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Abstract

The conjecture on the (degree – codimension + 1) - regularity of projective
varieties is proved for smooth linearly normal polarized varieties (X,L) with
L very ample, for low values of ∆(X,L) = degree – codimension –1. Results
concerning the projective normality of some classes of special varieties inclu-
ding scrolls over curves of genus 2 and quadric fibrations over elliptic curves,
are proved.

1. Introduction

A complex projective variety X ⊂ P
N is k-regular in the sense of Castelnuovo-

Mumford if hi(IX(k − i)) = 0 for all i ≥ 1 where IX is the ideal sheaf of X. If X is
k-regular then the minimal generators of its homogeneous ideal have degree less
than or equal to k. A long standing conjecture, known to us as the Eisenbud Goto
conjecture, states that an n-dimensional variety X ⊂ P

N of degree degX = d is
(d− (N − n) + 1)-regular. Gruson Lazarsfeld and Peskine [14] established the con-
jecture for curves, Lazarsfeld [23] for smooth surfaces and Ran [29] for threefolds with
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high enough codimension. A nice historical account of the conjecture and further
results can be found in [22]. In section 3 the conjecture is proved for all smooth va-
rieties X embedded by the complete linear system associated with a very ample line
bundle L such that ∆(X,L) ≤ 5 where ∆(X,L) = dimX + degX − h0(L). Notice
also that in recent times computer algebra systems like Macaulay have made possible
the explicit construction and study of examples of algebraic varieties starting from
minimal generators of the homogeneous ideal of the variety. A priori information on
the k-regularity of a variety is therefore useful for these constructions.

Strictly related to the notion of k-regularity is the notion of k-normality of a
projective variety. A variety X ⊂ P

N is k-normal if hypersurfaces of degree k cut a
complete linear system on X or, equivalently, if h1(IX(k)) = 0. If X is k-regular it
is clearly (k− 1)-normal. X is said to be projectively normal if it is k-normal for all
k ≥ 1.

As a by-product of the proof of the above result the projective normality of a
class of surfaces of degree nine in P

5 which was left as an open question in [7] is
established in Lemma 3.9. The non existence of a class of scrolls of degree 10, left
as an open problem in [10], is also established in Remark 3.13.

In section 4 we deal with the projective normality of scrolls X = P(E) over a
curve of genus 2 embedded by the complete linear system associated with the tau-
tological line bundle OP(E)(1), assumed to be very ample. Two-dimensional such
scrolls are shown to be always projectively normal except for a class S of non
2-normal surfaces of degree eight in P

5 studied in detail in [2]. Three-dimensional
scrolls X = P(E) of degree degX ≥ 13 are then shown to be projectively normal
if and only if E does not admit a quotient E → E → 0 where P (E) belongs to the
class S of non quadratically normal surfaces mentioned above.

In section 5, building on the work of Homma [16], [17] and Purnaprajna and
Gallego [28], criteria for the projective normality of three-dimensional quadric bun-
dles over elliptic curves are given, improving some results contained in [8].

2. General results and preliminaries

2.1 Notation

The notation used in this work is mostly standard from Algebraic Geometry.
Good references are [15] and [13]. The ground field is always the field C of complex
numbers. Unless otherwise stated all varieties are supposed to be projective. P

N de-
notes the N -dimensional complex projective space. Given a projective n-dimensional
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variety X, OX denotes its structure sheaf and Pic(X) denotes the group of line bun-
dles over X. Line bundles, vector bundles and Cartier divisors are denoted by capital
letters as L,M,M . . . . Locally free sheaves of rank one, line bundles and Cartier di-
visors are used interchangeably as customary.

Let L,M ∈ Pic(X), let E be a vector bundle of rank r on X, let F be a coherent
sheaf on X and let Y ⊂ X be a subvariety of X. Then the following notation is used:

LM the intersection of divisors L and M
Ln the degree of L,
|L| the complete linear system of effective divisors associated with L,
LY or L|Y the restriction of L to Y,
L ∼M linear equivalence of divisors
L ≡M numerical equivalence of divisors
Num(X) the group of line bundles on X modulo numerical equivalence
P(E) the projectivized bundle of E, see [15]
Hi(X,F) the ith cohomology vector space with coefficients in F ,
hi(X,F) the dimension of Hi(X,F), here and immediately above X is
sometimes omitted when no confusion arises.

If C denotes a smooth projective curve of genus g, and E a vector bundle over
C of deg E = c1(E) = d and rkE = r, we need the following standard definitions:

E is normalized if h0(E) �= 0 and h0(E ⊗L) = 0 for any invertible sheaf L
over C with deg L < 0 .
E has slope µ(E) = d

r .
E is semistable if and only if for every proper subbundle S, µ(S) ≤ µ(E).
It is stable if and only if the inequality is strict.
The Harder-Narasimhan filtration of E is the unique filtration:

0 = E0 ⊂ E1 ⊂ .... ⊂ Es = E

such that Ei

Ei−1
is semistable for all i, and µi(E) = µ

(
Ei

Ei−1

)
is a strictly

decreasing function of i .
A few definitions from [8] needed in the sequel are recalled.

Let 0 = E0 ⊂ E1 ⊂ .... ⊂ Es = E be the Harder-Narasimhan filtration of a
vector bundle E over C. Then

µ−(E) = µs(E) = µ
(

Es

Es−1

)

µ+(E) = µ1(E) = µ(E1)
or alternatively
µ+(E) = max {µ(S)|0 → S → E }
µ−(E) = min {µ(Q)|E → Q→ 0 }.
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It is also µ+(E) ≥ µ(E) ≥ µ−(E) with equality if and only if E is semistable.
In particular if C is an elliptic curve, an indecomposable vector bundle E on C is
semistable and hence µ(E) = µ−(E) = µ+(E).

The following definitions are standard in the theory of polarized varieties. A
good reference is [11]. A polarized variety is a pair (X,L) where X is a smooth
projective n-dimensional variety and L is an ample line bundle on X. Its sectional
genus, denoted g(X,L), is defined by 2g(X,L) − 2 = (KX + (n− 1)L)Ln−1. Given
any n-dimensional polarized variety (X,L) its ∆-genus is defined by ∆(X,L) =
dim(X) + Ln − h0(X,L). A polarized variety (X,L) has a ladder if there exists a
sequence of reduced and irreducible subvarieties X = Xn ⊃ Xn−1 . . . ⊃ X1 of X
where Xj ∈ |Lj+1| = |L|Xj+1

|. Each (Xj , Lj) is called a rung of the ladder. If L
is generated by global sections (X,L) has a ladder. A rung (Xj , Lj) is regular if
H0(Xj+1, L|Xj+1

) → H0(Xj , L|Xj
) is onto. The ladder is regular if all the rungs are

regular. If the ladder is regular ∆(Xj , Lj) = ∆(X,L) for all 1 ≤ j ≤ n. A variety
X ⊂ P

N is k-normal for some k ∈ Z if H0(PN ,OPN (k)) → H0(OX(k)) is onto.
Equivalently, if IX is the ideal sheaf of X, X is k-normal if h1(IX(k)) = 0. X is
projectively normal (p. n.) if it is k-normal for all k ≥ 1. A polarized pair (X,L)
with L very ample is called k-normal or projectively normal if X is k-normal or
p.n. in the embedding given by |L|. A polarized variety (X,L) with L very ample
is always 1-normal (linearly normal).

A line bundle L on X is normally (or simply) generated if the graded algebra
G(X,L) =

⊕
t≥0H

0(X, tL) is generated by H0(X,L). L is very ample and normally
generated if and only if (X,L) is p.n.

A variety X ⊂ P
N is k-regular, in the sense of Castelnuovo-Mumford, if for

all i ≥ 1 it is hi(IX(k − i)) = 0. A polarized pair (X,L) with L very ample is
k-regular if X is k-regular in the embedding given by |L|. If X is k-regular then it
is (k + 1)-regular.

2.2. General Results.
Let C be a smooth projective curve of genus g, E a vector bundle of rank n,

with n ≥ 2, over C and π : X = P(E) → C the projectivized bundle associated to E
with the natural projection π. Denote with T = OP(E)(1) the tautological sheaf and
with FP = π∗OC(P ) the line bundle associated with the fibre over P ∈ C. Let T
and F denote the numerical classes respectively of T and FP . In this work we refer
to a polarized variety (X, T ) as a scroll over a curve C if there is a vector bundle E
over C such that (X, T ) = (P(E),OP(E)(1)) and T is very ample.
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Remark 2.1. Let π : (P(E),OP(E)(1)) → C be a n-dimensional projectivized bundle
over a curve C. From Leray’s Spectral sequence and standard facts about higher
direct image sheaves (see for example [15] pg. 253) it follows that

H1
(
OP(E)(t)

)
= H1

(
C, StE

)
for t ≥ 0

Hi(OP(E)(t)) = 0 for i ≥ 2 and t > −n .

Let D ∼ aT + π∗B, with a ∈ Z, B ∈ Pic(C) and degB = b, then D ≡ aT + bF.
Moreover π∗(OP(E)(D)) = Sa(E)⊗OC(B) and hence µ−(π∗(OP(E)(D))=aµ−(E)+b
(see [8]).

Regarding the ampleness, the global generation, and the normal generation of
D, a few known criteria useful in the sequel are listed here:

Theorem 2.2 (Miyaoka [26])

Let E be a vector bundle over a smooth projective curve C of genus g, and

X = P(E). If D ≡ aT + bF is a line bundle over X, then D is ample if and only if

a > 0 and b+ aµ−(E) > 0 .

Lemma 2.3 (see e.g. [8], Lemma 1.12)

Let E be a vector bundle over C of genus g.

i) if µ−(E) > 2g − 2 then h1(C,E) = 0
ii) if µ−(E) > 2g − 1 then E is generated by global sections.

Lemma 2.4 (Butler [8], Theorem 5.1A)

Let E be a vector bundle on a smooth projective curve of genus g and let

D ≡ aT + bF be a divisor on X = P(E). If

(1) b+ aµ−(E) > 2g .

then D is normally generated.

A few basic facts on the Clifford Index of a curve are recalled. Good references
are [25] and [12]. Let C be a projective curve and L be any line bundle on C. The
Clifford index of L is defined as follows:

cl(L) = deg(L) − 2(h0(L) − 1).

The Clifford index of the curve is cl(C) = min {cl(L)|h0(L) ≥ 2 and h1(L) ≥ 2}. For
a general curve C it is cl(C) =

[
g−1
2

]
and in any case cl(C) ≤

[
g−1
2

]
. By Clifford’s
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theorem a special line bundle L on C has cl(L) ≥ 0 and the equality holds if and
only if C is hyperelliptic and L is a multiple of the unique g12 .

If cl(C) = 1 then C is either a plane quintic curve or a trigonal curve.

Theorem 2.5 ([12])

Let L be a very ample line bundle on a smooth irreducible complex projective

curve C. If

deg(L) ≥ 2g + 1 − 2h1(L) − cl(C)

then (C,L) is projectively normal.

3. The Eisenbud Goto conjecture for low values of ∆.

Let X ⊂ P
N be an n dimensional projective variety of degree d. A long standing

conjecture, known to us as the Eisenbud Goto conjecture, states that X should be
(d− (N − n) + 1)-regular, i.e. (degree− codimension+ 1)-regular.

Many authors worked on the conjecture for low values of the dimension and
codimension of X. A nice historic account is found in [22]. Some of their results are
collected in the following Theorem.

Theorem 3.1 ([14], [23])

If X ⊂ P
N is any smooth curve or any smooth surface then X is (d − c + 1)-

regular where d = deg (X) and c = codimension(X).

In this section we would like to offer a proof of the conjecture for linearly normal
smooth varieties with low ∆-genus. Let (X,L) be a polarized variety with L very
ample. The above conjecture can be restated for the embedding given by |L| in
terms of ∆-genus as follows:

Conjecture. Let (X,L) be a polarized variety with L very ample. Then (X,L) is
(∆ + 2)-regular.

Remark 3.2. It is straightforward to check that hypersurfaces of degree d are always
d-regular and not (d − 1)-regular. This shows that the conjecture is indeed sharp.
On the other hand there are varieties X ⊂ P

N which are k-regular for k < d− c+1.
This motivates Definition 3.4.
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Remark 3.3. It is a classical adjunction theoretic results that given (X,L) with L
very ample, KX + tL is globally generated, and in particular h0(KX + tL) �= 0,
for t ≥ n unless t = n and (X,L) = (Pn,OPn(1)). This fact, Remark 3.2 and the
sequence 0 → IX → OPN → OX → 0 suitably twisted show that no linearly normal
non degenerate n-dimensional variety X ⊂ P

N can be k-regular for k ≤ 1. Therefore
in what follows we will always assume k ≥ 2 when dealing with k-regularity.

Definition 3.4. Let X ⊂ P
N be a n-dimensional variety of degree d. Let

r(X) = Min
{
k ∈ Z|X is k − regular

}
.

A variety X is extremal if r(X) = d− (N −n)− 1. A polarized variety (X,L) with
L very ample is extremal if it is extremal in the embedding given by |L|, i.e. if
r(X,L) = Min {k ∈ Z|(X,L) is k − regular} = ∆ + 2.

In what follows we will prove the above conjecture for all linearly normal ma-
nifolds with ∆ ≤ 5 obtaining along the way the value of r(X,L) for most of the
same manifolds.

Lemma 3.5
Let X ⊂ P

N be a smooth n-dimensional variety and let Y ⊂ P
N−1 be a generic

hyperplane section.
i) If X is k-regular then Y is k-regular.
ii) If Y is k-regular and X is (k − 1)-normal then X is k-regular.
iii) If X is (r(Y ) − 1)-normal then r(X) = r(Y ) .

Proof. The exact sequence

(2) 0 → IX(k − i) → IX(k − i+ 1) → IY (k − i+ 1) → 0 .

immediately gives i). To see ii) consider again sequence (2). The k-regularity of Y
gives hi−1(IY (k − i+ 1)) = 0 for all i ≥ 2. Since k regularity implies k+1-regularity
it is hi(IY (k − i+ 1)) = 0 for all i ≥ 1. Therefore hi(IX(k − i)) = hi(IX(k − i+ 1))
for all i ≥ 2 from (2) and iteratively hi(IX(k − i)) = hi(IX(k − i+ t) for all i ≥ 2
and for all t ≥ 1. Letting t grow, Serre’s vanishing theorem gives hi(IX(k − i+ t) = 0
for all i ≥ 2 and all t ≥ 1 and thus hi(IX(k − i)) = 0 for all i ≥ 2. Because X is
assumed (k − 1)-normal it is h1(IX(k − 1)) = 0 which concludes the proof of ii).
Now iii) follows immediately from i) and ii). �

Lemma 3.6
Let (X,L) be a polarized variety with L very ample. Let Y ∈ |L| be a generic

element and assume H0(X,L) → H0(Y, L|Y ) is onto. Then i), ii), iii) as in
Lemma 3.5 hold if we replace X by (X,L) and Y by (Y, L|Y ).
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Proof. Let h0(L) = N+1. The surjectivity condition on the restriction map between
global sections of L and L|Y guarantees that |L|Y | embeds Y as a linearly normal
manifold in P

N−1 , therefore the same proof as in Lemma 3.5 applies. �

Remark 3.7. Let (X,L) be a polarized variety with L very ample. Let Y ∈ |L| be a
generic element and assume H0(X,L) → H0(Y, L|Y ) is onto. Then [11] Corollary 2.5
shows that if (Y, L|Y ) is projectively normal, so is (X,L). Therefore when the ladder
is regular and Y is p.n. Lemma 3.6 gives r(X,L) = r(Y, L|Y ).

Lemma 3.8

Let (C,L) be a projectively normal curve with g ≥ 1.
Then r(C,L) = Min {t ≥ 3|h1((t− 2)L) = 0} .

Proof. Let h0(L) = N + 1 so that C ⊂ P
N . It is h1(IC(k − 1)) = 0 for all k ≥ 2

because of the projective normality assumption. The sequence

0 → IC(k − i) → OPN (k − i) → (k − i)L→ 0

easily gives hi(IC(k − i)) = 0 for all i ≥ 3 and k ≥ 2.
The same sequence gives h2(IC(k − 2)) = h1((k − 2)L) and since h1(OC) =

g ≥ 1 it is r(C,L) = Min {t ≥ 3|h1((t− 2)L) = 0}. �
In order to apply the above lemmata in one occasion the projective normality

of a particular class of surfaces of degree nine needs to be established. The following
Lemma also improves [7]. Here F1 denotes the Hirzebruch rational ruled surface of
invariant e = 1, π : BltS → S denotes the blow up of a surface S at t points, Ei are
the exceptional divisors of the blow up, C0 = π∗(C0) denotes the pull back of the
line bundle associated with the fundamental section of F1 and f = π∗(f) the pull
back of the one associated with any fibre f of the natural projection p : F1 → P

1.

Lemma 3.9

Let (S,L) = (Bl12F1, 3C0 + 5f −
∑

iEi). Then (S,L) is projectively normal.

Proof. The projective normality of linearly normal degree nine surfaces was studied
in [7]. Let (S,L) be a surface of degree 9 and sectional genus 5, embedded in P

5.

The surface under consideration was established to be projectively normal unless its
generic curve section C is trigonal and L|C = KC −M +D where M is a divisor in
the g13 and D is a divisor of degree 4 giving a foursecant line for C. Therefore if S
were not p.n. it would admit an infinite number of k ≥ 4-secant lines. On the other
hand a careful study of the embedding shows that S contains only a finite number
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of lines and that the only lines with self intersection ≥ −1 are the 12 exceptional
divisors Ei. Thus the formulas contained in [24] can be used. A straightforward
calculation using [24] shows that S cannot have a infinite number of k ≥ 4-secants,
contradiction. �

Theorem 3.10

Let (X,L) be a n dimensional polarized pair, n ≥ 2, with a ladder. Assume

g = g(X,L) ≥ ∆(X,L) = ∆ and d = Ln ≥ 2∆ + 1. Then:

i) The curve section (C,L|C ) is k-regular if and only if (X,L) is k-regular and

r(X,L) = r(C,L|C ).
ii) Either ∆ = 0, 1 and (X,L) is extremal or ∆ ≥ 2 and r(X,L) = 3.

Proof. From [11] Theorem (3.5) and from the fact that a normally generated ample
line bundle is automatically very ample it follows that L is very ample, g = ∆,
the ladder is regular and every rung of the ladder is projectively normal. Therefore
Lemma 3.6 immediately gives i).

Then (X,L) is extremal if and only if the curve section (C,L|C ) is such. Ex-
tremal linearly normal curves were classified in [14] and they are either rational or
elliptic normal curves. Therefore (X,L) is extremal if and only if ∆ = g = 0, 1.
Now assume ∆ ≥ 2 and thus (X,L) not extremal. The curve section (C,L|C ) is em-
bedded in P

Mwhere M = d − ∆. Since hM (OPM (k −M)) = h0(OPM (−1 − k)) = 0
for all k ≥ 0 the sequence 0 → IC(k − i) → OPM (k − i) → OC(k − i) → 0 shows
that hi(IC(k − i)) = hi−1(OC(k − i)) for all i ≥ 2 and all k ≥ 0. Therefore, because
h1(OC) = g ≥ 2, it must be r(X,L) ≥ 3. If i ≥ 3 then clearly hi−1(OC(3 − i)) = 0
and thus hi(IC(3 − i)) = 0. It is also h2(IC(1)) = h1(OC(1)) = h1(L|C ) = 0 because
g = ∆ and d ≥ 2∆+1 > 2g−2. Since every rung of the ladder is projectively normal,
in particular h1(IC(2)) = 0 and thus (C,L|C ) is 3-regular. We can conclude that
r(X,L) = r(C,L|C ) = 3. �

Proposition 3.11

Let (X, T ) = (P(E), OP(E)(1)) be a scroll over an elliptic curve. Then

r(X, T ) = 3.

Proof. Because h2(IX) = h1(OX) = 1 it is r(X,L) ≥ 3. We need to show that
hi(IX(3 − i)) = 0 for all i ≥ 1. Notice that |T | embeds X into P

N as a variety
of degree d where N = d − 1. Let i = 1. It is known, cf. [8] and [2], that elliptic
scrolls are projectively normal, so h1(IX(2)) = 0. Let i = 2. From Remark 2.1 it
is h2(IX(1)) = h1(OX(1)) = h1(C,E). Because E is very ample it is µ−(E) > 0
which, by Lemma 2.3 implies h1(C,E) = 0.
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For i = N it is hN (OPN (3 −N)) = h0(OPN (−4)) = 0. Therefore it follows that
hi(IX(3 − i)) = hi−1(OX(3 − i)) for all i ≥ 3. Remark 2.1 gives hi−1(OX(3 − i)) = 0
for 3 ≤ i ≤ n+ 1 while clearly hi−1(OX(3 − i)) = 0 for i > n+ 1 since n = dimX.

Therefore hi(IX(3 − i)) = 0 for all i ≥ 3. �

Lemma 3.12

Let (P(E),OP(E)(1)) be a n-dimensional scroll over a curve of genus g ≥ 2. If

deg(E) > 2g − 2 then ∆ ≥ 2n+ g − 3.

Proof. Because d = deg(detE) = deg(E) > 2g − 2, it is h0(detE) = 1 + d − g by
Riemann Roch. Combining this with the inequality h0(detE) ≥ h0(E)+r−2 found
in [21], it follows that h0(E) ≤ d− n+ 3 − g and therefore ∆ ≥ 2n+ g − 3. �

Remark 3.13. Notice that the above Lemma 3.12 rules out the existence of scrolls
of degree 10 over a curve of genus g = 3 left as an open possibility in [10].

We can now prove the main theorems of this section. For ∆ ≤ 3 we establish
the conjecture and give the value of r(X,L) for all pairs. For ∆ = 4, 5 we establish
the conjecture and collect in a remark the known values of r(X,L).

Theorem 3.14

Let (X,L) be a n-dimensional polarized pair with X smooth, L very ample and

∆ ≤ 5. Then (X,L) is ∆ + 2-regular.

Proof. Because of Theorem 3.1 and Remark 3.2, the blanket hypothesis n ≥ 3 and
codimX ≥ 2 will be in place throughout this proof.

Case 1. ∆ ≤ 1
If ∆ = 0 then (X,L) is extremal by Theorem 3.10. Assume ∆ = 1, because

g = 0 implies ∆ = 0, see [11] Proposition (3.4), it is g ≥ 1. Because (X,L) is not a
hypersurface it is d ≥ 3 and again Theorem 3.10 gives (X,L) extremal.

Case 2. ∆ = 2
If g ≤ 1 then (X,L) must be a two dimensional elliptic scroll, see [11] Theo-

rem (10.2). Proposition 3.11 gives r = 3. Let g ≥ 2. Because X is not a hypersurface
it is h0(L) ≥ n+ 3. This implies ∆ ≤ d− 3 i.e. d ≥ 5 and then Theorem 3.10 gives
r = 3.
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Case 3. ∆ = 3
From [6] it follows that complete intersections of type (2, 3) have r = 4. Follow-

ing [18] Theorem 4.8 and section 7, it follows from Theorem 3.10 and Proposition 3.11
that the only varieties left to investigate are Bordiga threefolds scrolls in P

5. They
have the following resolution with N = 5.

(3) 0 → OPN (−4)⊕3 → OPN (−3)⊕4 → IX → 0 .

Equalities hN−1(IX(3 −N)) = h0(OPN ) = 1 and hi(IX(3 − i)) = 0 for all i ≥ 1 are
straightforward to see, therefore r = 3.

Case 4. ∆ = 4
Varieties with ∆ = 4 are classified. Let us follow the list of varieties given in [19]

Theorem 3. Threefolds in P
5 with d = 7, g = 5 or g = 6 have respective resolutions

as in (4) and (5) with N = 5.

0 → OPN (−5) ⊕OPN (−4) → OPN (−3)⊕3 → IX → 0 .(4)

0 → OPN (−5)⊕2 → OPN (−2) ⊕OPN (−4)⊕2 → IX → 0 .(5)

The resolutions (4) and (5) quickly show that r = 4. Complete intersections of type
(2, 2, 2) have r = 4 by [6]. Scrolls over a genus 2 curve must be two-dimensional
while elliptic scrolls are taken care of by Proposition 3.11.

Let now q = 0 and g = 4. If d ≥ 9 Theorem 3.10 gives r = 3. On the other hand
since ∆ = 4 and the codimension must be at least two, it follows that d ≥ 7. Let us
now compare the varieties under consideration with the lists of manifolds of degree
7 and 8 given in [18] and [20].

If d = 8 then X ⊂ P
6 is a threefold scroll over the quadric surface. Since q = 0

the ladder is regular. Consider the curve section (C,L|C ). Such a (C,L|C ) is known
to be non hyperelliptic (see [20]) and thus Theorem 2.5 gives (C,L|C ) p.n. Since
d = 8 > 2g− 2 = 6 it is h1(L|C ) = 0 and thus r(C,L|C ) = 3 by Lemma 3.8. Because
the ladder is regular r(X,L) = 3 by Remark 3.7.

If d = 7 then X ⊂ P
5 is Palatini’s scroll over the cubic surface. A resolution for

IX is found in [4]:

0 → OP5(−4)⊕4 → Ω1(−2) → IX → 0 .

A simple cohomological calculation gives r = 4.
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Case 5. ∆ = 5
Theorem 3.10 takes care of cases with g ≥ 5 and d ≥ 11. Manifolds with degree

d ≤ 10 were classified by various authors and we will examine them later in the
proof. Let us now assume d ≥ 11 and g ≤ 4. Because ∆ = 5 and elliptic scrolls are
dealt with in Proposition 3.11, it must be g ≥ 2. Varieties of low sectional genus were
classified in [18]. Let us follow the lists given there. If g = 2 scrolls over a curve are
the only manifolds to be considered. On the other hand such scrolls of genus 2 have
∆ = 2n (cf. [7]) so there are no manifolds to examine. If g = 3 scrolls over curves
are ruled out by Lemma 3.12 and scroll over P

2, having q = 0, are ruled out by [18]
Theorem 4.8 iv). If g = 4 scrolls over curves are again ruled out by Lemma 3.12.
Using standard numerical relations (see for example [9] ( 0.14)) one sees that there
are no hyperquadric fibrations of dimension n ≥ 3, g = 4, ∆ = 5 over P

1 or over an
elliptic curve. Let now (X,L) be a threefold which is a scroll over a surface (Y,L)
with q(Y ) = 0, g(X,L) = 4. Because h1(OX) = q(Y ) = 0, recalling that a general
hyperplane section of X is birational to Y and thus regular, the ladder is regular
and then ∆(X,L) = ∆(C,L|C ) = 4 by Riemann Roch.

Let us now consider the cases with d ≤ 10 by looking at the classification found
in [20], [9], [10]. The first non trivial case occurs with d = 8. (X,L) is a threefold in
P

5, admitting a fibration over P
1 with generic fibres complete intersections of type

(2, 2) in P
4. A resolution of the ideal of this variety can be found in [4]. A standard

cohomological calculation shows that r(X,L) = 4.
Let now d = 9. From [9] all varieties to be considered are threefolds in P

6

with g = 5, 6, 7 ≥ ∆ and d = 9 ≥ 2∆ − 1. Thus the ladder is regular, see [11]
Theorem 3.5. Let (S,L|S ) be the surface section and let (C,L|C ) be the curve section.
The projective normality of linearly normal surfaces of degree nine was studied in [7].
Comparing the list given there with [9] and using Lemma 3.9 (S,L|S ) is seen to be
projectively normal. Remark 3.7 then gives r(X,L) = r(S,L|S ) = r(C,L|C ). Let
now g = 5. Then h1(tLC) = 0 for all t ≥ 1 and from the structural sequence of C
in P

4 it is easy to see that r(C,L|C ) = 3 if and only if (C,L|C ) is 2-normal. On the
other hand [9] shows that in this case h1(OS) = 0 and since h1(LC) = 0 it must
be h1(LS) = 0 and thus h2(IS(1)) = 0. Now the 2-normality of (S,L|S ) implies
the 2-normality of C as can be seen from 0 → IS(1) → IS(2) → IC(2) → 0 and
therefore r(X,L) = 3.

Let now g = 6. First notice that since h0(LC) = 5 it is h1(LC) = 1 and thus
0 → IC(1) → OP4(1) → LC → 0 shows that h2(IC(1)) = h1(LC) = 1 i.e. (C,L|C )
cannot be 3-regular. Consider the sequence

(6) 0 → tLS → (t+ 1)L|S → (t+ 1)L|C → 0
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for all t ≥ 1. Because deg (t+ 1)L|C = 9(t + 1) > 2g − 2 it is h1((t + 1)L|C ) = 0
for all t ≥ 1. Therefore the above sequence gives h2(tL|S ) = h2((t + 1)L|S ) = 0
for all t ≥ 1 and thus h2(tL|S ) = 0 for all t ≥ 1 by Serre’s Theorem. From [9] we
know that q(S) = 0 and pg(S) = 1. Thus the sequence 0 → OS → L|S → L|C → 0
gives h1(L|S ) = h2(L|S ) = 0. Then the sequence (6) for t = 1 gives h1(2L|S ) = 0.
The sequence 0 → IS(2) → OP5(2) → 2L|S → 0 gives h2(Is(2)) = h1(2LS) = 0.
Then the sequence 0 → IS(2) → IS(3) → IC(3) → 0, recalling that (S,L|S ) is
projectively normal, gives h1(IC(3)) = h2(IS(2)) = 0, i.e. (C,L|C ) is 3-normal.
The structure sequence for C in P

4 then easily shows that (C,L|C ) is 4-regular and
thus r(X,L) = 4.

Let now g = 7. Noticing that h1(L|C ) = 2 and recalling from [9] that in this
case q(S) = 0 and pg(S) = 2, the same argument as above shows that (C,L|C ) is
not 3-regular but it is 4-regular thus r(X,L) = 4.

Let now d = 10. From [10] we see that h1(OX) = 0 and therefore the ladder of
these manifolds is regular. Following the list given in [10] let X be a sectional genus
6, codimension 4 Mukai manifold of dimension 3 or 4. The curve section (C,L|C )
is then a canonical curve in P

5 and as such it is projectively normal. Because
h1(KC) = 1, h1(2KC) = 0 and the ladder is regular, it follows from Lemma 3.8 and
Remark 3.7 that r(X,L) = r(C,L|C ) = 4.

Let now X be any of the remaining threefolds of degree 10 in P
7, all of which

have g = 5, according to [10]. Let (C,L|C ) be a generic curve section. From the
classification of manifolds with hyperelliptic section (see [5]) it follows that either X
is a hyperquadric fibration over P

1 or C is not hyperelliptic. In the latter case it is
cl(C) ≥ 1 and therefore Theorem 2.5 gives the projective normality of C. Because
g = 5 it is h1(L|C ) = 0 and then Lemma 3.8, the regularity of the ladder and
Remark 3.7 give r(X,L) = r(C,L|C ) = 3.

Let (X,L) π→P
1 now be a hyperquadric fibration. ConsiderW=P(OP1(1, 1, 1, 1))

and let T = OW (1). From [10] it follows that X ∈ |2T + π∗(OP1(2))| and L = T|X .
The higher vanishing hi(IX(k − i)) = 0 for i ≥ 2 required for the k-regularity of X
are easily obtained for all k ≥ 3 from the sequences

0 → IX(k − i) → OP7(k − i) → OX(k − i) → 0

0 → (k − 2 − i)T + π∗(OP1(−2)) → (k − i)T → OX(k − i) → 0

recalling Remark 2.1.
Notice that |T | embeds W in P

7 and the embedding is projectively normal, i.e.
H0(OP7(k)) → H0(W,OW (k)) is onto for all k ≥ 1. Therefore X is k-normal in the
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embedding given by T|X , for some k, if and only if H0(W,OW (k)) → H0(X,OX(k))
is surjective and this happens if and only if H1(W, (k − 2)T + π∗(OP1(−2)) = 0.

It is H1(W, (k − 2)T + π∗(OP1(−2))) = H1(P1,OP1(−2) ⊗ Sk−2OP1(1, 1, 1, 1)).
Combining Lemma 2.3 and the fact that µ−(OP1(−2) ⊗ Sk−2OP1(1, 1, 1, 1)) =

k − 4 it is H1(P1,OP1(−2) ⊗ Sk−2OP1(1, 1, 1, 1)) = 0 for all k ≥ 3. On the other
hand H1(P1,OP1(−2)) = 1 so r(X,L) = 3. �

Corollary 3.15

Let (X,L) be a n-dimensional polarized pair with X smooth, L very ample and

∆ ≤ 3. Then

i) (X,L) is extremal if and only if it is either a hypersurface or ∆ = 0, 1.
ii) If ∆ = 2 then r(X,L) = 3.
iii) If ∆ = 3 then r(X,L) = 3 unless (X,L) is a complete intersection of type (2, 3)
or a curve of genus 3 embedded in P

3 as a curve of type (2, 4) on a smooth quadric

hypersurface. In both these cases r(X,L) = 4.

Proof. From the proof of Theorem 3.14 there are only curves and surfaces with
∆ = 3 to consider. If X is a curve, since c ≥ 2, it must be g ≥ 3 and d ≥ 6. If
d ≥ 7 Theorem 3.10 gives r = 3. If d = 6 then X ⊂ P

3 and [18] section 7 gives three
possible types for X. X is linked to a twisted cubic by two cubic hypersurfaces, X
is of type (2, 4) on a smooth quadric or X is a complete intersection of type (2, 3).
In the first case IX has a resolution as in (3) for N = 3 and therefore r = 3. In the
second case X is not 2-normal and therefore r ≥ 4. By Theorem 3.1 r ≤ 5. By [14] X
cannot be extremal, therefore r = 4. From [6] it follows that complete intersections
of type (2, 3) have r = 4.

Assume n = 2. As above complete intersections of type (2, 3) have r = 4.
Following [18] Theorem 4.8 and section 7, it follows from Theorem 3.10 and Propo-
sition 3.11 that the only varieties left to investigate are Bordiga surfaces in P

4. They
have resolutions as in (3) with N = 4. It is straightforward to check r = 3. �

Corollary 3.16

Let (X,L) be a n-dimensional polarized pair with n ≥ 3, X smooth, L very

ample, ∆ = 4 and (X,L) not a hypersurface. Then r(X,L) = 3 unless (X,L) is

a complete intersection of type (2, 2, 2) or any threefold in P
5 of degree 7 in which

cases r(X,L) = 4.
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Proof. Immediate from the proof of Theorem 3.14. �

Corollary 3.17

Let (X,L) be a n-dimensional polarized pair with n ≥ 3, X smooth, L very

ample, ∆ = 5 and (X,L) not a hypersurface. Then r(X,L) = 3 unless (X,L) is in

the following list, in which cases r(X,L) = 4.
i) (X,L) ⊂ P

5 is a threefold of degree 8 fibered over P
1 with generic fibres complete

intersections of type (2, 2) (see [4]).

ii) (X,L) ⊂ P
6 is a threefold of degree 9, g = 6, obtained by blowing up a point on

a Fano manifold in P
7, (see [9]).

iii) (X,L) ⊂ P
6 is a threefold of degree 9, g = 7, obtained by a cubic section of a

cone over the Segre embedding of P
1 × P

2 ⊂ P
5, (see [9]).

iv) (X,L) ⊂ P
n+4 is a Mukai manifold of degree 10, n = 3, 4, g = 6, (see [10]).

Proof. Immediate from the proof of Theorem 3.14. �

4. Scrolls over curves of genus two

Let (X, T ) = (P(E),OP(E)(1)) be an n-dimensional scroll over a curve C of genus
2. From [7] (Lemma 5.2) it follows that ∆(X, T ) = 2n and h1(T ) = 0. These facts
will be used without further mention throughout this section. The same conclusions
can also be drawn from Lemma 2.3 and the following lemma:

Lemma 4.1

Let E be a rank r very ample vector bundle over a genus 2 curve. Then

µ−(E) > 3 and h1(C, St(E)) = 0 for t ≥ 1.

Proof. By induction on r. If r = 1 then E is semistable and very ample, therefore
µ−(E) = µ(E) ≥ 5. Let now r ≥ 2 and assume µ−(E) > 3 for every very ample
vector bundle of rank up to r − 1. From [21] it is c1(E) ≥ 3r + 1. If E is semistable
then µ−(E) = µ(E) = d

r ≥ 3 + 1
r > 3.

Let now E be non semistable. Then there is a quotient bundle E → Q→ 0 such
that rk(Q) < rk(E) and µ(Q) = µ−(E). Being a quotient of a very ample bundle
on a curve, Q is also very ample and by induction µ−(E) = µ(Q) ≥ µ−(Q) > 3.

Because µ−(St(E)) = tµ−(E) > 3t ≥ 3 it is h1(St(E)) = 0 from Lemma 2.3. �

Proposition 4.2

Let (X, T ) be a surface scroll over a curve of genus g = 2 with degree T 2 = d.
Then (X, T ) is projectively normal unless d = 8. In this case X is as in [20] (4.2).
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Proof. The projective normality of such scrolls up to degree 8 was studied in [2]
where the non projectively normal surfaces in the statement can be found. Let us
assume d ≥ 9. If E is semistable then µ−(E) = µ(E) = d/2 > 4 and therefore
(X, T ) is p.n. by Lemma 2.4. Let now E be non semistable. Then E admits a
Harder Narasimhan filtration of the form 0 → D → E where D is a line bundle. Let
now Q be the quotient line bundle 0 → D → E → Q→ 0. From the definition of µ−

it is µ−(E) = µ(Q) = degQ. Because E is very ample so must be Q. A line bundle
Q on a curve of genus 2 is very ample if and only if degQ ≥ 5. Thus µ−(E) > 4 and
(X, T ) is p.n. by Lemma 2.4. �

The above non projectively normal surface scrolls are such because they are
not 2-normal, (see [2]). Indeed the next Proposition and Lemma 4.1 show that
2-normality is equivalent to projective normality for scrolls of genus 2, extending a
result found in [28].

Proposition 4.3

Let (X, T ) = (P(E),OP(E)(1)) be a scroll over a smooth curve C of genus g

such that µ−(E) > 2g − 2. Then (X, T ) is projectively normal if and only if it is

2-normal.

Proof. If (X, T ) is p.n. it is obviously 2-normal.
To see the converse let n = dimX = rkE and let π : X → C be the natural

projection. Reasoning as in [28] Lemma 1.4, projective normality of (X, T ) follows
from the surjectivity of the maps

(7) H0
(
(j − 1)T

)
⊗H0(T ) → H0(jT ) for all j ≥ 2 .

This in turns follows, according to [27] Theorem 2, from the vanishing of

Hi
(
X, (j − 1 − i)T

)
= 0 for all n ≥ i ≥ 1 and for all j ≥ 2 .

Because i ≤ n and j ≥ 2 it is j − 1 − i > −n and therefore Remark 2.1 shows that
(X, T ) is p.n. if H1(X, (j − 2)T ) = H1(C, Sj−2E) = 0 for all j ≥ 2. The hypothesis
µ−(E) > 2g − 2 implies µ−(Sj−2E) = (j − 2)µ−(E) > 2g − 2 for all j ≥ 3. From
Lemma 2.3 it follows that H1(X, (j−2)T ) = 0 for all j ≥ 3. This gives all necessary
surjectivity in (7) but for j = 2. Thus (X, T ) is p.n. if H0(T ) ⊗H0(T ) → H0(2T )
is onto, i.e. if (X, T ) is 2-normal. �

Corollary 4.4

A scroll (X, T ) over a curve of genus 2 is p.n. if and only if it is 2 normal.
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Proof. Immediate from Proposition 4.3 and Lemma 4.1. �

Results on threefold scrolls are collected in the following proposition.

Proposition 4.5

Let (X, T ) = (P(E),OP(E)(1)) be a threefold scroll over a curve of genus 2. Let

d �= 12. Then (X, T ) fails to be projectively normal if and only if one of the following

cases occur

i) d = 11.
ii) d ≥ 13, E is not semistable and it admits a quotient E → E → 0 of rank two and

degree eight.

Proof. It is known, see [21] or [20] and [9], [10], that there do not exist threefold
scrolls of genus two and d ≤ 10. So assume d ≥ 11. Because h1(T ) = 0 it is h0(T ) =
d − 3. A simple computation shows that h0(X,OX(2)) = 4d − 6 > h0(OPd−4(2)) =
(d−2)(d−3)

2 if d ≤ 11, so that degree 11 scrolls cannot be 2-normal. Assume d ≥ 13.
If E is semistable then µ−(E) = µ(E) = d/3 > 4 and thus (X, T ) is p.n. by
Lemma 2.4. Let now E be not semistable. Assume E does not admit a degree 8 and
rank 2 quotient. All quotients E → Q→ 0 must be very ample and thus it must be
rankQ = 1 and degQ ≥ 5 or rankQ = 2 and degQ ≥ 9. Therefore for all Q it is
µ(Q) > 4 and thus µ−(E) > 4 and then (X, T ) is p.n. by Lemma 2.4.

Let now E be not semistable with a quotient E → E → 0 of degree 8 and rank
2. Notice that (P(E),OP(E)(1)) is one of the non 2-normal surfaces of degree eight
embedded in P

5 studied in [2]. Let D be the line bundle of degree d− 8 such that

(8) 0 → D → E → E → 0 .

Since d− 8 > 2 it is h1(D) = 0 and thus H0(E) = H0(E) ⊕H0(D). Therefore

(9) S2
(
H0(E)

)
= S2

(
H0(E)

) ⊕
H0(E) ⊗H0(D)

⊕
S2

(
H0(D)

)
.

Consider the sequence obtained by tensoring (8) with D:

(10) 0 → D ⊗D → E ⊗D → E ⊗D → 0 .

Because deg(D ⊗D) = 2(d− 8) > 2 and µ−(E ⊗D) = µ−(E) + µ−(D) = d− 4 > 2
it follows that h1(D ⊗D) = h1(E ⊗D) = 0 and thus H0(E ⊗D) = H0(D ⊗D) ⊕
H0(E ⊗D) and h1(E ⊗D) = 0. Considering now the exact sequence

(11) 0 → D ⊗ E → S2(E) → S2(E) → 0
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it follows that

(12) H0
(
S2(E)

)
= H0

(
S2(E)

) ⊕
H0(E ⊗D)

⊕
H0(D ⊗D) .

Putting together (12) and (9) it follows that the map φ : S2(H0(E)) → H0(S2(E))
decomposes as

[
S2(H0(E)) α→ H0(S2(E))

]
⊕

[H0(E) ⊗H0(D)
β→ H0(E ⊗D)]

⊕
[S2(H0(D))

γ→ H0(D ⊗D)] .

It was proven in [2] that α is not surjective, therefore φ cannot be surjective, i.e.
(X, T ) cannot be 2-normal. �

Remark 4.6. The existence of degree 11 and 12 threefold scrolls over curves of genus
2 is an open problem. If a degree 12 such scroll (X, T ) = (P(E),OP(E)(1)) exists
then it is not difficult to see that E must be semistable. If it were not semistable
then there would be a destabilizing subbundle F either of rank 1 such that degF > 4
or of rank 2 such that degF > 8.

In both cases the resulting quotient 0 → F → E → Q → 0 could not be very
ample for degree reasons, which is a contradiction.

Remark 4.7. Let (X, T ) = (P(E),OP(E)(1)) again be a 3 dimensional scroll over a
curve of genus 2. If (X,L) is projectively normal, recalling that h1(E) = 0, the same
argument used in Proposition 3.11 gives r(X,L) = 3. If (X,L) is not p.n., notice
that if d ≥ 13 it follows that h0(T ) ≥ 10 and thus (X, T ) is (∆ + 2)-regular, i.e.
8-regular from [29]. When d = 11, 12 it is easy to check that hi(IX(8 − i)) = 0 for
all i ≥ 2 while we were not able to establish the 7-normality of these manifolds.

5. P
r−1 bundles over an elliptic curve

Throughout this section let E be a vector bundle of rank r and degree d over
an elliptic curve C. Let (X, T ) = (P(E),OP(E)(1)) and let D be a divisor on X
numerically equivalent to aT+bF. AssumeD is very ample. The projective normality
of the embedding given by D was studied by Homma [16], [17] when r = 2, and in
a more general setting by Butler [8] (see also [2]). In this section the case of a = 2
and r = 3 is addressed and Butler’s results are improved in some cases.
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Lemma 5.1

Let E =
⊕

iEi be a decomposable vector bundle over an elliptic curve. Then

µ+(E) = max
i

{
µ(Ei)

}
.

Proof. This is essentially [1] Lemma 2.8, reinterpreted from the point of view of µ+

instead of µ−. �

Lemma 5.2

Let (X, T ) be as above and let Ms be a divisor on X whose numerical class is

Ms ≡ T + sF. Let m = min {t ∈ Z|h0(Mt) > 0
}
. Then m = −[µ+(E)] and there

exists a smooth S ≡ T +mF.

Proof. From [8] it follows that for any vector bundle G over an elliptic curve µ+(G) <
0 implies h0(G) = 0. For simplicity of notation let m∗ = −[µ+(E)].We need to show
that m = m∗. Let Lt be a line bundle on C with degree t. If t < m∗, then t = m∗−x
for some integer x ≥ 1. Then µ+(E⊗Lt) = µ+(E)+t = µ+(E)+m∗−x < 1−x ≤ 0.
Therefore h0(Mt) = 0 if t < m∗ and thus

(13) m∗ ≤ m.

Let now E be indecomposable and thus semistable. Because µ(E) = µ+(E) and
−m∗ ≤ µ+(E) it is d+ rm∗ ≥ 0. If d+ rm∗ > 0 then h0(Mm∗) > 0. If d+ rm∗ = 0
then, as in [3], a line bundle Lm∗ of degree m∗ can be found by a suitable twist of
degree zero, such that h0(E ⊗ Lm∗) = 1.

Let now E =
⊕

iEi be decomposable. Then h0(E) =
⊕

i h
0(Ei). Let Eî be one

of the components such that µ+(E) = µ(Eî). As Eî is indecomposable it follows from
above that there exists a line bundle Lm∗ of degree m∗ such that h0(Eî⊗Lm∗) > 0.

Therefore h0(Mm∗) > 0 and thus m ≤ m∗ which combined with (13) gives
m = m∗.

If S ≡ T + m∗F is singular it must be reducible as S′ ∪ (m∗ − t)F where
S′ ≡ T +tF with t < m∗ which is not possible because of the minimality of m∗ = m.
Therefore there must be a smooth S ≡ T +m∗F. �

Lemma 5.3

Let (X, T ) and D be as above with r = 3, a ≥ 2, and D very ample. If

i) there exists an ample smooth surface S ≡ T + xF for some x ∈ Z;
ii) (a− 1)µ−(E) + b− x > 1
then the embedding of X given by D is projectively normal if and only if it is

2-normal.
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Proof. If the embedding is p.n. it is obviously 2-normal. As in Lemma 4.3 the
projective normality follows from the surjectivity of the maps

(14) H0
(
(j − 1)D

)
⊗H0(D) → H0(jD) for all j ≥ 2 .

Assume j ≥ 4. Surjectivity in (14) follows, according to [27], from the vanishing of

Hi
(
X, (j − 1 − i)D

)
= 0 for all 3 ≥ i ≥ 1 and for all j ≥ 4 .

Notice that Rqπ∗((j − 1 − i)D) = Rqπ∗(a(j − 1 − i)T ) ⊗Mi,j where Mi,j is a line
bundle on C of degree (j−1− i)b. Notice also, e.g. [15], that Rqπ∗(a(j−1− i)T ) = 0
unless q = 0 and j−1−i ≥ 0, or q = 2 and a(j−1−i) ≤ −3. Since a ≥ 2, i ≤ 3 and j ≥
4, the last inequality is never satisfied . For j ≥ 4 Leray’s spectral sequence shows
that it is enough to show H1(X, (j − 2)D) = H1(C, Sa(j−2)E ⊗M1,j) = 0 which is
guaranteed by D being ample. This gives all necessary surjectivity in (14) but for
j = 2, 3. If j = 2 the map H0(D)⊗H0(D) → H0(2D) is onto by assumption, being
the embedding 2-normal. Assume now j = 3. Let S ≡ T+xF be the smooth element
whose existence is given by assumption i). Ampleness of D gives aµ−(E) + b > 0.
Combining this with condition ii) it follows from Lemma 2.3 that H1(tD − S) = 0
for t = 1, 2, 3. In particular, following Homma, the commutative diagram below is
obtained:

0 → H0(D − S) ⊗H0(2D) → H0(D) ⊗H0(2D) → H0(S,D|S ) ⊗H0(2D) → 0
↓α ↓β ↓γ

0 → H0(3D − S) → H0(3D) → H0(S, 3D|S ) → 0
(15)

The surjectivity of β will follow from the surjectivity of α and γ. From [16] and [17] it
follows that D|S is normally generated. Because H0(2D) → H0(2D|S ) is surjective
from above, it follows that γ is onto.

Lemma 2.3 and condition ii) give D − S ≡ (a − 1)T + (b − x)F generated by
global sections. Using this fact and noticing that H1(D + S) = 0 being D very
ample and S ample, it is straightforward to check that Hi(2D − i(D − S)) = 0 for
all i ≥ 1. Therefore by [27] α is onto. �

Proposition 5.4

Let (X, T ) and D ≡ 2T + bF be as above. If

i) there exists an ample smooth divisor Y ≡ T + xF for some x ∈ Z;
ii) µ−(E) + b− x > 1
then |D| gives a 2-normal embedding of X if |D|Y | gives a 2-normal embedding of

Y .
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Proof. The proof proceeds along the same lines of the case j = 3 in the proof
of Lemma 5.3. Let Y ≡ T + xF be the smooth element whose existence is given
by assumption i). Ampleness of D gives 2µ−(E) + b > 0. Combining this with
condition ii) it follows that H1(tD− Y ) = 0 for t = 1, 2. In particular the following
commutative diagram is obtained:

0 → H0(D − Y ) ⊗H0(D) → H0(D) ⊗H0(D) → H0(Y,D|Y ) ⊗H0(D) → 0
↓α ↓β ↓γ

0 → H0(2D − Y ) → H0(2D) → H0(Y, 2D|Y ) → 0 .
(16)

The surjectivity of β will follow from the surjectivity of α and γ.
Because H0(D) → H0(D|Y ) is onto from above and

H0(D|Y ) ⊗H0(D|Y ) → H0(2D|Y )

is onto by assumption it follows that γ is onto.
Condition ii) is equivalent to D − S ≡ T + (b− x)F being generated by global

sections (see Lemma 2.3 and [1] Lemma 2.9). Using this fact and noticing that
H1(Y ) = 0 being Y ample, it is straightforward to check that Hi(D− i(D−Y )) = 0
for all i ≥ 1. Therefore by [27] α is onto. �

Corollary 5.5

Let (X, T ) and D be as above with r = 3 and a = 2. If
i) µ−(E) > [µ+(E)]
ii) µ−(E) + b > 1 − [µ+(E)]
then |D| gives a projectively normal embedding.

Proof. Let x = −[µ+(E)], notice that condition i) and Theorem 2.2 give ampleness
of T + xF . Now combine Lemma 5.2, Lemma 5.3, Proposition 5.4 and the fact that
a very ample line bundle on a 2 dimensional scroll over an elliptic curve is always
normally generated by [16] and [17]. �
Remark 5.6. Let E be an indecomposable vector bundle of rank r = 3 and degree
d ≡ 1(3). For simplicity let us assume that E has been normalized, so d = 1. Since
E is indecomposable it is semistable and µ−(E) = µ+(E) = µ(E) = 1/3. The
hypothesis of Corollary 5.5 are satisfied for D ≡ 2T + F , and such a D is very
ample from [1] Theorem 4.5. Therefore |D| gives a projectively normal embedding.
Notice that Butler’s results [8], see Lemma 2.4, were not able to establish the normal
generation of such a D.

Remark 5.7. It is straightforward to check that for a divisor D as in Corollary 5.5
it is always h0(D) ≥ 10 and therefore the embedding given by |D| satisfies the
Eisenbud Goto conjecture (see [29]).
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