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Abstract

We show some non-emptiness results for the Severi varieties of nodal curves
with fixed geometric genus in Pn, n > 2. For n = 3, we also fix a vector
bundle E of rank 2 and look at the variety Vδ(E) parameterizing sections of E
whose 0-locus is nodal, with fixed geometric genus. We establish some basic
facts about Vδ(E) and prove some (almost sharp) non-obstructedness results
for these varieties.

Introduction

The study of spaces parameterizing singular curves with fixed geometric genus in a
projective variety X (usually called the “Severi varieties” of X) actually receives a
lot of attention, partially due to its connections with other fields of geometry and
physics. The case in which X is a projective surface, gave recently rise to a huge
amount of literature (let just recall [3] and [8] for X = P2, [5] for K3 surfaces and
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[4], [10] for surfaces of general type). In higher dimension, enumerative results are
known for some classes of varieties, which are relevant for applications; on the other
hand, we feel some lack of systematic studies for what should be the next relevant
case, from the point of view of algebraic geometry: curves in higher projective spaces.

The aim of this note is to propose two ways for attaching the argument; the
first one is a classical approach, focused on the subsets of the Hilbert scheme formed
by curves with fixed number of nodes (and no other singularities); the tangent space
to these objects is a subsheaf N ′ of the normal bundle. When h1(N ′) = 0 and the
number of nodes is small, we are able to use standard smoothing results of [12] §5, to
produce inductively examples of nodal curves in Pn, obtaining some non-emptiness
results for the corresponding Severi varieties. Remark 1.8 shows also that these
varieties may have singularities.

In P3, we propose also a different approach. Curves in projective surfaces are
organized in linear systems, hence they are parameterized by projective spaces, and
one can look inside these spaces to produce results on the Severi varieties. Going to
P3, one obtains a partially similar organization thinking to a curve as the 0-locus of
a section of some reflexive sheaves F , so that P(H0(F )) somehow gives a projective
space dominating a subvariety in which the curve moves; it seemed us natural to
ask for an analogue of Severi varieties when we fix a reflexive sheaf and look at its
sections. We are able to consider here only the case in which F is a vector bundle,
for otherwise its singularities introduce some nasty correction terms in our results.

In section 2, we go through a local deformation theory for the Severi subvariety
of P(H0(E)), E = vector bundle of rank 2, parameterizing sections whose 0-loci
have a fixed number of nodes (and no other singularities). In section 3 we prove
some regularity results for the dimension of these objects, when we take a suitable
twist E(m) of E, with m � 0, and the number of nodes is small with respect to m.
Non-emptiness results for these Severi varieties are given at the end of the paper.

We always work over an algebraically closed field of characteristic 0; we often
indicate with O the structure sheaf of Pn.

1. Curves in projective spaces

We present here some results holding for the Severi varieties of curves C ⊂ Pn, when
the number of nodes is “small” and the relative normal bundle has no H1.

In this section, Y is an irreducible curve in Pn, with arithmetic genus pa, degree
d and only δ nodes for singularities (a nodal curve). Let NY be its normal sheaf in
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Pn, which is locally free of rank n− 1; let T 1
Y be the first cotangent sheaf of Y (see

[11]) and call N ′
Y the kernel of the natural surjection:

0 → N ′
Y → NY → T 1

Y → 0

Then one has the following relations:

deg(NY ) = (n + 1)d + 2(pa(Y ) − 1)

χ(NY ) = (n + 1)d− (n− 3)(pa(Y ) − 1)

χ(N ′
Y ) = (n + 1)d− (n− 3)(pa(Y ) − 1) − δ

h0(N ′
Y ) ≤ h0(NY ) ≤ h0(N ′

Y ) + δ

h1(NY ) ≤ h1(N ′
Y ) ≤ h1(NY ) + δ

Definition 1.1. Call V the irreducible component of the Hilbert scheme of Pn

containing Y ; let Vδ be the subset of V formed by points which parameterizes nodal
curves of geometric genus pa(Y ) − δ.

It is a standard fact that Vδ is a quasi projective subvariety of V and h0(N ′
Y )

is its tangent space at Y .
We are interested here in the case h1(N ′

Y ) = 0, which clearly implies h1(NY ) =
0, hence also dimV = (n+1) deg(Y )+2(pa(Y )−1). Observe that this condition gives
a linear upper bound on pa(Y ) in terms of deg(Y ), because it implies χ(NY ) ≥ 0.

Remark 1.2. Let Y ⊂ Pn be a nodal curve, with δ nodes, and assume h1(N ′
Y ) = 0;

fix t ≤ δ and fix a subset T formed by t nodes of Y . Then by [12] §1, near the point of
V corresponding to Y there is a germ A of Vt, of codimension t in V, parameterizing
the deformations of Y which are equisingular near T . Furthermore, if Y − T is
connected, then a general curve parameterized by A is irreducible.

Using the smoothing results of [12] Theorem 5.2 and Theorem 6.1, we obtain:

Theorem 1.3

Fix integers n, pa, d, δ such that n ≥ 3, d ≥ n+ 1 and 0 ≤ δ ≤ pa ≤ (n(d− n)−
1)/(n − 1). Then there exists an integral, non degenerate nodal curve Y ⊂ Pn of

degree d, arithmetic genus pa, with exactly δ nodes and with h1(N ′
Y ) = 0.
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Proof. First we will check the result for all pairs (d, pa) with pa ≥ 0 and d = pa +n.
If pa = 0, then just use the rational normal curve in Pn; then we make induction on
pa. Assume pa > 0 and choose a number δ with 0 ≤ δ ≤ pa; set t = max{δ − 1, 0}.
Let W be a (necessarily linearly normal) integral curve with deg(W ) = pa + n− 1,
pa(W ) = pa − 1, with exactly t nodes and with h1(N ′

W ) = 0. Let D be a general
line intersecting W at exactly 2 points and s et X := W ∪D; by [12], Lemma 5.1, we
have h1(N ′

X) = 0. Let T be the union of Sing(W ) and one of the points of W ∩D

and apply the previous Remark to X and T : the case d = pa + n follows.
Now assume d > pa+n and fix an integer δ with 0 ≤ δ ≤ pa. Start with a linearly

normal irreducible nodal curve W ′ ⊂ Pn with deg(W ′) = pa +n, pa(W ′) = pa, with
δ nodes and with h1(N ′

W ′) = 0. Let D′ be a general smooth rational curve of Pn,
intersecting W ′ in one smooth point, with deg(D′) = d−pa−n and set X ′ := W ′∪D′

and T = Sing(W ′). By [12] Lemma 5.1, we have h1(N ′
X′) = 0 and applying the

previous remark again to X ′ and T , we find the required curve.
Finally, for the case d < pa + n, put a = nd − pa(n − 1) − n2 and argue as in

[12] Theorem 6.2: the case degree = a and genus = a + n has been proved above
and one can reduce to this case applying repeatedly [12] 5.5 iii. �

Remark 1.4. By the proof of Theorem 1.3 , one sees that the component V of
Hilb(Pn) containing Y has the “expected number of Moduli” in the sense of [12].

Furthermore, for the set of triples (d, pa, n) considered in 1.3, then V is the
component of the Hilbert scheme defined in [2] for n ≥ 4 and in for n = 3.

Now we will obtain in the same way some inductive results in which the allowed
number of nodes is smaller than the arithmetic genus of the irreducible curve.

Lemma 1.5

Fix integers n, x, y,m and δ, with n ≥ 3, x ≥ n + 1 and 0 ≤ δ ≤ mn. Assume

the existence of a smooth connected non degenerate linearly normal curve W ⊂ Pn

with deg(W ) = x, pa(W ) = y and h1(NW ) = 0. Then there exists an integral non

degenerate nodal curve Y ⊂ Pn with deg(Y ) = x + m(n − 1), pa(Y ) = y + mn,

h1(N ′
Y ) = 0 and with exactly δ nodes. If furthermore W is linearly normal, then

we may take also Y linearly normal.

Proof. Take m general hyperplanes Hi, i = 1, . . . ,m and m smooth rational curves
Ci ⊂ Hi, with deg(Ci) = n− 1, Ci spanning Hi and intersecting W exactly at n+ 1
points and quasi transversally. Set X := W ∪ (

⋃
Ci); then apply the procedure of

[12] Theorem 5.2 to X. �
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Corollary 1.6

Fix integers n, x, y,m and δ, with n ≥ 4, m ≥ 0, x ≥ n+2, y ≥ 2, (y−2)(n−2) ≤
(x− n− 2)(n− 1) and 0 ≤ δ ≤ mn. Then there exists an integral, non degenerate,

linearly normal curve Y ⊂ Pn with deg(Y ) = x + m(n − 1), pa(Y ) = y + mn,

h1(N ′
Y ) = 0 and with exactly δ nodes.

Proof. Apply Lemma 1.5 to the smooth curve W which is the general member of
the component W (x, y;n) of Hilb(Pn) constructed in [2], §1. �

The previous corollary also works in P3, just using the component of Hilb(P3)
constructed in [1]. However in this case, we can produce a more precise result,
because we know all the pairs (d, pa) which are the degree and genus of smooth
curves W ⊂ P3, with h1(NW ) = 0 (see [6] or [7]).

We use, in the next statement, the function CK : N → R defined in [7].

Corollary 1.7

Fix integers x, y,m and δ, with x ≥ 5, m ≥ 0, 0 ≤ y ≤ CK(x) and 0 ≤ δ ≤ 3m.

Then there exists an irreducible nodal curve Y ⊂ P3 with deg(Y ) = x + 2m,

pa(Y ) = y + 3m, h1(N ′
Y ) = 0 and with exactly δ nodes.

Remark 1.8. Of course, there are cases in which h1(NY ) �= 0 but nevertheless Vδ

is non-empty (and somehow it has the “expected dimension”). This happens, for
instance, for complete intersection curves in P3, of type 5, d, with d ≥ 5, when
δ ≤ 5(n− 1)2/4 (see [4] Proposition 4.7).

In P3, one can also produce examples of singular Severi varieties. In fact, if
V is the Hilbert scheme of integral complete intersections of type 5, d, d > 5 and
δ = 5(n− 1)2/4, then we have an obvious forgetful map V → |OP3(5)|, in which the
fiber of Vδ over a general quintic surface S is the Severi variety of curves in |OS(d)|
with δ nodes. Since this last variety is singular by [4] Proposition 4.5 and we are
working in char. 0, then Vδ cannot be smooth.

2. Rank 2 bundles: local theory

In this section, let E be a rank 2 bundle on P3, with Chern classes c1, c2 and let s

be a general element of H0(E); call Y := (s)0 the 0-locus of s and assume that Y

is an irreducible curve, with only δ nodes for singularities (i.e. a nodal curve). We
recall the usual exact sequence

(1) 0 → O → E → IY (c1) → 0
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Y has degree d = c2; the arithmetic and geometric genus of Y are given by:

pa(Y ) = (c1 − 4)
c2
2

4g = pa(Y ) − δ .

Definition 2.1. Call Vδ(E) the subset of P
(
H0(E)

)
formed by those sections

whose 0-locus is a nodal curve of geometric genus pa(Y ) − δ.
It is a standard fact that Vδ(E) is a quasi projective subvariety of P

(
H0(E)

)
.

We want to examine here the tangent space to Vδ(E) at s.
Since, of course, the tangent space to P

(
H0(E)

)
at s is isomorphic to H0(E)/(s),

the question is to find which sections s′ ∈ H0(E) represent infinitesimal deformations
of s whose 0-locus still maintains nodes around the nodes of Y .

To do that, we may work locally around each node, in some open subset where
E trivializes. So we fix a node P of Y and a suitable neighborhood U of P and we
assume that Y is defined by the two equations f, g around P .

Definition 2.2. Every section s′ ∈ H0(E) defines, by sequence (1), a surface of
degree c1 containing Y ; this surface is exactly the 0-locus of the wedge product
s ∧ s′ and it will be denoted by F (s′). If s′ is defined by the pair (f ′, g′) in the
neighborhood U , then in U the surface F (s′) has equation fg′ − f ′g.

Conversely, since the map H0(E) → H0(IY (c1)) surjects, every surface of degree
c1 containing Y is obtained in this way.

Proposition 2.3

Use the previous notation and identify H0(E)/(s) with the tangent space to

P(H0(E)) at s. Then the tangent space to Vδ(E) at s is given by those sections

s′ ∈ H0(E) for which the surface F (s′) = (s ∧ s′)0 is singular at the nodes of

Y = (s)0.

Proof. Since by assumptions, the infinitesimal deformation of s defined by s′ induces
an equisingular deformation of Y , then it corresponds to an element of the normal
bundle NY of Y , which goes to 0 in the cotangent map

TP3|Y → NY → T 1.

Now NY the restriction E ⊗OY , so we need just to prove that, locally around any
node P of Y , the section s′ goes to 0 in the composition E → E ⊗OY → OP ⊂ T 1

if and only if the jacobian vector of F (s′) vanishes at P .
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The question being local, we may take local coordinates x1, i = 1, 2, 3 at
P and trivialize E so that s, s′ corresponds to pairs (f, g) and (f ′, g′) of poly-
nomials. With these notations, the map TP3|Y → NY sends ∂/∂xi to the pair(
(∂f/∂xi)P , (∂g/∂xi)P

)
and these pairs are dependent, by assumptions; it follows

that s′ goes to 0 around P if and only if
(
f ′(P ), g′(P )

)
linearly depends on each

vector
(
(∂f/∂xi)P , (∂g/∂xi)P

)
, i.e. if and only if, for all i = 1, 2, 3, we get:

g′(P )
( ∂f

∂xi

)
P
− f ′(P )

( ∂g

∂xi

)
P

= 0

and since f(P ) = g(P ) = 0, this last is exactly
(

∂(g′f−f ′g)
∂xi

)
P

, the partial derivative

of F (s′) along xi at P . �

Remark 2.4. Observe that, in fact, if the curve C ⊂ P3 is local complete intersection
in a point P ∈ C and P is a planar singularity of C, then, “heuristically”, among
the surfaces containing C, the condition of being singular in C has codimension 1.

To see this, let F,G be local generators for the ideal of C at P . Since P is
a planar singularity, F and G are tangent at P , so after replacing F,G with some
linear combination, we may assume F smooth and G singular at P ; it follows that
a surface AF + BG is singular at P if and only if A(P ) = 0.

Corollary 2.5

Let E be a rank 2 bundle and let s ∈ H0(E) be a global section such that the

0-locus Y = (s)0 is a nodal curve, with nodes at P1, . . . , Pδ. Then the dimension of

the tangent space to Vδ(E) at s is ≥ h0(E) − δ and equality holds if and only the

conditions of singularity imposed by the nodes P1, . . . , Pδ to the surfaces of degree

c1 through Y are independent.

In general, we do not expect Vδ(E) to be irreducible. However, for any compo-
nent, we give the following:

Definition 2.6. Call h0(E)−δ the expected dimension of the components of Vδ(E).
We say that a component of Vδ(E) is regular if its dimension equals the expected

one.

Remark 2.7. When h0(E) ≥ 4δ and Vδ(E) is non empty, then all the components of
Vδ have dimension greater or equal than the expected one.

Indeed, fix one point P ∈ P3 and look at the conditions imposed to a section
s ∈ H0(E) to have the 0-locus Y singular at P and 2-codimensional; since the
question is local, s can be replaced by a pair of polynomials (f1, f2) around P , so
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that the conditions are translated in having f1(P ) = f2(P ) = 0 and the Jacobian
matrix of rank < 2 at P : a total of 4 conditions at most.

Now, if Vδ is non empty and s is one of its elements, by h0(E) ≥ 4δ, we can
move arbitrarily the nodes of Y = (s)0 and still get sections s′ whose 0-loci are
singular at these points; by semicontinuity, s′ ∈ Vδ, hence the codimension of Vδ in
H0(E) is at most δ.

3. Rank 2 bundles: some regularity results

In this section we use the previous local analysis to prove some regularity results for
the nodal Severi varieties of the rank 2 bundle E(m), for m � 0, when the number δ
of nodes is small with respect to m. Next we present some examples which measures
the sharpness of our result.

Since we are going to see what happens for m � 0, we shall assume that E(−1)
is generated by global sections; this can always be achieved, indeed, twisting by
some fixed k.

Proposition 3.1

Let E be a vector bundle on P3, with Chern classes c1, c2 and assume that

E(−1) is generated by global sections. Then for all m � 0 and for δ ≤ m + 1,

the Severi variety Vδ

(
E(m)

)
is either empty or smooth, of the (expected) dimension

h0
(
E(m)

)
− 1 − δ.

Proof. Assume that s ∈ Vδ

(
E(m)

)
and call Y the 0-locus of s. By our assumptions

on E and by the exact sequence 0 → O → E(m) → IY (c1 + 2m) → 0 we see that
IY (c1+m−1) is generated by global sections, so that Y is contained in some smooth
surface X of degree c1 + m, since it has just planar singularities.

By our assumptions on δ, surfaces X ′ of degree m separate the δ nodes of Y , so
that, for each node P , one can find a surface X ∪X ′ of degree c1 + 2m = c1

(
E(m)

)
which passes through Y and is singular at its nodes, except for P ; it follows that
the nodes of Y impose exactly δ conditions of singularity to the surfaces of degree
c1

(
E(m)

)
through Y , thus by Corollary 2.5, the tangent space of Vδ

(
E(m)

)
at s

has dimension dimP
(
H0(E(m)

)
− δ and the claim follows by Remark 2.7, since for

m � 0 one easily checks by Riemann-Roch that h0
(
E(m)

)
≥ 4(m + 1). �

One cannot hope for a much stronger result; indeed, even in the case of splitting
bundles, as soon as δ becomes slightly bigger that m, Vδ

(
E(m)

)
acquires singular

points:
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Example 3.2: Consider E = O(1) ⊕ O(4) and fix δ = m + 4; then Vδ

(
E(m)

)
has

some singular point.
Indeed choose points P1, . . . , Pm+2 on a line L and take 2 surfaces F and G,

passing through the Pi’s, such that F , of degree m + 1, has ordinary double points
at the Pi (so it contains L) and no other singularities while G, of degree m + 4, is
smooth and transversal to F and L. The existence of these surfaces F and G follows
by standard generalization arguments, starting for instance with reducible objects.

The the curve Y = G∩F has ordinary nodes at the Pi and no other singularities,
so the section s = (F,G) ∈ H0

(
E(m)

)
belongs to Vδ

(
E(m)

)
; on the other hand the

tangent space to Vδ

(
E(m)

)
at s is given by surfaces of degree 2m + 5 = c1

(
E(m)

)
,

passing through Y and singular at the points Pi. Forget now P1 and consider
the surfaces of degree 2m + 5 through Y , which are singular at P2, . . . , Pδ. Since
2(δ− 1) > 2m+ 5, they must clearly contain L and since L and the two tangents of
Y at P1 span P3, they are all singular at P1; it follows that P1, . . . , Pδ do not impose
independent singularity conditions to the surfaces of degree 2m + 5 containing Y :
the conditions imposed are 1 less than the expected number.

When the points Pi are moved so that they are no longer aligned, then they
impose independent singularity conditions to the surfaces of degree 2m+ 5 through
Y ; since we have h0

(
E(m)

)
> 4δ, by Remark 2.7 and by an easy dimension count,

one shows that the subset of Vδ

(
E(m)

)
corresponding to curves with aligned nodes

cannot fill any component of Vδ. It follows that the previous section s correspond
in fact to an obstructed point of Vδ.

With a similar procedure, one can extend Example 3.2 to some other rank 2
bundles E.

Using reduction to open subsets and a Bertini argument, then one can prove
the non emptiness of Vδ, in the range of Theorem 3.1.

Proposition 3.3

For m � 0 and for δ ≤ m then VδE(m) is non empty.

Proof. Let us start by observing that since E(−1) is generated by global sections,
then there exists a finite open cover of P3 such that for any U of the cover, one
has two sections of H0

(
P3, E(−1)

)
which give an isomorphism EU (−1) → O2

U ; it
follows that for any pair (F,G) of surfaces of degree m + 1 there is a global section
s ∈ H0

(
P3, E(m)

)
with (s)0 = F ∩G over U .

Take a general set T of δ ≤ m points in the intersection of all the open sets
of the previous cover and let Q be any point in P3 − T ; take an element U of the
cover, which contains Q; since surfaces of degree m + 1 separate the points and the
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tangent planes at T ∪ {Q}, then in the set of pairs of surfaces (F,G) which have
singular intersection at T , generically F ∩G has only nodes at T and the subset of
pairs with singular intersection also at Q has codimension 4.

For general T in the symmetric product of P3, let V ⊂ H0
(
E(m)

)
be the

set of sections whose 0-locus is singular at T ; for what we said above, the subset
{(s,Q) ∈ V × (P3 − T ) : the 0-locus of s is singular at Q} has a component with
4-codimensional fibers over P3 − T , whose general point maps to s ∈ V such that
(s)0 has nodes at T . It follows by a standard dimension count that there are sections
s ∈ V whose 0-locus has nodes at T and no other singularities. �

Remark 3.4. Our method also produces results for rank 2 bundles on higher dimen-
sional projective space (observe that they are relevant even for splitting bundles)
or for rank two bundles over other smooth threefolds. Both generalizations are not
explored here.

Similarly, one could apply the method to reflexive sheaves F on P3, aiming for
results on general space curves; however, in this case one has to put the singular
points of F into the picture, which seem to alter our statements in many nasty ways.

Remark 3.5. In any event, observe that one cannot simply apply our results from
section 1 to study the 0-loci Y of rank 2 bundles, for in general we may have
H1(NY ) �= 0.
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