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Abstract

Fix positive integers s, ni, 1 ≤ i ≤ s, a finite number of lines,D1, . . . , Ds

of CP2, pointsP1, . . . , Ps withPi ∈ Di for all i and letZ(i) be the length
ni subscheme of Di with support Pi. Set Z: = ∪1≤i≤sZ(i). AssumeDi

and Pi general. Here we show (under mild assumptions on the integers ni)
that the homogeneous ideal ofZ has the expected number of generators in each
degree and hence we compute the minimal free resolution of Z .

Introduction

In the last few years several papers were written on the cohomological properties
(e.g. the postulation, the degree of the generators of the homogeneous ideal or the
minimal free resolution) of 0-dimensional subschemes of Pn. In [3], using the so
called “Horace method” (see [4]) Eastwood described completely the postulation of
a general union Z ⊂ P2 of s schemes of finite length Z(1), . . . , Z(s) with each
Z(i) connected and contained in a line. These schemes are called “multilinear” or
“multijets”. His main result (see [3]. Th. 0) is that a general multilinear plane
scheme has the cohomology as good as possible with the constraint given by the
s integers n(i): = length(Z(i)). For an interpretation of this result in term of
interpolation of polynomials, see the introduction of [3]. Here we study the minimal
free resolution of such general multilinear subschemes of P2. For a 0-dimensional
subscheme of P2 with good postulation (i.e. with maximal rank) and with critical
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value k this is equivalent to know the number of forms of degree k + 1 needed to
generate its homogeneous ideal (see e.g. [2]). If a suitable numerical condition is
satisfied, we will show that the homogeneous ideal of the general multilinear plane
scheme with given invariants n(i): = length(Z(i)) and critical value k is generated
by forms of degree k. As in [3] we will work in characteristic 0. This numerical
condition is also a necessary condition for multilinear schemes with maximal rank
(see Remark 1.1). We will use in an essential way the results of [3]. To describe
our result (see Theorem 0.1) we introduce the following notations. Let n be a finite
sequence n(1), . . . , n(s) of integers with n(i) ≥ n(j) if i ≥ j. Set n(j) = 0 for
j > s and |n| = Σin(i). Let k be the unique integer such that k(k + 1)/2 <
|n| ≤ (k + 1)(k + 2)/2. Such an integer k is called the critical value of the datum
n. As in [3] we will work in characteristic 0. Let Z be the general multilinear
scheme with s components of length n(1), . . . , n(s). In [3], Th. 0, A. Eastwood
gave a necessary and sufficient condition for the surjectivity of the restriction map
r(t, Z):H0(P2, O(t)) −→ H0(Z,OZ(t)) ∼= OZ for t = k and the injectivity for
t = k−1. By the Castelnuovo Mumford lemma if r(k, Z) is surjective, then r(t, Z)
is surjective if t > k, and the homogeneous ideal of Z is generated in degree
k and k + 1. Set D(k,n): = min1≤h≤k{2hk − h2 − 2n(n(1) + . . . + n(h))} and
G(k,n): = min1≤h≤k{(2hk + 3h − h2)/2 − (n(1) + . . . + n(h))}. By [3], Th. 0, if n
has critical value k and G(k,n) ≥ 0, then Z is of maximal rank. In particular
if D(k,n) ≥ 0, then Z has maximal rank. The meaning of the function D(k,n)
and of the condition D(k,n) ≥ 0 was explained in [3], necessity part of the proof of
Prop. III. 1.1. For a feeling of the meaning of the condition G(k,n) ≥ 0 the reader
may look at Remark 1.1 below and the informal discussion at the beginning of the
proof of part (b) of Theorem 0.1. The entire paper is devoted to the proof of the
following result.

Theorem 0.1

Fix a datum n = {n(1) ≥ . . . ≥ n(s)} with critical value k. Set u′: = (k +
2)(k + 1)/2 − |n| and u′′: = (k + 3)(k + 2)/2 − |n|.
(a) Assume 2u ≤ k(k + 2), i.e. 3u′ ≥ u′′, and that D(k,n) ≥ 0. Then the homo-

geneous ideal of the general multijet Z associated to n is generated by u′ forms of

degree k.

(b) Assume 2u > k(k + 2) (i.e. 3u′ ≤ u′′), G(k,n) ≥ 0 and the existence of a new

datum n′ = {n′(j)} with n′(j) ≤ n(j) for every j, |n′| = [(k2 + 2k+ 1)/2] and such

that if k is even, then D(k,n′) ≥ 0, while if k is odd D(k,n′) ≥ −1. Then the

homogeneous ideal of Z is generated by u′ forms of degree k and u′′ forms of

degree k + 1.
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The assumption 3u′ ≥ u′′ (resp. 3u′ < u′′) in part (a) (resp. part (b)) of
Theorem 0.1 are necessary conditions for multijets of maximal rank and critical
value k, because if Z is such multijet we have h0(P2, IZ(k)) = u′ (and hence
dim(H0(P2, O(1))⊗H0(P2, IZ(k))) = 3u′ and h0(P2, IZ(k+ 1)) = u′′). The other
numerical assumptions in the statement of 0.1 come from suitable restrictions to
unions of lines. The assumption on the existence of the datum n′ in part (b) of 0.1
is used heavily to apply the statement of part (a) in the proof of part (b).

As in [3] the proof of 0.1 uses an inductive method, the so-called “Méthode
d’Horace”. The main new trick of this paper is the use of reducible conics for the
inductive steps.

The author was partially supported by MURST and GNSAGA of CNR (Italy).

1. Proof of Theorem 0.1

We work always in characteristic 0. This is essential to use freely the degenerations
proven in [3]. Set

∏
: = P2,O: = O∏,Ω := Ω1∏. For every subscheme Z of

∏
and

every sheaf F on
∏
, set IZ := IZ,

∏, Hi(F ): = Hi(
∏
, F ) and hi(F ): = hi(

∏
, F ).

Look at the twists of the dual of the Euler sequence for TP2:

0 −→ Ω(t+ 1) −→ 3O(t) −→ O(t+ 1) −→ 0 (1)

From (1) we obtain h0(Ω(t)) = t2 − 1 for every t ≥ 0 and h1(Ω(j)) = 0 for every
integer j �= 0. If h ≤ k, set S(k, h): = h0(Ω(k+1))−h0(Ω(k+1−h)) = 2h(k+1)−h2.

We will call “datum” n a finite sequence {n(i)}1≤i≤s (or just {n(i)} for short)
of integers n(i) > 0. Usually we will assume that n(i) ≥ n(j) for i ≥ j; if this
is true the datum n is said to be normalized. The length |n| of the datum {n(i)}
is n(1) + . . . + n(s). We will call “data” a pair (k,n) with k integer, k > 0 and
n a datum. For a normalized datum n = {n(i)} and all integers k > h > 0, set
C(k, h)(n) = 2(Σ1≤i≤h n(i)), with the convention that n(i) = 0 for i > s. For
a normalized datum n = {n(i)} and integers k > h > 0 consider the following
condition Co(k, h)(n):

Condition Co(k, h)(n) : C(k, h)(n) ≤ S(k, h): = 2h(k + 1) − h2.
The assumption in part (a) of the statement of Theorem 0.1 says that for every

h the condition Co(k, h)(n) is satisfied.
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Remark 1.1. We will check here that the conditions Co(k, h)(n), 0 < h < k, are
necessary conditions in part (a) of Theorem 0.1 (assuming G(k,n) ≥ 0, i.e. by [3]
that a general Z has maximal rank). Indeed by the interpretation via Koszul
cohomology (or in P2 just by the Castelnuovo Mumford lemma and the twisted dual
of the Euler sequence (1) as explained e.g. in [1] and [2]) the thesis of Theorem 0.1
for Z = ∪Z(i), Z(i) contained in the line L(i) with L(i) �= L(j) is equivalent to the
surjectivity of the restriction map r(k, Z) : H0(Ω(k+1)) −→ H0(Z,Ω(k+1)|Z). Set
Z[j] = ∪1≤i≤jZ(i) and L[j] = ∪1≤i≤jL(i). If r(k, Z) is surjective, then r(k, Z[h])
is surjective for all h < k because dim(Z) = 0. Hence if r(k, Z) is surjective,
then the restriction map: H0(L[h],Ω(k + 1)|L[h]) −→ H0(Z[h],Ω(k + 1)|Z[h]) is
surjective. By the cohomology of Ω(t) we have h0(L[h],Ω(k + 1)|L[h]) = S(k, h),
while h0(Z[h],Ω(k + 1)|Z[h]) = C(k, h)(n).

Lemma 1.2

Fix an integer k ≥ 2. Fix a reducible conic X = A ∪ B of
∏

(A and B lines)

and a 0-dimensional scheme Z = U ∪ V with U ⊂ A, V ⊂ B,U ∩ B = V ∩ A = ∅,
length (U) = length(V ) = k. Then the restriction maps r(k, Z) : H0(Ω(k + 1)) −→
H0(Z,Ω(k+ 1)|Z), r(k,X) : H0(Ω(k+ 1)) −→ H0(X,Ω(k+ 1)|X) and r(k;X,Z) :
H0(X,Ω(k + 1)|X) −→ H0(Z,Ω(k + 1)|Z) are surjective. Furthermore, r(k;X,Z)
is bijective.

Proof. By the Euler sequence (1) we obtain h1(X,Ω(t)) = 0 for t �= 0 and the
surjectivity of r(k,X). Note that Ω(k+1)|A ∼= OA(k)⊕OA(k−1) (and the same for
B) and h0(X,Ω(k+1)|X) = 4k. Thus we see easily that h0(A, (Ω(k+1)|A)⊗IU,A) =
h0(B, (Ω(k+ 1)|B)⊗ IV,B) = 1. To check the lemma we need to check that any two
non zero sections of H0(A, (Ω(k+1)|A)⊗ IU,A) and H0(B, (Ω(k+1)|B)⊗ IV,B) do
not satisfy the gluing condition needed to obtain a section of h0(X, (Ω(k + 1)|X) ⊗
IZ,X). Since (Ω(k + 1)|A) ⊗ IU,A

∼= Ω(1)|A and (Ω(k + 1)|B) ⊗ IV,B ∼= Ω(1)|B,
this is equivalent to h0(X, (Ω(1)|X) = 0. By the dual Euler sequence we have
h1(Ω(−1)) = 0 . Hence we conclude. �

Remark 1.3. By the Euler sequence (1) we have h0(X,Ω(2)) = 6 and h1(X,Ω) = 1.
Hence with the notations of 1.2 we see easily that dim(coker(r(1, Z))) = 1.

In [3] A. Eastwood introduced an operation (“collision de front”) on the set of
multijets and the corresponding operation for the set of all datum. This operation
(operation (+)) sends a normalized datum n = (n(1), . . . , n(s)) with s ≥ 2 to a
normalized datum n′ = (n(1) + n(2), n(3), . . . , n(s)) with |n′| = |n|. It was proved
in [3] that all multijets with datum n′ are the flat limit of a flat family of multijets
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with datum n. Hence by semicontinuity if n′ has D(k,n′) = 0 to prove part (a)
of Theorem 0.1 for n it is sufficient to prove it for n′. Now fix an integer k with
n(1) < k < n(1) + n(2). In [3], Th. II. 4.1, A. Eastwood proved the existence of
the following degeneration (“collision de biais”). Let D ⊂ P2 be a line and Z ′′ a
multijet of type (n(3), . . . , n(s)) with Z ′′∩D = ∅. Let Z ′ be a connected subscheme
of the double line 2D ⊂ P2 with length(Z ′) = n(1)+n(2) and length(Z ′∩D) = k.
Then ([3], Th. II. 4.1) Z ′∪Z ′′ is the flat limit of a flat family of multijets with datum
n. We will call operation (++) the use of this degeneration. The proof of 0.1 will
be divided into several short parts, each of them numbered. The proof of part 1.4
below follows from the definitions. Part 1.4 implies parts 1.5, 1.6, 1.7, 1.8 and 1.9.

1.4. If n(1) = n(2) = k and Co(k, h + 2)(n) is true, then the datum m =
{n(i)}, 3 ≤ i ≤ s, satisfies Co(k − 2, h)(m).

1.5. Assume n(1) = k, n(2) = k − 1, n(3) > 0 and let m be the normalized
datum obtained from the s−2 integers n(3)−1 and n(i), 4 ≤ i ≤ s. If Co(k, h+2)(n)
is satisfied, then Co(k − 2, h)(m) is satisfied.

1.6. Assume n(1) = k, n(2) = k − 2, n(4) > 0 and let m be the normalized
datum obtained from the s − 2 integers n(3) − 1, n(4) − 1 and n(i), 5 ≤ i ≤ s. If
Co(k, h+ 2)(n) is satisfied, then Co(k − 2, h)(m) is satisfied.

1.7. Assume n(1) = n(2) = k − 1, n(4) > 0 and let m be the normalized
datum obtained from the s − 2 integers n(3) − 1, n(4) − 1 and n(i), 5 ≤ i ≤ s. If
Co(k, h+ 2)(n) is satisfied, then Co(k − 2, h)(m) is satisfied.

1.8. Assume n(1) = k− 1, n(2) = k− 2, n(5) > 0 and let m be the normalized
datum obtained from the s−2 integers n(3)−1, n(4)−1, n(5)−1 and n(i), 6 ≤ i ≤ s.
If Co(k, h+ 2)(n) is satisfied, then Co(k − 2, h)(m) is satisfied.

1.9. Assume n(1) = k− 2, n(2) = k− 2, n(6) > 0 and let m be the normalized
datum obtained from the s − 2 integers n(3) − 1, n(4) − 1, n(5) − 1, n(6) − 1 and
n(i), 7 ≤ i ≤ s. If Co(k, h+ 2)(n) is satisfied, then Co(k − 2, h)(m) is satisfied.

1.10. Assume n(1) + n(2) ≤ k and let m be the normalized datum obtained
from the s−1 integers n(1)+n(2) and n(i), 3 ≤ i ≤ s. If Co(k, h)(n) is satisfied, then
Co(k, h)(m) is satisfied. Indeed by assumption we have 2n(j) ≤ 2n(2) ≤ k for every
j > 2. Thus C(k, h)(m) = C(k, h+1)(n) ≤ 2k+(h−1)k = (h+1)k < 2h(k+1)−h2.

1.11. Consider the multijet Z = ∪1≤i≤s Z(i) with Z(i) contained in the line
L(i) and with support P (i). Assume for instance s ≥ 8. Since any two points of

∏

are collinear, Z may be considered general even if {P (5), P (6)} ∈ (L(1) ∪ L(2))reg
and {P (7), P (8)} ∈ (L(3) ∪ L(4))reg.
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To prove part (a) of Theorem 0.1 we will consider de following situation. We
start with a normalized dat (k,n) = {n(i)}1≥i≥s satisfying Co(k, h)(n) for all h.
We will make some operations of type (+) and at most 2 operations of type (++)
to obtain a situation in which on each of the lines L(1) and L(3) there is a scheme
of length k.We will take the residual scheme W with respect to L(1)∪L(3).W will
be a multijet; call m its datum. W will be general. We will check that Co(k− 2, h)
is true for all h with 0 < h < k − 2. Hence by induction on k we way assume
Theorem 0.1 for W . Hence by the Horace method with respect to the reducible
conic L(1)∪L(3) and Lemma 1.2 we will obtain that the minimal free resolution of
Z is as wanted and by semicontinuity Theorem 0.1 holds for the data (k,n). Hence
by induction on k we will conclude.

1.12. First, using 1.10 we reduce to the case n(1) ≤ k, n(1)+n(2) > k. In 1.17
we will consider all cases with n(3) ≥ k − 2. It is easy to check using 1.19 that we
may even assume n(3) + n(4) ≥ k − 2. Hence in the following subsection 1.13 we
will assume n(1) ≤ k− 1, n(3) ≤ k− 3, n(1)+n(2) > k, n(3)+n(4) > k− 2. In 1.14
we will consider the easier case in which n(1) = k, n(3) ≤ k − 3, n(1) + n(2) >
k, n(3) + n(4) > k − 2.

1.13. Here we assume n(3) ≤ k − 3, n(1) + n(2) > k, n(3) + n(4) > k − 2. Set
c(1): = n(1)+n(2)−k ≤ n(2)−1 ≤ k−2, c(2): = n(3)+n(4)−k+2 ≤ n(4)−1 ≤ k−3.
As data (k − 2,m) we will take the normalized datum m corresponding to the
s − 2 integers c(1), c(2), n(5) − 1, n(6) − 1, n(j), 7 ≤ j ≤ s. Indeed we will apply
Horace with respect to L(1) ∪ L(3) taking (as explained in 1.11) P (5) ∈ L(3)
and P (6) ∈ L(3). We will not use the other possibilities given by 1.11, although,
taking P (7) ∈ L(1) we could consider the integer c(1)−1 instead of c(1). To check
Co(k − 2, h)(m) we will distinguish several subcases according to which are the
largest h integers between c(1), c(2), n(5)− 1, n(6)− 1, n(j), 7 ≤ j ≤ h+ 6. Note
that c(1) ≥ c(2).

1.13.1. First assume that both c(1) and c(2) are among the first h integers
of c(1), c(2), n(5) − 1, n(6) − 1, n(j), 7 ≤ j ≤ h+ 6. Then Co(k − 2, h)(m) follows
from Co(k, h+2)(n) because S(k, h+2)−S(k−2, h) = 4k = 2(n(1)+n(2)+n(3)+
n(4) − c(1) − c(2)).

1.13.2. Now we will assume that neither c(1) nor c(2) are among the first
h integers of c(1) c(2), n(5) − 1, n(6) − 1, n(j), 7 ≤ j ≤ h + 6. We distinguish 3
subcases.

1.14.1. Assume that neither n(5)−1 nor n(6)−1 are in the first h integers of
m. This implies n(5) = n(j) for all j with 6 ≤ j ≤ h+6. Hence C(k− 2, h)(m) =
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2hn(5) and C(k, h+6)(n) = 2(n(1)+n(2)+n(3)+n(3)+n(4))+2(h+2)n(5).We
have S(k, h+6) = 2(h+6)(k+1)− (h+6)2 = 2hk−h2 +12k+12+2h−12h−36 =
2hk − h2 − 10h − 24 = S(k − 2, h) + 12k − 10h − 24. Hence the result holds if
2(n(1) + n(2) + n(3) + n(4)) + 4n(5) ≥ 12k − 10h − 24. If this inequality is not
satisfied, then 12n(5) ≤ 12k − 10h − 26. Hence 6C(k − 2, h)(m) = 12hn(5) ≤
12hk − 10h2 − 26h ≤ 6S(k − 2, h), as wanted.

1.14.2. Assume that n(5)− 1 is one of the first h integers of m but n(6)− 1
is not. Hence n(5) > n(6) = n(j) for all j with 7 ≤ j ≤ h + 5. We have C(k −
2, h)(m) = 2n(5) − 2 + 2(h − 1)n(6) and C(k, h + 5)(n) = 2(n(1) + n(2) + n(3) +
n(4))+2n(5)+2hn(6) = C(k−2, h)(m)+2+2(n(1)+n(2)+n(3)+n(4))+2n(6).We
have S(k, h+5) = 2(h+5)(k+1)− (h+5)2 = 2hk−h2 +10k+2h+10−10h−25 =
2hk − h2 + 10k − 8h − 15 = S(k − 2, h) + 10k − 10h − 15. Hence we conclude
if 2 + 2(n(1) + n(2) + n(3) + n(4)) + 2n(6) ≥ 10k − 10h − 15. If this inequality
is not satisfied, then 4n(5) + n(6) ≤ 5k − 5h − 10 and 5n(6) ≤ 5k − 5h − 14,
i.e. n(6) ≤ k − h − 3. Hence 10C(k − 2, h) = 20n(5) − 20 + 10(h − 1)n(6) ≤
25k−25h−52+(20h−25)n(6) ≤ 25k−25h−52+(20h−25)(k−h−3) = 25k−25h−
52+20hk−20hk−20h2−60h−25k+25h+75 = 20hk−20h−60h+23 < 10S(k−2, h),
as wanted.

1.14.3. Assume that both n(5)−1 and n(6)−1 are among the first h integers
in m. We have C(k, h + 4)(n) − C(k − 2, h) = 2(n(1) + n(2) + n(3) + n(4)) + 4
and S(k, h + 4) = 2(h + 4)(k + 1) − (h + 4)2 = 2hk + 2h + 8k + 8 − h2 − 8h −
16 = 2hk − h2 + 8k − 6h − 8 = S(k − 2, h) + 8k − 8h − 8. Hence we conclude if
2(n(1)+n(2)+n(3)+n(4)) ≥ 8k−8h−12. If this inequality fails, then n(5) ≤ k−h−3.
Hence C(k−2, h)(m) ≤ −4+2hn(5) ≤ 2hk−2h2−6h−4 < S(k−2, h), as wanted.

1.15. Here we will consider the case in which n(1) = k. Now to apply Horace
we will exploit L(1)∪L(2). First, note that as in 1.10 if n(2)+n(3) ≤ k we may take
as new datum the s−1 integers k, n(2)+n(3), n(j), 4 ≤ j ≤ s. Hence we will assume
n(2) + n(3) > k. If n(2) = k, we conclude by Lemma 1.2. If n(2) = k − 1, we take
P (3) = L(2)∩L(3) and conclude again by 1.11 and Lemma 1.2. If n(2) = k− 2, we
take P (3) = L(2)∩L(3) and P (4) = L(2)∩L(4). Hence we may assume n(2) ≤ k−3
and n(2) + n(3) ≥ k + 1. Set c(1) = n(2) + n(3) − k ≤ n(3) − 3 ≤ k − 6. Call m
the new datum corresponding to the normalization of the s− 3 integers c(1), and
n(j), 4 ≤ j ≤ s. Fix an integer h with 0 < h ≤ k − 3. We distinguish 2 subcases.

1.15.1. Assume that c(1) is among the first h integers of m. Then C(k −
2, h)(m) follows from C(k, h+ 2) as in 1.13.1.

1.15.2. Assume that c(1) is not among the first h integers of m. Hence
C(k, h + 3)(n) = 2k + 2n(2) + 2n(3) + C(k − 2, h)(m). We have S(k, h + 3) =
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2(h+3)(k+1)−(h+3)2 = 2hk−h2 +6k+2h+6−6h−9 = S(k−2, h)+6k−2h−3.
Hence we win if 2n(2)+2n(3) ≥ 4k−2h−3. If 2n(2)+2n(3) ≤ 4k−2h−4, we have
2n(4) ≤ 2k − h− 2. Hence C(k − 2, h) ≤ 2kh− h2 − 2h = S(k − 2, h), as wanted.

1.16. Now we will consider the case n(1) ≤ k − 1, c(1) + k: = n(1) + n(2) ≥
0, n(3) ≤ k − 3, c(2) + k − 2: = n(3) + n(4) ≥ k − 2 and in which among the first h
integers of m there is c(1) but not c(2). We have c(1) ≤ n(2) − 1 ≤ k − 2. Hence
C(k, h+3)(n) = C(k−2, h)(m)+2k+2(n(3)+n(4)). Since S(k, h+3) = S(k−2, h)+
6k−2h−3, we win if 2(n(3)+n(4)) ≥ 4k−4h−3. Assume n(3)+n(4) ≤ 2k−h−2.
Hence 2n(5) ≤ 2k− h− 2. Thus we have C(k− 2, h) ≤ (h− 1)(2k− h− 2) + c(1) ≤
S(k − 2, h), as wanted.

1.17. To conclude the proof of part (a) of 0.1 we discuss all the cases with
n(3) ≥ k − 2. Here we will exploit the divisor L(1) ∪ L(2) to apply Horace taking
(see 1.11 and Lemma 1.2) P (j) ∈ L(1) for 3 ≤ j ≤ k − n(1) + 2, P (j) ∈ L(2) for
k−n(1)+3 ≤ j ≤ 2k−n(1)−n(2)+2, without making any operation of type (++).

Proof of part (b) of 0.1. Fix general multijets Z ′ and Z respectively of type n′

and n and with Z ′ ⊆ Z. By the generality of Z ′ and [3] we may assume that Z ′ has
maximal rank. Assume k even. We have 3(h0(

∏
, IZ(k))) = h0(

∏
, IZ(k+1)). Thus

by part (a) the multiplication map m(Z ′, k) : H0(
∏
,O(1)) ⊗ H0(

∏
, IZ′(k)) −→

H0(
∏

IZ′(k+1)) is bijective. Hence the multiplication mapm(Z, k) : H0(
∏
,O(1))⊗

H0(
∏
, IZ(k)) −→ H0(

∏
, IZ(k+1)) is injective. Since Z has maximal rank, part (b)

holds. Now assume k odd. Now we have 3(h0(
∏
, IZ(k))) = h0(

∏
, IZ(k + 1)) + 1.

Hence, roughly speaking, to check the injectivity of the multiplication map m(Z ′, k)
(and hence the injectivity of the corresponding multiplication map m(Z, k) for Z)
we may “loose one condition”. Hence at one step of the proof we may use the Horace
method taking as supporting divisor a line instead of a reducible conic and then apply
Lemma 1.2. Since G(k,n) ≥ 0, we have n′(1) ≤ n(1) ≤ k + 1. If n′(1) = k + 1,
we apply Horace using as divisor L(1). Call m the datum formed by the integers
n′(j) with 2 ≤ j ≤ s. Since D(k,n′) ≥ −1, we obtain D(k − 1,m) ≥ 0 and we
apply part (a) to m. Since 2|n′| = h0(Ω(k + 1)) + 1, we have 2|m| = h0(Ω(k)).
Hence by when we apply apart (a) to m we obtain H0(Ω ⊗ IZ′′) = 0 for a general
Z

′′
of type m. Hence by Horace H0(Ω ⊗ IZ′) for a general Z ′ of type n′. Thus

the same is true for a general Z of type n with Z ′ ⊆ Z. If n′(1) ≤ k, we reduce to
the previous cases making operations of type (+) and at most one operation of type
(++) involving each time only the first 2 integers, n′′(1) and n′′(2). To check that
in this way we find D(k − 1,m) ≥ 0, see the part of the proof o part (a) in which
only one operation of type (++) is made. �
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