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Abstract

The extension of finitely additive measures that are invariant under a group per-
mutations or mappings has already been widely studied. We have dealt with this
problem in [15] and [16] from the point of view of Hahn-Banach’s theorem and
von Neumann’s measurable groups theory. In this paper we construct countably
additive measures from a close point of view, different to that of Haar’s Measure
Theory.

We will use the following notations:
(i) Ω will be a non-empty set.
(ii) T will be a group of permutations, i.e., one-to-one mappings from Ω

onto Ω.
(iii) Σ will be a σ-algebra of subsets of Ω such that τE ∈ Σ for all E ∈ Σ

and τ ∈ T.
(iv) µ will be a countably additive (c.a.) probability measure defined on Σ .

We will write τµ to denote the measure define by τµ(E) = µ(τ−1(E)) for
all E ∈ Σ and τ ∈ T, where τE = {τx: x ∈ E} .

A case to be considered is that in which Σ is the class of all the subsets of Ω .
If Ω is a topological space, the cases in which Σ is the class of either Baire or Borel
sets (or a class containing these) are interesting.

1 Supported in part DGICYT grant PB94-0243.
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Proposition 1

Let µ be a countably additive measure. The following statements are equiva-

lent:

(i) The family (τµ: τ ∈ T ) is uniformly countably additive.

(ii) For any sequence S ⊆ T, the sequence (τµ: τ ∈ S) is uniformly countably

additive.

(iii) If (En) is a sequence of pairwise disjoint subsets En ∈ Σ , then limn τµ(En) = 0
uniformly in τ ∈ T.
(iv) If (En) is a non-increasing sequence of subsets En ∈ Σ such that limnEn = ∅ ,
then limn τµ(En) = 0 uniformly in τ ∈ T .

(v) If (En) is a non-increasing sequence of subsets En ∈ Σ, then limn τµ(En) exists

uniformly in τ ∈ T.
(vi) If (En) is a non-decreasing sequence of subsets En ∈ Σ , then limn τµ(En)
exists uniformly in τ ∈ T.

Proof. From [5, I. 1. Proposition 17] it follows that (i), (ii) and (iii) are equivalent.
On the other hand we have that (i) ⇒ (vi) ⇒ (v) ⇒ (iv) ⇒ (iii) as in [5, I. 1.
Corollary 18]. �

Definition 1. We will say that the pair (µ, T ) is uniformly countably additive
whenever the family (τµ: τ ∈ T ) is uniformly countably additive.

If µ is a measure that is invariant with respect to the group T, then (µ, T ) is
uniformly countably additive. The same conclusion holds if T is a finite group.

Proposition 2

Let X be a Köthe space such that X is σ-order continuous on the probability

space (Ω,Σ, µ) and let Uτf(ω) = τf(ω) = f(τ−1ω) for all f ∈ X and τ ∈ T.

Suppose that µ(E) = 0 implies µ(τE) = 0 for all τ ∈ T and

∣∣‖f‖∣∣ = sup
{
‖τf‖: τ ∈ T

}
<∞

for all f ∈ X. Then
∣∣‖ · ‖∣∣ is an equivalent norm to ‖ · ‖ on X such that

∣∣‖τf‖∣∣ =∣∣‖f‖∣∣ for every f ∈ X and every τ ∈ T, and (µ, T ) is uniformly countably additive.
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Proof. First of all we will prove that X∣∣‖·‖∣∣ is a Banach space. With this aim,

since X‖·‖ is a Banach space it will be enough to prove that {f :
∣∣‖f‖∣∣ ≤ r} is a

closed subset of X‖·‖ . Indeed, let
∣∣‖fn‖∣∣ ≤ r for all n ∈ N and let f ∈ X be

such that ‖fn − f‖ → 0 . Passing to a subsequence if necessary we may suppose
limn fn(ω) = f(ω) almost everywhere, and so limn fn(τ−1ω) = f(τ−1ω) a.e. and
limn |τfn|(ω) = |τf |(ω) a.e. since µ(τE) = 0 whenever µ(E) = 0 .

As X is σ-order continuous we have X ′ = X∗ [10, 1.b.17, p. 29], so that if
g ∈ X ′, ‖g‖ ≤ 1 , Fatou’s theorem implies

∫
Ω

|g| |τf | dµ ≤ limn

∫
Ω

|g| |τfn| dµ

≤ limn ‖τfn‖ ≤ r

and therefore ‖τf‖ ≤ r for all τ ∈ T, and
∣∣‖f‖∣∣ ≤ r .

Now, since X∣∣‖·‖∣∣ → X‖·‖ is a continuous linear biyective mapping between two

Banach spaces, from Banach’s homomorphism theorem it follows that this mapping
is an isomorphism and there exists k > 0 such that

‖f‖ ≤
∣∣‖f‖∣∣ ≤ k‖f‖

for all f ∈ X. If (En) is a non-increasing sequence in Σ with limnEn = ∅, since X
is σ-order continuous we have limn ‖χEn‖ = 0 and, as

∣∣‖χEn‖
∣∣ ≤ k‖χEn‖ , it follows

that limn ‖τχEn
‖ = 0 and limn τµ(En) = 0 uniformly in τ ∈ T. If X = Lp(µ) we

have τµ(E) ≤ kpµ(E) for each E ∈ Σ and each τ ∈ T (1 ≤ p <∞) . �

Remark. If µ(E) = 0 does not imply µ(τE) = 0 for every τ ∈ T, then
∣∣‖ · ‖∣∣ is

not equivalent to ‖ · ‖ .

Proposition 3

Let X be a reflexive Köthe. Then, provided
∣∣‖f‖∣∣ = sup { ‖τf‖: τ ∈ T} <∞ ,

the limit

fτ = lim
n

1
n

n−1∑
k=1

τkf

exists in the norm topology for all f ∈ X, and

∣∣‖fτ‖∣∣ = min
{ ∣∣‖fτ − g‖

∣∣: g ∈ Yτ }
,

where Yτ =
{
τh− h: h ∈ X

}
. Moreover, if τ∗ = U∗

τ is the adjoint of the operator

Uτ defined by Uτf = τf, we have τ∗g = g for all g ∈ Zτ = Y τ⊥(⊆ X∗ = X ′) .
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Proof. The existence of the limit defining fτ follows from [6, VIII.5.4] since X is
a reflexive space. Let f = τh− h , h ∈ X. Then

lim
n

∣∣∣∣∣
∥∥∥ 1
n

n−1∑
k=1

τkf
∥∥∥

∣∣∣∣∣ = lim
n

1
n

∣∣‖τnh− h‖∣∣

≤ 2 lim
n

∣∣‖h‖∣∣
n

= 0 .

Moreover, if uj = τhj − hj → f it turns out that

lim
n

∣∣∣∣∣
∥∥∥ 1
n

n−1∑
k=1

τkf
∥∥∥

∣∣∣∣∣ ≤ lim
n

∣∣∣∣∣
∥∥∥ 1
n

n−1∑
k=1

τk(f − uj)
∥∥∥

∣∣∣∣∣

+ lim
n

∣∣∣∣∣
∥∥∥ 1
n

n−1∑
k=1

τkuj

∥∥∥
∣∣∣∣∣ ≤

∣∣ ‖f − uj‖
∣∣

and therefore fτ = 0 for each f ∈ Yτ .
On the other hand, since τfτ = fτ , we have that fττ = fτ and

∣∣ ‖fτ‖ ∣∣ =
∣∣ ‖(fτ − (τh− h))τ‖

∣∣ ≤ ∣∣‖fτ − (τh− h)‖
∣∣

so that ∣∣ ‖fτ‖ ∣∣ = min
{ ∣∣ ‖fτ − g‖

∣∣: g ∈ Yτ }
.

Finally, if g ∈ Zτ = Y ⊥
τ , we have

(
h, τ∗g − g) = (τh− h, g) = 0

for all h ∈ X, and therefore τ∗g = g for all g ∈ Zτ . �

Proposition 4

Under the conditions of Proposition 3, if µ(f) =
∫
Ω
fdµ the following state-

ments are equivalent:

(i) µ(τf) = µ(f) for all f ∈ X.

(ii) χΩ ∈ Zτ = Y ⊥
τ .

(iii) τ∗ = τ−1.
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Proof. (i) ⇔ (ii): It is enough to take into account that

µ(τf) − µ(f) =
(
τf − f, χΩ

)

for all f ∈ X.
(i) ⇒ (iii): Since X∗ = X ′ it follows that

(τf, g) =
∫

Ω

(τf)gdµ =
∫

Ω

f
(
τ−1g

)
dµ =

(
f, τ−1g

)

for all f, g ∈ X [10, 1.b.17 and 1.b.18].
(iii) ⇒ (ii): As τ∗ = τ−1 we have

(
τf − f, χΩ

)
=

(
f, τ−1χΩ − χΩ) = 0

for all f ∈ X and therefore χΩ ∈ Y ⊥
τ = Zτ . �

It should be noted that Propositions 3 and 4 involve a generalization of the
Mean Ergodic Theorem [6, VIII].

Proposition 5

Let M1(Ω) be the linear space of all finite Radon measures on a Hausdorff

topological space Ω, and let M1
+(Ω) be the corresponding cone of positive measures.

Then, if A = {τµ: τ ∈ T} ⊆ M1
+(Ω), the following statement are equivalent:

(i) (µ, T ) is uniformly countably additive.

(ii) For every ε > 0 and universally bounded Lusin- measurable function f on Ω
there exists a compact subset K ⊆ Ω such that the restriction f |K is continuous

and µ̄(Ω\K) < ε for every µ ∈ A.

(iii) A is uniformly innerly regular, i.e., for every Borel subset B ⊆ Ω and for every

ε > 0 there exists a compact subset K ⊆ B such that µ(B\K) < ε for every

µ ∈ A.

Proof. It follows from [9, Theorem 15]. The equivalence between (i) and (iii) when
Ω is a compact space was proved in [5, VI.2, Lemma 13]. �

Proposition 6

Let Ω be a Stonean space and suppose that τf ∈ C(Ω) for all f ∈ C(Ω) and

τ ∈ T . If for every sequence S ⊆ T the closed subspace XS ⊆ X = l∞(S) spanned

by {(µ(τf))τ∈S : f ∈ C(Ω)} contains no isomorphic copy of l∞, then (µ, T ) is

uniformly countably additive.
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Proof. Since Ω is a Stonean space and XS does not contain any copy of l∞,
the bounded linear operator T : C(Ω) → XS defined by T (f) = (µ(τf))τ∈S is
weakly compact (by virtue of [5, VI.2, Theorem 10 (Rosenthal)]). So, From [5, VI.2,
Theorem 5] it follows that the measure G(E) = (µ(TχE))τ∈S = (µ(τE))τ∈S is
countably additive on the σ-algebra of Borel sets, and therefore (µ, T ) is uniformly
countably additive. �

It should be noted that if µ is a measure which is invariant under T, then every
space XS is isomorphic to R and therefore XS does not contain any isomorphic
copy of l∞ .

Proposition 7

If the pair (µ, T ) is uniformly countably additive, then there exists a probability

measure λ: Σ → R such that

lim
λ(E)→0

τµ(E) = 0

uniformly in τ ∈ T and

0 ≤ λ(E) ≤ sup
τ∈T

τµ(E) .

Therefore, λ(E) → 0 if and only if supτ∈T τµ(E) → 0 . Moreover, there exists a

sequence (τn) ⊆ T such that

λ(E) =
∑
n∈N

anτnµ(E)

for all E ∈ Σ , where a = (an)n∈N ∈ l1 verifies ‖a‖1 = 1 and an ≥ 0 .

Proof. Since µ is a countably additive probability measure, this result is a conse-
quence of [5, I.2 Theorem 4 and its proof and Corollary 5]. �

Proposition 8

Suppose that the pair (µ, T ) is uniformly countably additive. Then, for every

σ ∈ T there exists a countably additive measure µσ such that µσ(σE) = µσ(E)
for all E ∈ Σ and 0 ≤ µσ(E) ≤ supτ∈T µ(τE) , µσ(Ω) = 1 .
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Proof. Let “Limn” be a Banach’s generalized limit on l∞ [12, 7.2]. Then

µσ: µσ(E) = Limn µ
(
σnE

)
(E ∈ Σ)

is a finitely additive measure, invariant under σ, that is µσ(σE) = µσ(E) , with
µσ(Ω) = µ(Ω) = 1 . Let (En) be a sequence in Σ such that En ↘ ∅ . Then
λ(En) → 0 for the measure λ of Proposition 7, and therefore limn µ(τEn) = 0
uniformly in τ ∈ T , which implies limn µσ(En) = 0 and µσ is a countably additive
measure. Finally, it is clear that 0 ≤ µσ(E) ≤ supτ∈T µ(τE) for all E ∈ Σ . �

Proposition 9

Suppose that (µ, T ) is uniformly countably additive. Then, if T is a com-

mutative group, there exists a c.a. probability measure ν: Σ → R such that ν is

invariant under T and 0 ≤ ν(E) ≤ supτ∈T µ(τE) .

Proof. We will use transfinite induction. Suppose (µρ)ρ<α is a well ordered family
of probability measures such that 0 ≤ µρ(E) ≤ supτ∈T τµ(E) and let (Tρ)ρ<α be
an increasing family of subsets of T such that Tρ+1\Tρ is a singleton for ρ+1 < α ,
and Tρ = ∪{Tσ: σ < ρ} whenever ρ is a limit ordinal (i.e. which has no immediate
predecessor) and µρ(τE) = µρ(E) for all τ ∈ Tρ. Then, if α has an immediate
predecessor and σ ∈ T\Tρ , ρ = α− 1 , we put

µα(E) = Limn µρ(σnE)

as in Proposition 8, for all E ∈ Σ and Tα = Tρ ∪ {σ} . If α is a limit ordinal we
put

µα(E) = lim
ρ,U

µρ(E) and Tα =
⋃
ρ<α

Tρ (E ∈ Σ)

where U is an ultrafilter on [1, α) converging to α, i.e., containing the subsets
[ρ, α) with ρ < α .

It is easy to check that the measure µα: Σ → R satisfies the identity µα(τE) =
µα(E) for all τ ∈ Tα and 0 ≤ µα(E) ≤ supτ∈T τµ(E) since T is a commutative
group.

Finally, in the same way as in Proposition 8, it turns out that µα is a countably
measure, and since there exists α such that Tα = T, the theorem is obtained. �
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Now we are going to extend the proposition, with some restrictions, to non
commutative group.

Definition 2. A group G is called perfect [15] if for any finite subset {α1, α2, . . . ,

αi0 β1, β2, . . . , βj0} of G we can find another subset of G {ξ1, ξ2, . . . , ξh0 ; η1, η2, . . . ,
ηk0) such that a bijective mapping ϕ can be defined between the sets {(h, i): 1 ≤
h ≤ h0 , 1 ≤ i ≤ i0} and {(k, j): 1 ≤ k ≤ k0 , 1 ≤ j ≤ j0} in such a way that
ξhαi = ηkβj whenever (k, j) = ϕ(h, i) .

It is easily seen that both commutative and finite groups are perfect.

Definition 3. We will say that a family {Gλ: λ ∈ Λ} of subsets of the group G

is a normal transfinite series of G [15] if Λ is a well ordered set with last element
verifying the following conditions:

1. Gλ∗ = {e} and Gλ∗ = G , where e is the unit in G and λ∗ and λ∗ are
first and last element of G respectively.

2. If λ is not a limit ordinal and λ−1 is the immediate predecessor of λ, Gλ−1

is a normal divisor of Gλ .

3. If λ is a limit ordinal then Gλ = ∪{Gλ′ : λ′ < λ} .
The groups Gλ+1/Gλ (λ < λ∗) are called the quotient groups of the transfinite

normal series {Gλ: λ ∈ Λ} .

Definition 4. A group G is said to be accessible (respectively resoluble) whenever
there exists a normal transfinite series of G whose quotient groups are perfect (resp.
commutative).

Theorem 10

Let us suppose the following:

(i) T is a group of bijective mappings from Ω onto Ω .
(ii) X = L∞(Σ) (or B(Σ)) .
(iii) P is the set whose elements are the functions are the functions p:X → R such

that

p(x+ y) ≤ p(x) + p(y) (x, y ∈ X)

and

p(c τx) = c p(x) (x ∈ X)

where c ∈ R
+ and τ ∈ T .

(iv) F is the set of linear functionals f : D(f) → R , where D(f) ⊆ X is the domain

of f, such that

f(c τx) = cf(x)
(
x ∈ D(f)

)
.
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for all c ∈ R and τ ∈ T in such a way that x ∈ D(f) implies τ x ∈ D(f).
Then, if p0 ∈ P and f0 ∈ F verify f0(x) ≤ p0(x) for all x ∈ D(f0) we can

find two functions p ∈ P and f ∈ F such that:

1. p ≤ p0 and f ⊇ f0 (the latter means that f is an extension of f0).

2. For each x ∈ X and y ∈ D(f) it follows that

f(y) = p(x+ y) − p(x) = p(y) .

3. If q ∈ P satisfies the inequality f0(x) ≤ q(x) for all x ∈ D(f0) and q ≤ p,

then q = p .

4. If g ∈ F is such that g(x) ≤ p(x) for all x ∈ D(g) , then g ⊆ f.

5. Finally, if T is either an accessible or resoluble group, then D(f) = X.

Proof. The result follows from [15, Theorems 4 and 8].

Theorem 11

If (µ, T ) is uniformly countably additive, where T is either an accessible or

resoluble group, then there exists a countably additive probability measure ν: Σ →
R invariant under the group T verifying

0 ≤ ν(E) ≤ sup
τ∈T

τµ(E)

for each E ∈ Σ .

Proof. Let

p0(x) = sup
τ∈T

∫
Ω

∣∣τµ∣∣ dµ
and

f0
(
c χΩ

)
= c ,

where x ∈ X = L∞(Σ) , c ∈ R and D(f0) = {c χΩ: c ∈ R} .
Then, by Theorem 10, there exists a linear function f ⊇ f0, with f ∈ F,

such that f(y) = p(y) ≤ p0(y) for nay y ∈ D(f) = X. Therefore, if ν(E) =
f(χE) (E ∈ Σ) , it follows that ν(Ω) = 1 .

If E1, E2 ∈ Σ are disjoint, then

ν
(
E1 ∪ E2

)
= f

(
χE1∪E2

)
= f(χE1) + f

(
χE2

)
= ν(E1) + ν(E2) .
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From this, and taking into account that ν(E) ≤ p0(χ(E)) ≤ 1 , it follows that

ν(E) = 1 − ν(Ω − E) ≥ 0

and
ν(τE) = f(τχE) = f(χE) = ν(E)

for E ∈ Σ and τ ∈ T .
The measure ν is countably additive. Indeed, it is finitely additive and if (En)

is a sequence in Σ such that En ↘ ∅ , we have λ(En) → 0 and therefore

0 ≤ ν(En) ≤ p0(χEn
) = sup

τ∈T

∫
Ω

∣∣τχEn

∣∣ dµ = sup
τ∈T

τµ(En) → 0 . �

Theorem 12

Let Ω be a topological group G = T, Σ the σ-algebra of the Borel subsets

of G, H a class consisting of closed subsets of G, µ a Borel measure such that

(µ, T ) is uniformly countably additive and µ(G) = 1. Then, if λ is the measure of

Proposition 7 and ν is a T -invariant finite Borel measure which is H-inner regular

on G, and verifies that ν(E\Z)is a λ-continuous measure in Σ for a set Z ∈ Σ
such that ν(Z) > 0 and λ(Z) = 0 , and if in addition H0 is the class of the sets

H ∈ H such that H ⊆ Z and ν(H) > 0 , then we have:

(i) For any H ∈ H0 we have ZH−1 = G .

(ii) If H ∈ H0 and (xH)x∈A is a family of pairwise disjoint sets, then A is finite.

(iii) For each H ∈ H0 there exists a finite set A ⊆ G such that AHH−1 = G.

Therefore, if ν is a Radon measure, G is compact.

(iv) If Z is a countable union of compact sets, then int HH−1 �= ∅ for all H ∈ H0 .

We have also that G is compact.

(v) If Z is a countable union of compact sets, the family (HH−1HH−1: H ∈ H0)
is a fundamental system of neighborhoods of the unit element e of G.

(vi) Z is a dense subset of G.

Proof. By Radon-Lebesgue theorem, there exists an integrable function f such that

ν(E\Z) =
∫
E

fdλ ∀E ∈ Σ .

(i) Since ν(xH\Z) = ν(xZ\Z) = 0 for all x ∈ G and H ∈ H0 , then

ν(xH ∩ Z) = ν(xH) − ν(xH\Z) = ν(H) > 0 .
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Therefore, xH ∩ Z �= ∅ for any x ∈ G and ZH−1 = G.

(ii) Since (xH ∩ Z)x∈A is a family of pairwise disjoint subsets of Z such that
ν(xH ∩ Z) = ν(H) > 0, then card A ≤ ν(Z)/ν(H) .

(iii) It follows from (ii) that there exists a finite subset A ⊆ G such that
AH ∩ xH �= ∅ for any x ∈ G, therefore we have AHH−1 = G.

(iv) Since Z is σ-compact, every H ∈ H0 contains a compact set H ′ ∈
H0 and so we can assume that H is compact. Then it follows from (iii) that
G = ∪x∈A xHH

−1 with A finite and therefore there exists x ∈ A such that int
xHH−1 �= ∅. As a result of this int HH−1 �= ∅ and G = AHH−1 is compact.

(v) If H ∈ H0 and x ∈ int HH−1, there exists a neighborhood V of e
such that xV ⊆ HH−1 and V −1x−1 ⊆ HH−1. Then V −1V ⊆ HH−1HH−1

and HH−1HH−1 is a neighborhood of e. Then for each neighborhood V of e
there exists x ∈ Z and H ∈ H0 such that H ⊆ xV. Therefore HH−1HH−1 ⊆
xV V −1V V −1x−1 from which (v) follows.

(vi) It is straightforward that if x ∈ G\Z̄, then there exists a neighborhood V

of e such that xV ∩ Z = ∅. On the other hand, there exists H ∈ H0 and x0 ∈ Z
such that H ⊆ x0V. We conclude that xx−1

0 H ∩ Z = ∅ and ZH−1 �= G, which
contradict (i) (see, [11], [14] and [18]). �

As a result of this theorem, one can see that the fact that ν is not a λ-continuous
measure imposes certain conditions. ν is λ-continuous or Z = G? On the other
hand, Theorem 11, which is true for accessible groups, is probably false for arbitrary
groups. On constructing Haar measures, the algebraic structure of the group does
not exert any influence, which implies its existence for arbitrary groups. Note that
this construction was extended in [17] to non locally compact groups in the following
fashion:

Definition 5. A topological measure (resp. a topological outer measure) is a τ -
additive Borel measure (resp. a τ -additive Borel outer measure) that in addition is
locally finite, semifinite and outer regular.

A Haar measure (resp. a Haar outer measure) on a topological group, is a
non-zero topological measure (resp. a non-zero topological outer measure) invariant
under left translations [17].

In the particular case of locally compact group, this concept coincides with the
usual one.

Theorem 13 [17, Theorem 1]

A topological group G has a Haar measure µ if and only if it is a dense

subgroup of a locally compact group G0 such that if µ∗0 is a Haar outer measure

on G0, then there exists an open set U ⊆ G with 0 < µ∗0(U) <∞ .
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Theorem 14 [17, Theorem 2]

On a topological group there is at most one Haar measure (up to a constant).

Theorem 15 [17, Theorem 5]

If G is a topological group endowed with a Haar measure µ , then the two

following classes of sets (V1) and (V2) form a fundamental system of neighborhoods

of the unit element e ∈ G :

(V1) Wp(f, ε) = {x ∈ G: ‖xf − f‖p < ε} for every ε > 0 and every function

f ∈ Lp(µ) (1 ≤ p <∞) .
(V2) AA−1 for every µ-measurable subset A with 0 < µ(A) <∞ .

Corollary 16 [17, Theorem 6]

Every Haar measure on a topological group G determines the topology of G

in a unique way.

Remark. The additive group G of real numbers has two topologies that turn it
into two locally compact groups with two different Haar measures. Indeed, one of
them is the usual topology and the other is the discrete one. The corresponding
Haar measures are then the Lebesgue measure and the one that associates each set
with its numbers of elements (either finite or infinite).

The classic proof of the existence of non Lebesgue measurable sets on the real
line using the axiom of choice works to prove that there are no ultracomplete count-
ably additive probability measures on the unit circle, that is, defined on the set of
all subsets of the unit circle T and invariant under rotations around the origin 0.
However, according to Solovay’s axiom, which is consistent with Zermelo-Fraenkel
axiomatic, there exists an ultracomplete countably additive probability measure in-
variant under such rotations. In the same way in which Theorem 11 was proved
using [15, Theorems 4 and 8], it follows that there exists an ultracomplete finitely
additive probability measure on a set Ω invariant under a accessible group T.

On the other hand, if µ is an ultracomplete finitely additive (f.a.) probability
measure on the unit sphere S ⊂ R

3, we proved in [16] that for every ε > 0 there
exists a subset E ⊂ S and a rotation τ whose axis meets the origin, such that

µ(E) < ε and µ(τE) > 1 − ε .

Therefore, the group consisting of such rotations is neither accessible nor measurable
according to von Neumann. Banach-Tarski’s paradox [3] is nothing but another
consequence of this fact.
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So the following problems arise:

Problem 1. Let G be a group of permutations of a set Ω and µ0 be a c.a.
probability measure (resp. f.a. probability measure) defined on a σ-algebra (resp.
an algebra) and invariant under G. Is the existence of an ultracomplete extension
µ of µ0 invariant under G consistent with Zermelo-Fraenkel axiomatics?

In case of countable additively, it is of course necessary that the cardinal of Ω
to be real-measurable.

Problem 2. Give a necessary and sufficient condition on a group G∗ in order
the following holds: If µ0 is an arbitrary f.a. measure (resp. c.a.) defined on an
algebra (resp. σ-algebra) of subsets of a set (resp. real-measurable set) Ω that in
addition is invariant under a permutations group G of Ω isomorphic to G∗, then
there exists an ultracomplete f.a. (resp. c.a.) extension µ of µ0 invariant under
G. For the case of finite measurability we gave the solution in [16, Theorem 17],
valid even for relatively invariant measures like the Lebesgue measure with respect
to the group of similarities: The solution is that G∗ must be measurable, i.e., there
exists an ultracomplete f.a. probability measure on G∗ invariant under the group
of left translations in G∗.

In the same fashion as in Theorem 11 we have:

Theorem 17
If (µ, T ) is uniformly countably additive and T is measurable group, then

there exists a c.a. probability measure ν: Σ → R T -invariant with 0 ≤ ν(E) ≤
supτ∈T τµ(E) for any E ∈ Σ .

Proof. As T is measurable group, there exists a finitely additive measure µ0 ≥ 0
with µ0(T ) = 1 invariant under left translations on P(T ). Then

ν: ν(E) =
1

µ(Ω)

∫
T

τµ(E) dµ0(τ) (E ∈ Σ)

is a finitely additive measure with ν(Ω) = 1 that is also T -invariant since

ν(σE) =
1

µ(Ω)

∫
T

τµ(σE) dµ0(τ)

=
1

µ(Ω)

∫
T

σ−1τ(E) dµ0(τ)

=
1

µ(Ω)

∫
T

τµ(E) dµ0(τ)

= ν(E)
for all E ∈ Σ and σ ∈ T. If in addition En ↘ ∅, according to Proposition 7 we
have supτ∈T τµ(En) → 0 and therefore ν(En) → 0. Then ν is a countably additive
measure. �
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Theorem 11 is a particular case of this theorem since by using [16, Corollary 16]
any accessible group is measurable.

Remark. Conversely, if ν and µ0 are countably additive and

F (E) =
(
τµ(E)

)
τ∈T

∈ L∞(µ0) (E ∈ Σ) ,

then by Pettis theorem [5, I.2, Theorem 1], it turns out that F is a ν-continuous
measure if and only if F is countably additive. Indeed, if F is countably additive,
then since ν(E) = 0 implies τµ(E) = 0 for almost every τ ∈ T and F (E) = 0, it
follows that

lim
ν(E)→0

F (E) = 0 .

Conversely, since ν is countably additive, this identity implies that F is countably
additive.

On the other hand, since any infinite group G contains a countable infinite
subgroup, in contrast with Solovay’s axiom, from the axiom of choice if can be
deduced that any ultracomplete c.a. finite measure on an infinite group T, invariant
by left translation, is zero.
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