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Abstract

We study asymptotic behavior of solutions for a class of second order nonlinear
differential equations. Using Bihari’s inequality, we obtain conditions under
which all continuable solutions are asymptotic to at + b as t → +∞, where
a, b are real constants.

1. Introduction

In this paper, we are concerned with the nonlinear differential equation

u′′ + f(t, u, u′) = 0 (1)

which is used in modeling of a large number of physical systems.
In the study of the asymptotic behavior of solutions of differential equation

(1) the problem of establishing of conditions for the existence of solutions which
approach those of equation u′′ = 0, i.e., which behave like nontrivial linear functions
at + b as t → ∞ is of great interest.
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This problem has been treated recently by Constantin [4] and Dannan [6] for
the equation (1), while the particular case of equation (1)

u′′ + f(t, u) = 0 (2)

was discussed by Cohen [3] and Tong [11]; see also Bellman [1] and Trench [12] for
the linear case of the differential equation (2). All results cited above were obtained
using the Gronwall-Bellman inequality [1] and its generalizations due to Bihari [2]
and Dannan [6].

We mention also the recent results of Naito [7] and Philos and Purnaras [8]
concerning the nonlinear equation

u′′ + a(t)f(u) = 0

obtained by an averaging technique. For the detailed phase plane analysis of the
asymptotic behavior of solutions for autonomous nonlinear differential equation

u′′ + f(u, u′) = 0

including as a particular case celebrated Liénard equation we refer the reader to the
paper by Rogovchenko and Villari [10].

In this paper, we use the technique similar to that used by Constantin [4] to
prove results applicable to another class of systems and we note that our proofs are
simpler. We also give examples illustrating obtained theorems. In the sequel, it is
assumed that all solutions of equation (1) are continuously extendable throughout
the entire real axis. We note that the results in this paper pertain only to continuable
solutions of equations (1) and (2).

2. Main results
Theorem 1

Suppose that the function f(t, u, v) satisfies the following conditions:

(i) f(t, u, v) is continuous in D = {(t, u, v) : t ∈ [t0,∞), u, v ∈ R}, where t0 ≥ 1;

(ii) there exist continuous functions h, g : R+ → R+ such that

| f(t, u, v) |≤ h(t) g

( | u |
t

)
| v |,

where for s > 0 the function g(s) is positive and nondecreasing,

∫ ∞

t0

h(s) ds < ∞,



On the asymptotic behavior of solutions 115

and if we denote

G(x) =
∫ x

t0

ds

sg(s)
,

then G(+∞) = +∞.

Then every solution u(t) of equation (1) is asymptotic to at + b, where a, b are

real constants.

Proof. It follows from (i) by standard existence theorems (see, for example, [5,
Existence Theorem 3]) that equation (1) has solution u(t) corresponding to the
initial data u(t0) = c1, u′(t0) = c2.

Two times integrating (1) from t0 to t , we get for t ≥ t0

u′(t) = c2 −
∫ t

t0

f
(
s, u(s), u′(s)

)
ds, (3)

u(t) = c2(t− t0) + c1 −
∫ t

t0

(t− s) f
(
s, u(s), u′(s)

)
ds. (4)

It follows from (3) and (4) that for t ≥ t0

| u′(t) |≤| c2 | +
∫ t

t0

| f
(
s, u(s), u′(s)

)
| ds,

| u(t) |≤ (| c1 | + | c2 |)t + t

∫ t

t0

| f
(
s, u(s), u′(s)

)
| ds,

so applying (ii) we get for t ≥ t0

| u′(t) |≤| c2 | +
∫ t

t0

h(s) g

( | u(s) |
s

)
| u′(s) | ds, (5)

| u(t) |
t

≤| c1 | + | c2 | +
∫ t

t0

h(s) g

( | u(s) |
s

)
| u′(s) | ds. (6)

Denote by z(t) the right-hand side of inequality (6):

z(t) =| c1 | + | c2 | +
∫ t

t0

h(s) g

( | u(s) |
s

)
| u′(s) | ds,

then (5) and (6) imply that

| u′(t) |≤ z(t),
| u(t) |

t
≤ z(t). (7)
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The function g(s) is nondecreasing for s > 0, and hence we get by (7)

g

( | u(t) |
t

)
≤ g

(
z(t)

)
,

so we conclude that for t ≥ t0

z(t) ≤ 1+ | c1 | + | c2 | +
∫ t

t0

h(s) g
(
z(s)

)
z(s) ds. (8)

Applying Bihari’s inequality [2] to (8), we get for t ≥ t0

z(t) ≤ G−1

(
G(1+ | c1 | + | c2 |) +

∫ t

t0

h(s) ds

)
,

where
G(w) =

∫ w

t0

ds

sg(s)

and G−1(w) is the inverse function of G(w) which is defined for w ∈
(
G(+0),+∞

)
,

G(+0) < 0, and it is increasing.
Now put

K = G(1+ | c1 | + | c2 |) +
∫ ∞

t0

h(s) ds < ∞.

Since G−1(w) is increasing, we get

z(t) ≤ G−1(K) < ∞,

so it follows from (7) that

| u(t) |
t

≤ G−1(K) and | u′(t) |≤ G−1(K).

By (ii), we have

∫ t

t0

| f
(
s, u(s), u′(s)

)
| ds ≤

∫ t

t0

h(s) g

( | u(s) |
s

)
| u′(s) | ds

≤ | c1 | + | c2 | +
∫ t

t0

h(s) g

( | u(s) |
s

)
| u′(s) | ds = z(t) ≤ G−1(K),

therefore ∫ ∞

t0

| f
(
s, u(s), u′(s)

)
| ds
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exists, as well as there exists an a ∈ R such that

lim
t→∞

u′(t) = a.

Further, in the same way as in [1, 3, 11], we can ensure that there exists a
solution with the property

lim
t→∞

u′(t) �= 0.

Finally, by the l’Hospital’s rule, we conclude that

lim
t→∞

| u(t) |
t

= lim
t→∞

u′(t) = a

and thus there exists a b ∈ R such that

lim
t→∞

{u(t) − (at + b)} = 0,

so the proof is now complete. �

Example 1: Consider the nonlinear differential equation

u′′ − 2t
(t + 1)2(t + 2)

u3

u3 + t3
ln(1 + u2)

u′

2 + cos(u′)
= 0. (9)

Applying Theorem 1, we deduce that for any solution u(t) of equation (9)
there exist real a, b such that u(t) = at + b + o(t) as t → ∞.

Theorem 2

Suppose that apart from assumption (i) of Theorem 1 the function f(t, u, v)
satisfies the following condition, (ii′) there exist continuous functions h, g : R+ →
R+ such that

| f(t, u, v) |≤ h(t)
| u |
t

g(| v |),

where for s > 0 the function g(s) is positive and nondecreasing,∫ ∞

t0

h(s) ds < ∞,

and if we denote

G(x) =
∫ x

t0

ds

sg(s)
,

then G(+∞) = +∞.

Then every solution u(t) of equation (1) is asymptotic to at + b, where a, b are

real constants.
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The proof of the theorem is analogous to that of Theorem 1 and thus it is
omitted.

Corollary 1 [1, Theorem 5, p. 114]

Consider the equation

u′′ + a(t)u = 0 (10)

where ∫ ∞
t|a(t)| dt < ∞.

Then limt→∞ u′ exists, and the general solution of equation (10) is asymptotic

to d0 + d1t as t → ∞, where d1 may be zero, or d0 may be zero, but not both

simultaneously.

Proof. The conclusion of corollary follows from Theorem 2 with

h(t) = t a(t), g(s) ≡ 1. �

Example 2: Consider the nonlinear differential equation

u′′ +
1

t3 + 1
u

2 + sin(u)
ln

(
1 + (u′)2

)
ln

(
ln

(
1 + (u′)2

))
= 0. (11)

It follows from Theorem 2 that for any solution u(t) of equation (11) there
exist real a, b such that u(t) = at + b + o(t) as t → ∞.

Finally, arguing in the same way as in Theorem 1, we can also prove the following
general result which with g2(s) ≡ s gives us exactly Theorem 1 and with g1(s) ≡ s

gives us exactly Theorem 2.

Theorem 3

Suppose that apart from the assumption (i) of Theorem 1 the function f(t, u, v)
satisfies the following condition, (ii′′) there exist continuous functions h, g1, g2 :
R+ → R+ such that

| f(t, u, v) |≤ h(t) g1

( | u |
t

)
g2(| v |),

where for s > 0 the functions g1(s) and g2(s) are positive and nondecreasing,

∫ ∞

t0

h(s) ds < ∞,
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and if we denote

G(x) =
∫ x

t0

ds

g1(s)g2(s)
,

then G(+∞) = +∞.

Then every solution u(t) of equation (1) is asymptotic to at + b, where a, b are

real constants.

Corollary 2 (cf. [1, Chapter 7, Theorems 1–8]).
Consider the well-known Emden-Fowler equation

u′′ + tσun = 0 (12)

with 0 < n < 1 and σ + 2 < 0.
Then limt→∞ u′ exists, and all solutions of equation (12) are asymptotic to

d0 + d1t as t → ∞.

Proof. The conclusion of corollary follows from Theorem 3 with

h(t) = tσ+n, g1(s) = sn, g2(s) ≡ 1. �

Example 3: Consider the nonlinear differential equation

u′′ − a(t)
(

u2

u2 + t2

)k (
u′

1 + max (u′, 0)

)1−k

= 0, (13)

where

a(t) =
2(3 − t2)(2t4 + 2t2 + 1)k(2t4 + 5t2 + 1)1−k

(t2 + 1)3t1+2k(t2 + 3)1−k

and k ∈ (0, 1).
Then Theorem 3 implies for any solution u(t) of equation (13) the existence

of real numbers a, b such that u(t) = at + b + o(t) as t → ∞.
Observe that

u(t) =
t3

t2 + 1
is the solution of equation (13) with the initial data

u(1) = 1/2, u′(1) = 1,

which is asymptotic to t as t → ∞.

We stress that the results of Constantin [4, Theorems 1 and 2] can not be
applied to equations (9) and (11), while equation (13) is of interest since it has the
exact solution.
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Remark. It is important to note that by Theorems 1–3 and Corollaries 1 and 2 all
solutions of equations (1), (10) and (12) respectively are asymptotic to at + b as
t → ∞, though the restrictions on the function f(t, u, u′) may seem to be artificial.
It is possible to relax these assumptions for a certain rather wide class of functions
(see [6]), though the price to be paid for it is the desired asymptotic behavior only
for a part of solutions of equation (1) with initial data satisfying a certain estimate
(we refer to [9] for the details).
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