along the lines of the proof of Theorem 2.1 and its variations
in [4]. We need to check properties (H), (CH) and (0) in the present context.

(0) is trivial, whereas (H) is as before a consequence of the theorem of resolution
of singularities of Hironaka.

For (CH) we need to prove that any birational proper morphism X̃ ′ −→ X ′ in
V ′k is dominated by a sequence of elementary acyclic diagrams. The variety X ′ will
be of the form X/G, let π : X −→ X ′ be the quotient map. If X̃ ′ is the blow up of
X ′ along the sheaf of ideals I then G acts on the sheaf of ideals π∗I and if X̃ is the
blow up of X along π∗I we have a cartesian diagram

X̃−−−−→ X̃ ′�
�

X
π−−−−→ X ′ .
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Now, by the G-equivariant Chow-Hironaka lemma applied to a G-equivariant
resolution of X̃, the morphism X̃ −→ X is dominated by a sequence of blow ups
with G-invariant smooth centres. Taking quotients by G yields a variety X̃ ′0 ∈ ObV ′k
which is obtained by a sequence of elementary diagrams from X ′ and that dominates
the initial birational proper morphism X̃ ′ −→ X ′,

This proves (CH). �

Corollary 2.3
The functor h′ : V ′k −→ Mk defined in Section 1, has an essentially unique

extension to a functor h′ : Schk,comp −→ HoCbMk, such that (D) holds.

Proof. This is an application of the previous theorem. The functor h trivially verifies
(F1) and (F2). To prove (F3) consider an elementary acyclic diagram X ′•,

Ỹ ′c−−−−→ X̃ ′�
�

Y ′c−−−−→ X ′,

thus there is an elementary acyclic diagram X• in Vk
Ỹ c−−−−→ X̃�

�
Y c−−−−→ X

with a G-action and X• = X ′•/G. The description of the motive of a blow up by
Manin ([6], [4] (6.1)) gives that the complex sh(X•)

0 −→ h(X) −→ h(X̃)⊕ h(Y ) −→ h(Ỹ ) −→ 0

is acyclic. This exact sequence is split and G-equivariant. As taking G-invariants is
an additive functor we see that sh′(X ′•) is acyclic. �
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As the functor h′ : V ′k −→Mk restricted to Vk coincides with h : Vk −→Mk,
we have two extensions of h : Vk −→ Mk to Schk,comp that verify (D): the one
in [4] h : Schk,comp −→ HoCbMk and the one in the previous corollary h′. By the
unicity of such extensions we have h � h′. In particular:

Corollary 2.4
If X is a smooth projective variety acted on by a finite group G then

h(X/G) � h(X)G.

3. Motives for G-schemes

Given categories G and C, (G, C) will note the category of functors G −→ C. If G
is a group, we also write G for the category with one object and G as morphisms.
Then (G, C) is the category of objects in C with a G-action.

In this section we reformulate some results of [1] so as to associate to every
G-scheme objects in Ho (G,CbMk), h(X) and hc(X).

We first make some remarks on quotients. In the following we will be dealing
with the quotient of a scheme X by a finite group G, but such a quotient need not
exist as a scheme. In fact a necessary and sufficient condition for it to exist is that
the orbit by G of any point is contained in an affine open subset of X. We shall
assume this to be the case. However, it follows from results of Artin and Knutson
that X/G always exists as an algebraic space, so by results of Gillet and Vistoli
on the intersection theory of algebraic spaces, this assumption is not essential. In
view of this we shall note the category of G-schemes with the above restriction by
(G,Schk). (G,Schck) will note the category with the same objects but restricting
the morphisms to proper morphisms.

3.1. The G-motive of a G-scheme

In this subsection we define the G-motive associated to a G-scheme, in order
to make sense of the following theorems it is important to note that the category
(G,Mk) is additive, therefore by [4] Cb(G,Mk) = (G,CbMk) is a descent category.

Theorem 3.1
There is an essentially unique extension of h : (G,Vk) −→ (G,Mk) to a functor

hc : (G,Schck) −→ Ho (G,CbMk)
such that

(D) For any G-invariant acyclic diagram X• the object shc(X•) is defined and is
acyclic.

(E) Given a closed G-subscheme Y of a G-schemeX, we have a natural isomorphism
hc(X − Y ) � s (hc(X) −→ hc(Y )).
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Proof. The proof is another application of Theorem 2.2 in [4], see the Appendix
to [1]. �

Theorem 3.2

There is an essentially unique extension of h : (G,Vk) −→ (G,Mk) to a functor

h : (G,Schk) −→ Ho (G,CbMk)

such that

(D) For any G-invariant acyclic diagram X• the object sh(X•) is defined and is

acyclic.

(E) Given a smooth projective variety X and D a divisor with normal crossings in

X that is the union of smooth divisors and such that G acts on (X,X − D),
there is a natural isomorphism h(X −D) � s (h∗(S•(D) −→ X)) (see [4]).

Proof. The proof is as in [4], see the Appendix to [1]. �

3.2. The restriction functor

Let ψ : G −→ G′ be a morphism of finite groups. We shall call restriction via
ψ and note Resψ any of the following natural functors

(G′,Schk) −−−−→ (G,Schk) (G′, CbMk) −−−−→ (G,CbSchk)

(G′,Schck) −−−−→ (G,Schck) Ho (G′, CbMk) → Ho (G,CbSchk) .

By the unicity of functors h and hc above, it is easy to check that that the
following diagrams commute

(G′,Schk)
h−−−−→ Ho (G′, CbMk) (G′,Schck)

hc−−−−→ Ho (G′, CbMk)�Resψ

�Resψ

�Resψ

�Resψ

(G,Schk)
h−−−−→ Ho (G,CbMk) (G,Schck)

hc−−−−→ Ho (G,CbMk) .
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4. Induction and Frobenius reciprocity

In this section we shall use the constant finite group scheme associated to a finite
group G, Spec kG. For simplicity of notation we still note G this finite group scheme.
The motive of this scheme shall be noted 1l[G], it is an algebra object in the category
Mk, i.e. there are morphisms 1l[G] ⊗ 1l[G] −→ 1l[G] and 1l −→ 1l[G] that verify the
usual axioms of an associative unitary algebra. The group G then acts on 1l[G] on
the left and on the right, these two actions will be called the right and left regular
representations.

We shall construct for any morphism of finite groups ψ : G −→ G′ a functor
Indψ which is a left adjoint of the functor Resψ.

Definition. Let ψ : G −→ G′ be a morphism of finite groups andX ∈ Ob(G,Schk).
Then G acts on G′ × X by g · (g′, x) =

(
g′ψ(g−1), gx

)
and G′ acts on G′ × X by

g · (g′, x) = (gg′, x). These two actions commute and we define

IndψX =
G′ ×X
G

with its natural G′-action. This defines functors

(G,Schk)
Indψ−−−−→ (G′,Schk), (G,Schck)

Indψ−−−−→ (G′,Schck) .

Recall that in a Q-linear pseudoabelian category, A, for any objectM in (G,A), the
image of the projector 1

|G|
∑
g∈G[g] defines an objectMG, of A called the G-invariant

part of M . In this way we obtain an additive functor ( · )G : (G,A) −→ A.

Definition. Let ψ : G −→ G′ be a morphism of finite groups andM ∈ Ob(G,Mk).
Let G act on 1l[G′]⊗M via the inverse of the right regular representation on 1l[G′] and
the given action onM and let G′ act on 1l[G′]⊗M via the left regular representation
on 1l[G′] and trivially on M . These two actions commute and we define

IndψM = (1l[G′]⊗M)G

with its natural G′-action. This defines an additive functor

Indψ : (G,Mk) −→ (G′,Mk).

Note that Indψ being an additive functor, it automatically gives rise to functors

(G,CbMk)
Indψ−−−−→ (G′, CbMk) Ho(G,CbMk)

Indψ−−−−→ Ho(G′, CbMk)
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Examples:

1. If ψ : G −→ {1} is the trivial morphism, then the functor Indψ is X 
→ X/G in
(G,Schk) and M 
→MG in (G,Mk).

2. If ψ is a quotient morphism ψ : G −→ G/H = G′, then Indψ takes X ∈
Ob(G,Schk) to X/H with its residual G/H-action and M ∈ ObHo (G,Mk) to
MH with its residual G/H-action.

Whenever we are given finite groups G and G′ and it is clear from the context
what the morphism ψ : G −→ G′ is, we shall use the notation ResG

′

G and IndG
′

G for
Resψ and Indψ respectively. Examples are: G or G′ are trivial, G a subgroup of G′

or G′ a quotient of G.

The following propositions give analogues of the Frobenius reciprocity law in
this context.

Proposition 4.1

The functor Indψ : (G′,Schk) −→ (G,Schk) is a left adjoint of Resψ, that is,

there is a natural bijection

Hom(G,Schk)(X,ResψY ) �−−−−→ Hom(G′,Schk)(IndψX,Y ) .

Proof. Let f : X −→ ResψY be a morphism of G-schemes. Then f ′(g′, x) = g′ ·f(x)
defines a G′-equivariant morphism f ′ : G′ × X −→ Y . But f ′

(
g′ψ(g−1), gx

)
=

f ′(g′, x), therefore f ′ factors via IndψX giving a h ∈ Hom(G′,Schk) (IndψX,Y ). This
defines a map

Hom(G,Schk)(X,ResψY ) −−−−→ Hom(G′,Schk)(IndψX,Y ) .

To prove it is an isomorphism we construct its inverse. Let h : IndψX −→ Y be a
morphism of G′-schemes, then f(x) = h(1, x) defines a map X −→ Y . As for any
g ∈ G we have f(gx) = h(1, gx) = h(ψ(g), x) = h(ψ(g) · (1, x)) = ψ(g)f(x) we see
that f defines a G-equivariant morphism f ∈ Hom(G,Schk) (X,Resψ). It is easy to
check that this gives the inverse of the previous map. �

Proposition 4.2

Let ψ : G −→ G′ be a morphism of finite groups. The functors Indψ :
(G,CbMk) −→ (G′, CbMk) and Indψ : Ho(G,CbMk) −→ Ho(G′, CbMk) are left

adjoint to Resψ.



216 del Baño and Navarro

Proof. We shall prove the statement for the categories (G,Mk) and (G′,Mk), from
the naturality it follows that the morphisms we construct commute with the diffe-
rentials and the statement for the categories (G,CbMk) and (G′, CbMk) follows.

Let M ∈ Ob(G,Mk) and N ∈ Ob(G′,Mk).
We first remark that a G′-action on an object N of Mk is equivalent to a

structure of left module over the algebra 1l[G′], that is a morphism

m : 1l[G′]⊗N −→ N

verifying the axioms of a module over an algebra. In particular if r : G′ −→
Aut(1l[G′]) (resp. � : G′ −→ Aut(1l[G′])) is the right (resp. left) regular repre-
sentation and g ∈ G′ then the diagrams

(3)

1l[G′]⊗N m−−−−→ N

r(g)⊗[g−1]

�
∥∥∥∥∥Id

1l[G′]⊗N m−−−−→N

1l[G′]⊗N m−−−−→ N

�(g)⊗[1]

�
�[g]

1l[G′]⊗N m−−−−→ N

commute.
To prove the statement in the proposition let f :M −→ ResψN be a morphism

in (G,Mk). Let h be the following morphism

1l[G′]⊗M Id⊗f−−−−→ 1l[G′]⊗N m−−−−→ N

This is G′-equivariant because for every g′ ∈ G′ we have a diagram

1l[G′]⊗M Id⊗f−−−−→ 1l[G′]⊗N m−−−−→ N

�(g′)⊗Id

� �(g′)⊗Id

� [g′]

�
1l[G′]⊗M Id⊗f−−−−→ 1l[G′]⊗N m−−−−→ N

that is commutative: the first square is obviously commutative whereas the second
is (3).

The morphism h is also G-invariant because for every g ∈ G the diagram

1l[G′]⊗M Id⊗f−−−−→ 1l[G′]⊗N m−−−−→ N

r(ψ(g−1))⊗[g]

� r(ψ(g−1))⊗[ψ(g)]

� Id

∥∥∥∥∥
1l[G′]⊗M Id⊗f−−−−→ 1l[G′]⊗N m−−−−→ N
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is commutative: the first square commutes because M −→ ResψN is G-equivariant
whereas the second commutes by (3).

Therefore h ◦ [g] = h and h factors via (1l[G′]⊗M)G. This defines a map

Hom(G,Mk) (M,ResψN) −→ Hom(G′,Mk) (IndψM,N) .

To prove this is bijective we give its inverse. Let h : IndψM −→ N be a
G′-morphism, define f to be the composition

M
�−→ (1l[G]⊗M)G −→ (1l[G′]⊗M)G h−→ N.

Then f defines an element of Hom(G,Mk)(M,ResψN). It is easy to see that this
provides the inverse of the previous map.

The proof that Indψ is adjoint to Resψ in the localised categories follows from
the fact that the bijections given above take morphisms homotopic to zero to mor-
phisms homotopic to zero. �

Proposition 4.3

Let ψ : G −→ G′ be a morphism of finite groups, M ∈ Ob (G,CbMk) and

N ∈ Ob (G′, CbMk). Then we have the following projection formula

Indψ (ResψN ⊗M) � N ⊗ IndψM.

Proof. Adjunction gives a natural morphism of complexes of motives

ΠM,N : Indψ (ResψN ⊗M) −→ N ⊗ IndψM.

As the degree n component of ΠM,N is
∑
i+j=n ΠMi,Nj we can reduce to the case

M and N are complexes concentrated in degree zero.
To see it is an isomorphism let E be a finite Galois extension of Q in which

all the irreducible complex representations of G and G′ are defined. Applying the
functor Mk −→ Mk,E we see it is enough to check that ΠM,N is an isomorphism
in this extended category for its unique inverse Π−1

M,N will be invariant under the
action of the Galois group Gal(E|Q) and hence will be defined over Q.

In Mk,E we can apply Getzler’s Peter-Weyl theorem ([3], Theorem 3.2) and
reduce the proof to the categories of representations ofG andG′ on finite dimensional
vector spaces over E where the statement is well known. �
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Proposition 4.4

Let ψ : G −→ G′ be a morphism of finite groups, X ∈ Ob(G,Schk) and

Y ∈ Ob(G′,Schk). Then we have the following projection formula

Indψ (ResψY ×X) � Y × IndψX

Proof. As in the proof of the previous proposition, adjunction provides us with a
natural morphism

ΠX,Y : Indψ (ResψY ×X) � Y × IndψX

which in concrete terms is the map

G′ × ResψY ×X
G

−→ Y × G
′ ×X
G

(g′, y, x) 
−→ (g′y, g′, x) ,

note that this makes sense for it maps (g′ψ(g−1), ψ(g)y, gx) to (g′y, g′ψ(g−1), gx)
and this is (g′y, g · (g′, x)).

We show that ΠX,Y is an isomorphism by exhibiting its inverse.
Put ΣX,Y (y, g′, x) = (g′, g′−1

y, x), this defines a morphism

ΣX,Y : Y × G
′ ×X
G

−→ G′ × ResψY ×X
G

because ΣX,Y (y, g′ψ(g−1), gx) = g(g′, g′−1
, x). It is straightforward to check that

ΠX,Y ◦ ΣX,Y = Id and ΣX,Y ◦ΠX,Y = Id. �

5. The motive of a quotient scheme

In this section we extend the isomorphism h(X)G � h(X/G) in Corollary 2.4 to
the case where X is an arbitrary separated scheme of finite type over k. This is a
consequence of the following statement.

Theorem 5.1

Let ψ : G −→ G′ be a morphism of finite groups, then the diagram

(G,Schck)
hc−−−−→ Ho (G,CbMk)

Indψ

�
�Indψ

(G,Schck)
hc−−−−→ Ho (G,CbMk)
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commutes. In other words, for every G-scheme X there is a natural isomorphism

hc(IndψX) � Indψ(hcX).

Proof. This is another application of the extension principle of [4].
Let X be a G-scheme and consider the morphism induced by the quotient map

π∗ : G′ ×X −→ G′×X
G :

(4) π∗ : hc

(
G′ ×X
G

)
−→ (1l[G′]⊗ hcX)G .

This defines a morphism of functors

hcIndψ −→ Indψhc .

If X is smooth and projective acted on by G then so is G′ × X and Corol-
lary 2.4 implies that (4) is an isomorphism in this case. Therefore the functors
under consideration are isomorphic when restricted to (G,Vk).

This common restriction clearly verifies (F1) and (F2), whereas (F3) can proved
as in the proof of Corollary 2.3. By an obvious variant of Theorem 3.1 there exists
a unique extension to (G,Schk) such that (D) and (E) hold, so it is clearly enough
to see that both Indψhc and hcIndψ satisfy (D) and (E). This is a consequence of
the fact that Indψ takes acyclic diagrams to acyclic diagrams. �

Corollary 5.2

Given a finite group G, a normal subgroup H of G and X ∈ Ob(G,Schk) we

have a natural isomorphism in Ho (G/H,CbMk)

hc(X)H � hc(X/H).

Proof. Apply the previous theorem to the quotient morphism ψ : G −→ G′ =
G/H. �

Corollary 5.3

Given a finite group G and X ∈ Ob(G,Schk) there is a canonical isomorphism

hc(X)G � hc(X/G).
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6. Applications

6.1. Isotypical decompositions

In this subsection we shall consider decompositions of a G-motive induced by a
representation of G. Let E be a finitely generated extension of Q.

Definition. Let α be an effective character of a finite group G defined over E, and
let G −→ GL(Vα) be the corresponding representation and V ∨α the dual representa-
tion. For an object M of (G,CbMk,E) we define

Mα = Ind1
G(V ∨α ⊗M) ∈ ObCbMk,E .

This defines an additive functor ( · )α : (G,CbMk,E) −→ CbMk,E that localises to
a functor ( · )α : Ho (G,CbMk,E) −→ HoCbMk,E . For a G-scheme, X, put

h(X,α) = (hX)α
hc(X,α) = (hcX)α .

Let XE(G) note the group of characters of G defined over E. We can prove the
following results of Denef and Loeser.

Theorem 6.1 ([1] Theorem 1.3.1)

There is a unique function

χc : Ob (G,Schk)×XE(G) −→ K0Mk,E

such that

1. χc is a group morphism in the second variable.

2. For a smooth projective G-variety, X, and an irreducible character α ∈
XE(G) of dimension nα we have that nαχc(X,α) is the class of the motive(
X, nα|G|

∑
g∈G α(g−1)[g]

)
in K0Mk,E .

3. If Y is a closed subscheme of X then χc(X − Y, α) = χc(X,α) − χc(Y, α) for

any α ∈ XE(G).
4. If all irreducible complex representations of G are defined over E, then we have

χc(X) =
∑
α nαχc(X,α) where α runs over the irreducible characters of G over

E and nα indicates the dimension of α.
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Proof. Let [ · ] note the class of an object in K0.
For α ∈ XE(G) effective, define χc(X,α) = [hc(X,α)]. This is linear in α hence

it extends to an additive function on XE(G).
In order to prove the second condition note that for X a smooth projective

G-variety, and α ∈ XE(G) an irreducible character of dimension nα, we have a
morphism inMk,E

X, nα|G|
∑
g∈G

α(g−1)[g]


 ↪→ hX →→ h(X,α)⊗ Vα

which induces isomorphism in Chow groups by the theory of representations of finite
groups. Manin’s identity principle yields the result.

To prove the third condition let α be an effective character and Y a closed
G-invariant subscheme of a G-scheme X, then, by property (E) in Theorem 3.1, we
have an isomorphism in Ho (G,CbMk,E),

hc(X − Y ) � s (hcX −→ hcY ) .

Applying the functor ( · )α we get

hc(X − Y, α) � s
(
hc(X,α) −→ hc(Y, α)

)
,

taking the class in K0Mk,E we see that [hc(X − Y, α)] = [hc(X,α)]− [hc(Y, α)], as
required. The general statement follows from linearity on the second argument.

The last statement is a consequence of Getzler’s Peter-Weyl theorem ([3], Theo-
rem 3.2), which, in this context, asserts that h(X) � ⊕αh(X,α)⊗ Vα where α runs
over the irreducible characters. �

Theorem 6.2 ([1] Theorem 1.3.2)

There is a unique function

χ : Ob (G,Schk)×XE(G) −→ K0Mk,E

such that

1. χ is a group morphism in the second variable.

2. For a smooth projective G-variety, X, and an irreducible character α ∈
XE(G) of dimension nα, we have that nαχ(X,α) is the class of the motive(
X, nα|G|

∑
g∈G α(g−1)[g]

)
.
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3. If
Ỹ c−−−−→ X̃�

�
Y c−−−−→ X

is an acyclic diagram in (G,Schk) and α ∈ XE(G) then χ(X,α) = χ(X̃, α) +
χ(Y, α)− χ(Ỹ , α).

4. If D is a smooth G-invariant divisor of a smooth G-scheme X and α ∈ XE(G).
Then χ(X −D,α) = χ(X,α)− χ(D,α)(−1).

5. If all complex representations of G are defined over E, then we have χ(X) =∑
α nαχ(X,α) where α runs over the irreducible characters of G over E and nα

indicates the dimension of α.

Proof. Define, for an effective α ∈ XE(G), χ(X,α) = [h(X,α)]. This is linear in α
hence it extends to an additive function on XE(G).

Properties 2 and 5 are proved exactly in the same way as in the preceding
theorem. The remaining is a consequence of (D) and (E) in Theorem 3.2. �

The following result was conjectured by Denef and Loeser ([1], Assertion 1.5.2).

Proposition 6.3
Let ψ : G −→ G′ be a morphism of finite groups, α a character of G′ and X an

object of (G,Schk). We have

χc(IndψX,α) = χc(X,Resψα).

Proof. By linearity we may assume α to be effective. By the proof of Theorem 6.1
χc(IndψX,α) is the class of the motive hc(IndψX,α) which is by definition

Ind1
G′ (V ∨α ⊗ hcIndψX) .

But, in Theorem 5.1, we have seen that hc(IndψX) � Indψhc(X) so this is

Ind1
G′ (V ∨α ⊗ IndψhcX) .

By the projection formula in Proposition 4.3 this equals

Ind1
G′

(
Indψ (ResψV ∨α ⊗ hcX)

)
.

As Ind is functorial for group morphisms this equals

Ind1
G

(
V ∨Resψα

⊗ hcX
)

= hc(X,Resψα).

Again, by the proof of Theorem 6.1, the class of this in K0Mk,E is χc(X,Resψα),
this proves the proposition. �
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6.2. Motives with coefficients in a local system of motives with finite mo-
nodromy

Recall that a local system, L, of vector spaces over a differentiable manifold X
is a vector bundle in which the transition matrices can be taken to be constant. This
is equivalent to giving a representation π1(X,x) −→ GL(Lx) called the monodromy
representation.

Let X be a scheme over k and E a field of characteristic zero. We define a local
system, L, of E-motives over X to be a representation,

ρ : π1(X,x) −→ AutMk,E
(M)

where x is a geometric point of X and M is a motive which we note by Lx.
Our aim of this paragraph is to define the motive of X with coefficients in a

local system of motives L. We are able to do this when the monodromy map, ρ,
is continuous with the natural topologies on both groups (profinite in π1(X,x) and
discrete in AutMk,E

(Lx)), that is when the image of ρ is finite.
We start by giving some examples of local systems of motives.

Definition. Let f : X −→ Y be a morphism of k-schemes and let π1(f) :
π1(X,x) −→ π1(Y, y) be the associated morphism in the fundamental groups.

1. If L is a local system over Y associated to a representation ρ of π1(Y, y). De-
fine f∗L to be the local system associated to the representation Resπ1(f)(ρ) of
π1(X,x).

2. If L is a local system over X associated to a representation ρ of π1(X,x). If
π1(f) has finite cokernel define f∗L to be the local system associated to the
representation Indπ1(f)(ρ) of π1(Y, y).

Examples: ([1])

1. Let Gm = Spec k[t, t−1] be the multiplicative group scheme over k. The funda-
mental group of Gm is an extension of Gal(k|k) by µ∞(k) = lim

←
µd(k),

1 −→ µ∞(k) −→ π1(Gm, 1) −→ Gal(k|k) −→ 1 .

A k-point of Gm determines a section of the surjection π1(Gm, 1) −→ Gal(k|k)
hence an action of the Galois group on µ∞(k). If we assume µd(k) = µd(k),
then Gal(k|k) acts trivially on µd(k) and a character

α : µd(k) −→ GL1k
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induces a representation

π1(Gm, 1) −→ µd(k) α−→ GL1k = AutMk
(1l) .

We call the local systems over Gm arising in this way Kummer sheaves or
Kummer local systems and use the notation Lα for the Kummer sheaf defined
above.

2. Let X be a scheme over k, a Kummer sheaf over X is the pullback, f∗Lα, of a
Kummer sheaf on Gm via a morphism f : X −→ Gm.

Let G be the image of the monodromy map and let π : X̃ −→ X be the étale
cover determined by the morphism π1(X,x) −→ G. We then define.

Definition. The motive of X with coefficients in the local system of motives L is
defined to be the following objects of HoCbMk,E .

h(X,L) =
(
hX̃ ⊗ Lk

)G
,

hc(X,L) =
(
hcX̃ ⊗ Lk

)G
.

Note that if X is smooth and projective then for any such local system L over
X, h(X,L) = hc(X,L) is a pure motive.

Example: Let X, f and α be as in the previous example, to this data in there is
associated in [1] §1 an element of K0Mk,E , [X, f∗Lα]. With our notations we see
that this is just the class of hc(X, f∗Lα), the motive with compact supports of X
with coefficients in the Kummer local system f∗Lα.

The following elementary properties are motivic versions of well known results
for the cohomology with coefficients in a local system.

Proposition 6.4

1. Let L and L′ be local systems over a scheme X, there are natural isomorphisms

h(X,L⊕ L′) � h(X,L)⊕ h(X,L′) and hc(X,L⊕ L′) � hc(X,L)⊕ hc(X,L′).
2. Let X be a smooth scheme and L a local system over X, there is a natural

isomorphism h(X,L) � hc(X,L∨)∨(−dimX).
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Proof. We treat the case without supports, the proof is the same for the motive
with compact supports. For 1 note that if L, L′ are associated to representations
ρ, ρ′ respectively. Then L⊕ L′ is associated to the representation ρ⊕ ρ′. This has
image H contained in G×G′, where G = Imρ and G′ = Imρ′. We have a diagram
of étale coverings of X,

X̃H
↙ ↘

X̃G

� X̃G′

↘ ↙
X

But by elementary properties of the functor ( · )G = IndG1 we have

h(X,L⊕ L′) =
(
hX̃H ⊗ (Lx ⊕ L′x)

)H
�

(
hX̃H ⊗ Lx ⊕ hX̃H ⊗ L′x

)H
�

(
hX̃G ⊗ Lx

)G
⊕

(
hX̃G′ ⊗ Lx

)G′

� h(X,L)⊕ h(X,L′) .

To prove 2 note that the quotients of π1(X,x) determined by L and L∨ coin-
cide. If X̃ is the Galois covering determined by this quotient, π1(X) −→ G, by

definition we have h(X,L) =
(
h(X̃)⊗ Lx

)G
and hc(X,L∨) =

(
hc(X̃)⊗ L∨x

)G
. It

is clearly enough to prove that there is an isomorphism h(X̃) � hc(X̃)∨(−dimX)
in Ho(G,CbMk).

By applying theG-equivariant Chow lemma we can assume X̃ is quasiprojective.
Let X be a smooth G-equivariant projective completion of X̃ such that D = X − X̃
is a divisor with normal crossings union of smooth divisors. By (E) in Theorem 3.2
we have an isomorphism

h(X̃) � s
(
h∗

(
S•D −→ X

))
(−dimX) .

The functor h∗ is hc( · )∨, and the previous gives an isomorphism

h(X̃) � s
(
hcD ←− hcX

)∨
(−dimX) .

By (E) in Theorem 3.1 this is isomorphic to hc(X̃)∨(−dimX). This proves 2. �
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