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Abstract

The recent work on four-term recurrence relations for the second order functions
of hypergeometric type undertaken by the author (see [3]) is developed from a
slightly different point of view also using generating functions. The direction
of future prospects is indicated.

Introduction

A recent investigation carried out by the author, Exton (1996), is extended. As pre-
viously pointed out by Yáñez, Dehesa and Zarzo (1994), the recurrence relations of
the important class of hypergeometric functions of the second order is incompletely
known except for certain three-term recurrence relations. Here, certain generating
functions which yield higher-order functions are considered. The required recur-
rences are then deduced by suitable specialisation.

In the previous study mentioned (Exton (1996)), the generating functions con-
cerned involve elementary functions only. A slightly different avenue of attack is
persued in this paper, where the elementary manipulation of series is now applied to
combinations of exponential functions and second order hypergeometric functions.

Since hypergeometric functions figure to a considerable extent in the subsequent
analysis, the definition of the single hypergeometric function of general order is given
for convenience, namely

AFB(a1, . . . , aA; b, . . . , bB ;x) = AFB

(
(a); (b);x

)
=

∞∑
n=0

(
(a),m

)
xm[

((b),m)m!
] , (1.1)
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where the Pochhammer symbol (a, n) is given by

(a, n) = a(a = 1) . . . (a + n− 1) =
Γ(a + n)

Γ(a)
; (a, 0) = 1 . (1.2)

The symbol ((a), n) denotes the sequence (a1, n) . . . (aA, n) and for these prelimina-
ries and further background, the reader should consult Exton (1996). Any para-
meters with any values leading to expressions which do not make sense are tacitly
excluded.

2. Four-term recurrence relations for the function 0F1

We begin by considering the generating function

V1 = exp
(x

t

)
1F1(a; c; t) =

∞∑
n=−∞

tnFn , (2.1)

which involves the confluent hypergeometric function 1F1. The product of the expo-
nential function and the confluent hypergeometric function is developed in powers
of t:

exp
(x

t

)
1F1(a; c; t) =

∞∑
r,s=0

(a, s)xrts−r[
(c, s)r!s!

] . (2.2)

On replacing s by n + r, the series on the right becomes

∞∑
r=0

∞∑
n=−∞

(a, n + r)xrtn[
(c, n + n, r)r!(n + r)!

] . (2.3)

Within its domain of absolute convergence, this double series can be re-arranged as

∞∑
n=−∞

tn

[
(a, n)

[(c, n)n!]

∞∑
r=0

(a + n, r)xr

[(c + n, r)(1 + n, r)r!]

]
. (2.4)

Hence, by comparison with (2.1) and using (1.1), it follows that

Fn = Fn(a; c;x) =
(a, n)

[(c, n)n!] 1F2(a + n; c + n, 1 + n;x) . (2.5)
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The required recurrence relation can be obtained by taking partial derivatives of (2.1)
with respect to t. We then have

∂

∂t
V1 = −xt−2 exp

(x

t

)
1F1(a; c; t)

+ exp
(x

t

) d

dt
1F1(a; c; t) =

∞∑
n=−∞

ntn−1Fn (2.6)

and

∂2

∂t2
V1 = 2xt−3 exp

(x

t

)
1F1(a; c; t) + x2t−4 exp

(x

t

)
1F1(a; c; t)

− 2xt−2 exp
(x

t

) d

dt
1F1(a; c; t) + exp

(x

t

) d2

dt2
1F1(a; c; t)

=
∞∑

n=−∞
n(n− 1)tn−2Fn . (2.7)

Hence, it may be seen that

exp
(x

t

) d

dt
1F1(a; c; t) =

∂

∂t
V1 + xt−2V1 (2.8)

and

exp
(x

t

) d2

dt2
1F1(a; c; t) =

∂2

∂t2
V1 + 2xt−2 ∂

∂t
V1 +

(
x2t−4 − 2xt−3

)
V1 . (2.9)

Bearing in mind that the confluent hypergeometric function 1F1(a; c; t) is a solution
of the differential equation

ty′′ + (c− t)y′ − ay = 0 , (2.10)

we have

exp
(x

t

)[
td2

dt2
1F1(a; c; t) + (c− t)

d

dt
1F1(a; c; t) − a 1F1(a; c; t)

]
= 0

=
t∂2

∂t2
V1 +

2xt−1

t
V1 +

(
x2t−3 − 2xt−2

)
V1

+
(c− t)

t
V1 + x

(
ct−2 − t−1

)
V1 − aV1

=
t∂2

∂t2
V1 +

(
2xt−1 + c− t

) ∂

∂t
V1

+
[
x2t−3 + (c− 2)xt−2 − xt−1 − a

]
V1 = 0. (2.11)
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From the generating function and its partial derivatives, equating the coefficients of
tn and after a little algebra, it follows that

x2Fn+3 + x(2n + c + 2)Fn+2

+
[
n2 + (c + 1)n + c− x

]
Fn+1 − (n + a)Fn = 0 . (2.12)

This case can be specialised, so that Fn becomes a hypergeometric function of the
second order. Let c = a, when we have

Fn = 0F1(−; 1 + n;x)
n!

, (2.13)

x2Fn+3 + x(2n + a + 2)Fn+2 +
[
n2 + (a + 1)n + a− x

]
Fn+1

− (n + a)Fn = 0 (2.14)

and

x2
0F1(−; 4 + n;x) + 2x(n + 1)(n + 3) 0F1(−; 3 + n;x)

+
[
n2 + n− x

]
(n + 3)(n + 2) 0F1(−; 2 + n;x)

− (n + 3)(n + 2)(n + 1)n 0F1(−; 1 + n;x) = 0 , (215)

where any terms involving the parameter a have been eliminated since this para-
meter does not appear in the associated hypergeometric functions.

Proceeding along the same lines, when we put a = 1, it now follows that

Fn = 0F1(−; c + n;x)
(c, n)

(2.16)

and

x2
0F1(−; c + n + 3;x) + x(2n + c + 2) 0F1(−; c + n + 2;x)

+
[
n2 + (c + 1)n + c− x

]
(c + n + 2)(c + n + 1) 0F1(−; c + n + 1;x)

− (n + 1)(c + n + 2)(c + n + 1)(c + n) 0F1(−; c + n;x) = 0 . (2.17)

The function 0F1 is of particular interest on account of its close relationship with
the Bessel function. See Erdélyi (1953) Vol. II.
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3. Recurrence relations for the confluent hypergeometric function 1F1

Similar methods may be employed to obtain new four-term recurrence relations
applicable to certain confluent hypergeometric functions. Beginning with the ge-
nerating function

V2 = exp
(x

t

)
2F1(a, b; c; t) =

∞∑
n=−∞

tnGn , (3.1)

it may easily be shown that

Gn = Gn(a, b; c;x) = (a, n)(b, n) 2F2(a + n, b + n; c + n, 1 + n;x)
[(c, n)n!]

(3.2)

exp
(x

t

) d

dt
2F1(a, b; c; t) =

∂

∂t
V2 + xt−2V2 (3.3)

and

exp
(x

t

) d2

dt2
2F1(a, b; c; t) =

∂2

∂t2
V2 + 2xt−2 ∂

∂t
V2 +

(
x2t−4 − 2xt−3

)
V2 . (3.4)

The function 2F1(a, b; c; t) satisfies the differential equation

t(1 − t)y′′ +
[
c− (1 + a + b)t

]
y′ − aby = 0 , (3.5)

and, as in the previous section,

(t− t2)2

t2
V2 +

[2xt−1 − 2x + c− (1 + a + b)t]
tV2

+
[
x2t−3 − (2 + c + x)t−2 + (3 + a + b)xt−1 − ab)

]
V2 = 0 . (3.6)

From the generating relation (3.1) and its derivatives we obtain the result

x2Gn+3 + x(2n + 2 − c− x)Gn+2

−
[
n2 + (c + 1 − 2x)n + c + (1 + a + b)x

]
Gn+1

+
[
(1 + a + b)n− ab

]
Gn = 0 . (3.7)

If c = a,

Gn = (b, n) 1F1(b + n; 1 + n;x)
n!

, (3.8)
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and we see that (3.7) takes the from

x2(b + n + 2)(b + n + 1)(b + n) 1F1(b + n + 3; 4 + n;x)

+ x(2n + 2 − x)(b + n + 1)(b + n)(n + 1) 1F1(b + n + 2; 3 + n;x)

+
[
n2 + (1 − 2x)n + (1 + b)x

]
(b + n)(n + 2)(n + 1) 1F1(b + n + 1; 2 + n;x)

+ (n + a)(n + 3)(n + 2)(n + 1) 1F1(b + n; 1 + n;x) = 0 . (3.9)

Similarly, if a = 1,
Gn = (b, n) 1F1(b + n; c + n;x) (3.10)

and we have

x2(b + n + 2)(b + n + 1)(b + n) 1F1(b + n + 3; c + n + 3;x)

+ x(2n + 2 − c− x)(b + n + 1)(b + n)(1 + n) 1F1(b + n + 2; c + n + 2;x)

+
[
n2 + (c + 1 − 2x)n + c + (2 + b)x

]
(b + n)(2 + n)(1 + n)

× 1F1(b + n + 1; c + n + 1;x)

+ (n + 1)(3 + n)(2 + n)(1 + n) 1F1(b + n; c + n;x) = 0 . (3.11)

If Kummer’s first theorem (Erdélyi (1953), Vol. I),

1F1(a; c;x) = exp(x) 1F1(c− a; c;−x) (3.12)

is applied to (3.9) and (3.11) respectively, two further four-term recurrence relations
for confluent hypergeometric functions arise, namely

x2(b + n + 2)(b + n + 1)(b + n) 1F1(1 − b; 4 + n;−x)

+ x(2n + 2 − x)(b + n + 1)(b + n)(n + 3) 1F1(1 − b; 3 + n;x)

+ x
[
n2 + (1 − 2x)n

]
(b + n + 1)(b + n)(n + 3)(n + 2) 1F1(1 − b; 2 + n− x)

+
[
(1 + b)n− ab

]
(n + 3)(n + 2)(n + 1) 1F1(1 − b; 1 + n;−x) = 0 (3.13)

and

x2(b + n + 2) 1F1(c− b; c + n + 3;−x) + x(2n + 2 − c− x)(c + n + 2)

× 1F1(c− b; c + n + 2;−x)

+
[
n2 + (c + 1 − 2x)n + c + (2 + b)x

]
(c + n + 2)(c + n + 1)

× 1F1(c− b; c + n + 1;−x)

+
[
(2 + b)n− b

]
(c + n + 2)(c + n + 1)(c + n)

× 1F1(c− b; c + n;−x) = 0 . (3.14)



Four-term recurrence relations for hypergeometric functions 49

4. A recurrence relation for a polynomial of the form 2F0

A rather different type of generating function is now discussed in which a hyper-
geometric polynomial of the third order arises. This function may be specialised so
as to give a polynomial of the second order for which a four-term recurrence relation
is presented. Consider the expression

V3 = exp(xt) 2F1(a, b, c; t) = tnPn , (4.1)

and by series manipulation of a similar type to that used in the previous sections,
it is found that

Pn = Pn(a, b; c;x) = xn 3F1(a, b,−n; c;− 1
x )

n!
. (4.2)

Taking first and second partial derivatives of (4.1) with respect to t, we have

2
t
V3 = x exp(xt) 2F1(a, b; c; t) + exp(xt)

d

dt
2F1(a, b; c; t) (4.3)

and

2
t2
V3 = x2 exp(xt) 2F1(a, b; c; t) + 2x exp(xt)

d

dt
2F1(a, b; c; t)

+ exp(xt)
d2

dt2
2F1(a, b; c; t) (4.4)

Hence,

exp(xt)
d

dt
2F1(a, b; c; t) =

2
t
V3 − xV3 (4.5)

and

exp(xt)
d2

dt2
2F1(a, b; c; t) =

2
t2
V3 −

2x
t
V3 + x2V3 . (4.6)

From the associated hypergeometric equation (3.5), after a little reduction, we have

(t− t2)2

2
V3 +

[
c− (1 + a + b + 2x)t + 2xt2

]
t

V3

−
{
x2t2 − [x2 + x(1 + a + b)]t + cx + ab

}
V3 = 0 . (4.7)

It then follows that[
n2 + (c + 1)n + c

]
Pn+1 −

[
n2 + (a + b + 2x)n + xc + ab

]
Pn

+
[
2xn + a + b + 1 − 2x + x2

]
Pn−1 − x2Pn−2 = 0 . (4.8)
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If c = a ,

Pn = xn 2F0(b,−n;−;− 1
x )

n!
, (4.9)

so that

n(n + 1)x2
2F0

(
b,−n− 1;−;− 1

x

)
−

[
n2 + (b + 2x)n

]
(n + 1)x 2F0

(
b, 2 − n;−;− 1

x

)
+

[
2xn + b + 1 − 2x + x2

]
(n + 1)n 2F0

(
b, 1 − n;−;− 1

x

)
− (n + 1)

(
n(n− 1)x 2F0

(
b, 2 − n;−;− 1

x

))
= 0 . (4.10)

The polynomial 2F0(b,−n;−;− 1
x ) is close related to the Charlier polynomial; com-

pare Exton (1996).

5. Prospects and conclusion

Numerous other recurrence relations of hypergeometric functions of the second or-
der with various numbers of terms can be deduced from appropriate generating
functions. An example is

(1 − x

t

)−d

1F1(a; c; t) = tnKn(x) , (5.1)

where

Kn(x) = (a, n) 2F2
(d, a + n; c + n, 1 + n;x)

[(c, n)n!]
. (5.2)

Another avenue of approach consists of developing the product of an elementary
function and a hypergeometric function of higher order, such as

exp
(x

t

)
3F2(a, b, c; f, g; t) = tnMn(x) . (5.3)

It is found that

Mn(x) = (a, n)(b, n)(c, n) 3F3(a + n, b + n, c + n; f + n, g + n, 1 + n;x)
[(f, n)(g, n)n!]

. (5.4)

The algebra involved becomes rapidly more complicated with increasing order of the
hypergeometric functions concerned. In the case of (5.3), an associated differential
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equation of the third order must be taken into account. As above, second order
functions and their recurrences may be deduced by appropriate adjustment of the
parameters.

The results obtained in this paper cannot be deduced from known three-term
recurrencerelations of the second-order hypergeometric functions. Four-term recur-
rences of the type obtained above are of general interest in a number of applications
and the reader should consult the references in de Lange and Raab (1991), for ex-
ample. See also the discussion by Dehesa and Yáñez (1994), which might possibly
be enlarged using similar methods to those employed above.

Acknowledgment. Thanks are due to the Referee for a number of useful sugges-
tions.
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