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Abstract

We give a short survey on some fixed point theorems which are generalizations
of the classical Banach-Caccioppoli principle of contractive mappings. All these
results are gathered in three theorems about existence and uniqueness of fixed
points for operators which act in K-metric or K-normed linear spaces and,
in particular, in local convex spaces and scales of Banach spaces. Three fixed
point theorems presented in this article cover numerous applications in numer-
ical methods, theory of integral equations, some results on iterative methods
for construction of periodic solution to ordinary differential equations, exis-
tence and uniqueness results on solvability for Cauchy and Goursat problems of
Ovsjannikov - Treves - Nirenberg type and so on.

The main aim of this article is to suggest new revised version of the fixed points
theory in K-metric and K-normed linear spaces and show some new its applications.
In other words, the article is devoted to the rehabilitation of the theory of K-
metric and K-normed linear spaces in applicable analysis; more concretely, it deals
with some rather subtle fixed point principles in K-metric and K-normed linear
spaces, special (and unusual) K-estimates for corresponding fixed points (and which
can be served as a source of usual numerical error estimates) and some nontrivial
applications.

To my mind some sceptic and ironic attitude of mathematicians to the theory
of K-metric and K-normed linear spaces is most likely based on the popular opinion
that numerous generalizations of the classical Banach-Caccioppoli fixed point princi-
ple to the case of K-metric and K-normed linear spaces did not lead to rather serious
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or new important applications. The second reason is that in many cases it is possi-
ble to do a passage from a problem in a K-metric or K-normed linear space to an
equivalent problem in a usual metric or normed linear space. However, the situation
is likely different; in particular, the natural K-variants of the Banach-Caccioppoli
fixed point principle purposed in this article allow to generalize and formulate new
variants of some Bohl’s and Bogoljubov’s theorems on bounded solutions to dif-
ferential and functional-differential equations, convergence results on Samojlenko’s
successive approximations and their analogs of finding periodic solutions of quasilin-
ear differential equations, and solvability and unique solvability theorems on Cauchy
and Goursat problems for partial differential equations with deteriorating operators
and their abstract analogs (including the classical Cauchy-Kowalewska theorem and
its abstract variants as theorems by L. Ovsjannikov, F. Treves) and so on. At last,
precisely the fixed point theory in K-metric and K-normed linear spaces is a conve-
nient tool, which allows to determine the possibility of passage from a problem in a
K-metric or K-normed linear space to a problem in a usual metric or normed linear
space.

In this connection there appears a need for analysis in details of general fixed
points theory of operators in K-metric and K-normed linear spaces. Moreover, it
is natural to try to present such variants of the fixed point principle for contractive
operators in K-metric and K-normed linear spaces that allows to comprehend all
usual and new nontrivial applications and, of course, to catch directions in which
the further development of the theory turns out to be useful for investigations of
the concrete linear and nonlinear problems as mentioned above as new ones. This
article is one of the first attempts to make progress in this field.

1. Ordered linear spaces

Let B be a ordered linear space (over R). In this article it means that B is a triple
(B,K, γ) of a linear space B, a cone K in this space, and a class γ of convergent
sequences in B with the following properties:

a) If ξ, η ∈ K, and η − nξ ∈ K (n = 1, 2, . . .) then ξ = 0.
b) Each convergent sequence (ξn), ξn ∈ B, has a unique limit limn→∞ ξn.
c) Each stationary sequence (ξ, ξ, . . .), ξ ∈ B, is convergent and limn→∞ ξ =

ξ.
d) Convergence of a sequence is not broken and its limit does not change under

truncation or addition a finite number of its members.
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e) If a sequence (ξn), ξn ∈ B, converges to ξ∗ ∈ B, then any its subsequence
(ξnk

) converges to ξ∗.
f) The sum (ξn + ηn) of two convergent sequences (ξn), (ηn), ξn, ηn ∈ B, is a

convergent sequence and

lim
n→∞

(ξn + ηn) = lim
n→∞

ξn + lim
n→∞

ηn.

g) The product λn ξn of a convergent scalar sequence λn ∈ R and a convergent
sequence (ξn), ξn ∈ B, is a convergent sequence and

lim
n→∞

(λn · ξn) = lim
n→∞

λn · lim
n→∞

ξn.

h) The limit of a convergent sequence of elements from K is an element from
K.

In order linear spaces one can use standard definitions and notions such as
upper and lower bounds, the least upper and greatest lower bounds (supremum and
infimum), minimal and maximal elements and so on. Further, usually the order and
the convergence in concrete ordered linear spaces possess some special properties
which are similar to corresponding properties of reals. Here are the important ones
of them.

The Cantor property. If sequences (un), (vn), un, vn ∈ B, satisfy the conditions

un ≤ un+1 ≤ vn+1 ≤ vn (n = 1, 2, . . .),

converge to a common limit:

lim
n→∞

un = lim
n→∞

vn = z,

and a sequence (ξn), ξn ∈ B, satisfies the conditions

un ≤ ξn ≤ vn (n = 1, 2, . . .)

then the sequence (ξn) is also convergent and

lim
n→∞

ξn = z.

The Weierstrass property: If (ξn), ξn ∈ B, is an upper bounded and decreasing
sequence (a lower bounded and increasing sequence):

ξ1 ≤ ξ2 ≤ . . . ≤ ξn ≤ . . . ≤ z (ξ1 ≥ ξ2 ≥ . . . ≥ ξn ≥ . . . ≥ z),

then there exists supn ξn ( infn ξn) and the following equality

lim
n→∞

ξn = sup
n

ξn ( lim
n→∞

ξn = inf
n

ξn)

holds.
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The interpolation property: If elements ξ1, ξ2, η1, η2 ∈ B satisfy the inequalities

ξ1, ξ2 ≤ η1, η2, then there exists an element ζ ∈ B such that ξ1, ξ2 ≤ ζ ≤ η1, η2.

The Riesz property: If elements ξ1, ξ2, and ξ from B satisfy the inequalities

ξ1, ξ2 ≤ ξ (ξ1, ξ2 ≥ ξ), then there exists an element u ∈ B (v ∈ B) such that

ξ1, ξ2 ≤ u (ξ1, ξ2 ≥ v) and the inequalities ξ1, ξ2 ≤ ξ (ξ1, ξ2 ≥ ξ) imply the

inequality u ≤ ξ (v ≥ ξ). The element u (v) is defined uniquely; it is the supremum
(the infimum) of elements ξ1 and ξ2 and denoted by sup {ξ1, ξ2} (inf {ξ1, ξ2}) or
ξ1 ∨ ξ2 (ξ1 ∧ ξ2). In ordered linear spaces with the Riesz property the function
ξ → |ξ|, |ξ| = ξ ∨ (−ξ), is defined; the element |ξ| is called modul or absolute value
of ξ in B.

The countable Dedekind property: Each upper or lower bounded countable set

M has the least upper bound supM or, correspondingly, the greatest lower bound

infM.

The Dedekind property: Each upper or lower bounded setM has the least upper

bound supM or, correspondingly, the greatest lower bound infM.

Sometimes a (partial) multiplication is defined in ordered linear spaces. In other
words, for some pairs ξ1, ξ2 ∈ B its product ξ1 ·ξ2 is defined and the function ξ1, ξ2 →
ξ1 · ξ2 has usual algebraic and order properties of multiplication. In what follows an
ordered linear space B is called an ordered semi-algebra, if the partial commutative
multiplication with the unit 1 is defined in B. Furthermore, an ordered semi-algebra
B is T -ordered semi-algebra if there exists a power function ξt (ξ ∈ K, 0 < t < τ(ξ))
in B (τ(ξ) is a functional with values in (0,∞]) with usual monotonicity properties,
and the multiplication and this power function are agreed by usual way:

ξa+b = ξa · ξb
(
ξ ∈ K, 0 < a, b, a + b < τ(ξ)

)
,

(ξ1 · ξ2)t = ξt1 · ξt2
(
ξ1, ξ2 ∈ K, 0 < t < τ(ξ1), τ(ξ2)

)
.

Below a special class of T -ordered semi-algebras is rather useful. T -ordered semi-
algebra is called C-ordered semi-algebra, if it possesses the countable Dedekind prop-
erty and, moreover, the following Cauchy property holds true.
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The Cauchy property: If a series

s(ξn) =
∞∑

n=0

ξn

with ξn ∈ K is convergent then r(ξn) ≤ 1; conversely, if r(ξn) ≤ 1 and 1− r(ξn) has
a positive inverse element then the series above is convergent; here

r(ξn) = lim sup
n→∞

(ξn)1/n.

In the last formula and below we used a standard definition of the upper limit

lim sup
n→∞

ξn = inf
n

sup
k≥n

ξk.

The conditions ‘r(ξn) ≤ 1’ and ‘r(ξn) ≤ 1, 1 − r(ξn) is an invertible element’ are
substitutions of the usual inequalities r(ξn) ≤ 1 and r(ξn) < 1.

Now we are in position to present the list of main types of convergence consi-
dered in ordered linear spaces.

Kantorovich o-convergence. A sequence (ξn), ξn ∈ B, o-converges to an element
ξ∗ ∈ B if there exist two sequences (un), un ∈ B, and (vn), vn ∈ B, for which

un ≤ ξn ≤ vn, un ≤ un+1, vn ≥ vn+1 (n = 1, 2, . . .),

and
ξ∗ = sup

n
un = inf

n
vn.

Kantorovich t-convergence. A sequence (ξn), ξn ∈ B, t-converges to an element
ξ∗ ∈ B if for each sequence (nk) satisfying the condition nk → ∞ there exists a
subsequence (nkj

) such that the sequence (ξnkj
) o-converges to ξ∗.

Kantorovich r-convergence. A sequence (ξn), ξn ∈ B, r-converges to an element
ξ∗ ∈ B if there exists an element r ∈ K and a sequence (εn) of positive reals satisfying
the condition εn → 0 for which the inequalities −εn r ≤ ξn− ξ∗ ≤ εn r (n = 1, 2, . . .)
hold.

E-convergence. Let E be a subset of nonzero elements of the cone K, and the two
following properties hold:

(a)
⋂

ε∈E < 0, ε >= {0},
(b) for each ε ∈ E there exists ε̃ ∈ E such that ε̃ + ε̃ ≤ ε.
A sequence (ξn), ξn ∈ B, E-converges to an element ξ∗ ∈ B if for any ε ∈ E

there exists a number Nε such that the inequality n > Nε implies the inequalities
−ε ≤ ξn − ξ∗ ≤ ε.
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Normed convergence. Let || · || be a norm in the space B and the cone K is
closed in the topology generated with this norm. As usual, a sequence (ξn), ξn ∈ B,
converges in the norm || · || to an element ξ∗ ∈ B if limn→∞ ||ξn − ξ∗|| = 0.

Γ-weak convergence. Let Γ be a total subspace of linear functionals on the space
B. A sequence (ξn), ξn ∈ B, Γ-weak converges to an element ξ∗ ∈ B if for each � ∈ Γ

lim
n→∞

�(ξn) = �(ξ∗).

Notice that the property h) for Γ-weak convergence may not hold; however, this
property holds if

K =
{
ξ ∈ B : �(ξ) ≥ 0 (� ∈ K∗)

}
where

K∗ =
{
� ∈ Γ : �(ξ) ≥ 0 (ξ ∈ K)

}
.

One of the most important properties of a convergence is its completeness property.
As usual, an ordered linear space is called sequentially complete if its classes of
convergent and fundamental sequences coincide each other. However, there appear
some difficulties concerned with definition of the class of fundamental sequences for
a class considered of convergent sequences (of course, these difficulties do not exist
in the case when the convergence is generated with a metric or a topology).

The most natural definition of fundamental sequences seems to be the following:
a sequence (ξn), ξn ∈ B, is called fundamental (with respect to a convergence γ

considered) if for any subsequences (lk), (mk) satisfying the condition lk, mk →
∞ the sequence (ξlk − ξmk

) converges to zero. However under this definition the
completeness property for most of concrete ordered linear spaces turns unknown (in
particular, in the case of Kantorovich o-convergence). L.V. Kantorovich offered a
different definition of the completeness property for ordered linear spaces.

A sequence (ξn), ξn ∈ B, is called fundamental (in the Kantorovich sense), if
there exists a sequence (zn), zn ∈ B, for which zn → 0 and such that the inequalities

−zn ≤ ξl − ξk ≤ zn (l, k ≥ n)

hold. A space B is called sequentially complete (in the Kantorovich sense), if the
classes of convergent and fundamental (in the Kantorovich sense) sequences coincide.

In conclusion of this section we present main examples of ordered linear spaces
which can be utilized in applications.
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1. The simplest and most important example of order linear spaces with con-
vergence is the usual set of reals with natural structures; in this case

B = R, K = [0,∞), γ = {the usual convergence}.

2. The following example is the number finite-dimensional space R
m with

natural structures; in this case

B = R
m, K =

{
ξ = (ξ1, · · · , ξm) : ξ1, · · · , ξm ≥ 0

}
,

γ = {the coordinate-wise convergence}.

3. The space s with usual structures is the simplest example of an infinite-
dimensional ordered linear space with convergence:

B = s, K =
{
ξ = (ξ1, · · · , ξm, · · ·) : ξ1, · · · , ξm, · · · ≥ 0

}
,

γ = {the coordinate-wise convergence}.

4. Let Ω be an arbitrary set and F(Ω,R) is a linear space of functions defined
on Ω and taking their values in R. Then

B = F(Ω,R), K =
{
ξ(ω) : ξ(ω) ≥ 0 (ω ∈ Ω)

}
,

γ = {the pointwise convergence}

is a new example of an ordered linear space. This space covers the foregoing as
special cases.

5. Let Ω be an arbitrary set, A be a σ-algebra of subsets in Ω, and λ be a
countably additive and σ-finite measure on A; further, let S be the linear space of
real measurable functions on Ω (in deed, of equivalence classes of such functions)
with usual structures. Then

B = S(Ω,R), K =
{
ξ(ω) : ξ(ω) ≥ 0 (ω ∈ Ω)

}
,

γ = {the pointwise almost everywhere or metric convergence}

is one of the most important examples of ordered linear spaces with convergence; the
o-convergence coincides with the pointwise almost everywhere convergence and the
t-convergence coincides with the convergence with respect to measure on subsets of
A with finite measure or the metric convergence. As in the previous case the space
S is a generalization of three first foregoing examples.
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6. Let again Ω be an arbitrary set, A be a σ-algebra of subsets in Ω, and λ be
a countably additive and σ-finite measure on A. A Banach space of scalar functions
from S is called ideal if the relations |z1| ≤ |z2|, z1 ∈ S and z2 ∈ Z imply the relations
z1 ∈ Z and ||z1|| ≤ ||z2|| (all inequalities are considered as ones everywhere). The
following ordered linear space with convergence

B = Z, K =
{
z(ω) : z(ω) ≥ 0 (ω ∈ Ω)

}
,

γ = {the pointwise, normed, weak or other convergence}

is one of the most extensively studied and greatest applicable utility.
In all these examples we deals with a space of scalar functions (or equivalence

classes of scalar functions), a cone of nonnegative functions (classes of functions)
and either usual point-wise convergence or a natural convergence generated by some
natural norm or some total family of linear functionals. In the following we do
not consider other examples (in particular, linear spaces with cones of monotone or
convex functions, linear spaces of vector-functions, or linear spaces of set functions).
It is not difficult to noticed which properties presented above hold for the foregoing
ordered linear spaces.

Theory of ordered linear spaces goes back to investigations of F. Riesz [75] and
H. Freudental [41]; in the following it was developed by a few independent schools
in different directions. Maybe this circumstance is a main reasoning of absence of
unify terminology, unify approaches, and unify object of investigation. In the former
Soviet Union there were at least three independent science schools. The first of them
was begun from fundamental investigations of L.V. Kantorovich and his pupils [49-
54,92]; they studied ordered linear spaces with strong additional properties such as
the Dedekind property and others. The second school goes back to investigations
of M.G. Krein and his pupils [59] and then of M.A. Krasnosel’skii and his pupils
[55-57]; these authors studied Banach spaces ordered with a closed cone and linear
and nonlinear operators acting in such spaces. The third school is related with
investigations of M.J. Antonovskii, V.G. Boltjanskii, and T.A. Sarymsakov [9], which
studied so called topological semi-fields or, in other words, ordered semi-algebras.
Some original approach to ordered linear spaces in framework of modular spaces
was suggested by H. Nakano [67]. A major contribution to the ordered linear space
theory was done by G. Birkhoff [15], I. Namioka [68], H. Schaefer [79-80] and others.
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2. K-metric and K-normed linear spaces

Let B be an ordered linear space with a cone K and a convergence γ and X be an
arbitrary set. A function ρ(·, ·) defined on the set X×X with values in B is called
a K-metric on X if the following properties hold:

a) ρ(x1, x2) ≥ 0 (x1, x2 ∈ X).
b) The equality ρ(x1, x2) = 0 (x1, x2 ∈ X) is equivalent to the equality x1 = x2.
c) ρ(x1, x2) = ρ(x2, x1) (x1, x2 ∈ X).
d) ρ(x1, x3) ≤ ρ(x1, x2) + ρ(x2, x3) (x1, x2, x3 ∈ X).

The pair X = (X, ρ) where X is a set and ρ is a K-metric on X is called
K-metric space.

The most important class of K-metric spaces is a class of K-normed linear
spaces.

Let X be a linear space. A function ||| · ||| defined on X and taking values in B

is called a K-norm if it has the following properties:
a) |||x||| ≥ 0 (x ∈ X).
b) The equality |||x||| = 0 (x ∈ X) is equivalent to the equality x = 0.
c) |||λx||| = |λ| |||x||| (λ ∈ R, x ∈ X).
d) |||x1 + x2||| ≤ |||x1|||+ |||x2||| (x1, x2 ∈ X).

The pair X = (X, ||| · |||) where X is a linear space and ||| · ||| is a K-norm on X
is called K-normed linear space.

Each K-normed linear space X is a K-metric space with K-metric in X defined
by means of the formula

ρ(x1, x2) = |||x1 − x2||| (x1, x2 ∈ X).

K-metrics in K-normed linear spaces have two additional important properties:

ρ(x1 + z, x2 + z) = ρ(x1, x2) (x1, x2, z ∈ X)

(the invariance with respect to shifts property) and

ρ(λx1, λx2) = |λ| ρ(x1, x2) (λ ∈ R, x1, x2 ∈ X)

(the homogeneity with respect to homotheties property).
In standard manner one can define a notion of a convergence (the K-convergen-

ce) in K-metric spaces. A sequence (xn), xn ∈ X, is called convergent, if there exists
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an element x∗ ∈ X such that the sequence (ρ(xn, x∗)) is convergent to zero in the
space B. This convergence has usual properties.

In what follows some sequential completeness property of the K-metric space
X is basic. There are some variants of corresponding definitions of fundamental
sequences, however, the standard definition is usually not convenient.

It is natural to give the following natural modification of the definition of fun-
damental sequences: a sequence (xn), xn ∈ X, is called fundamental (with respect
to a convergence γ considered in B), if for any subsequences (lk), (mk) satisfying
the condition lk, mk →∞ the sequence (ρ(xlk , xmk

)) converges to zero. Under this
definition the completeness property for most of concrete K-metric spaces turns out
to be unknown. As a result, usually, due to L.V. Kantorovich another modification
of the standard definition for fundamental sequences is used.

A sequence (xn), xn ∈ X, is called fundamental (in the Kantorovich sense), if
there exists a sequence (zn), zn ∈ B, for which zn → 0 and such that the inequalities

ρ(xl, xk) ≤ zn (l, k ≥ n, n = 1, 2, . . .)

hold. A space X is called sequentially complete (in the Kantorovich sense) if the
classes of convergent and fundamental sequences coincide.

A closed notion of the completeness property is connected with the classical
Weierstrass test of absolute convergence of series. A K-metric space X is called
sequentially complete (in the Weierstrass sense), if each sequence xn ∈ X such that

∞∑
n=1

ρ(xn, xn+1) <∞

is convergent in the space X (the inequality above as usual means, that the corre-
sponding series is convergent in the space B).

In the case of K-normed linear spaces this definition can be formulated in
traditional form. Recall that the series

s(xn) =
∞∑

n=1

xn.

is called convergent if the sequence of its partial sums is convergent in the space X,
and absolutely convergent if the series

s(|||xn|||) =
∞∑

n=1

|||xn|||
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is convergent in the space B. K-normed linear space X is sequentially complete in the
Weierstrass sense if and only if each absolutely convergent series in it is convergent.

Now we present the list of basic types of mathematical structures which can be
considered as K-metric or K-normed linear spaces.

1. Metric spaces and normed linear spaces. Of course, usual metric and
normed linear spaces are K-metric and K-normed linear spaces; in this case B = R.

2. Bi-metric spaces and bi-normed linear spaces. It is an important
(for numerous applications) class of K-metric and K-normed linear spaces for which
B = R

2. Obviously, it is easy to define a usual metric or norm in order to the
K-convergence in the original space coincides with the convergence generated with
the metric or norm; unfortunately, after the corresponding passing we usually lose
important geometrical properties of these spaces. Typical examples of bi-metric and
bi-normed linear spaces are equipped Hilbert spaces, Hölder spaces, spaces with two
norms, spaces of smooth functions and some others.

3. m-metric spaces and m-normed linear spaces. This class of K-metric
and K-normed linear spaces is formal generalization of the foregoing one; in this case
B = R

m. Typical examples of m-metric and m-normed linear spaces are spaces of
vector functions (with values in R

m), finite direct sum of metric and normed linear
spaces, spaces of smooth functions and others.

4. Countably metric spaces and countably normed spaces. It is K-
metric and K-normed linear spaces in which K-metric or K-norm takes its values in
the space B = s. The passing to usual metric (sometimes to normed linear) spaces
is possible but important geometrical properties of the original space lose as a rule
completely. But this class is rather interesting; it covers classical metrizable local
convex spaces, spaces of infinitely differentiable and analytical functions, countably
normed linear spaces, discrete and continuous scales of Banach spaces and lot of
others. In particular, if X is a local convex space and B = {O1, . . . ,On, . . .} is its
countable base of balanced convex neighborhoods of 0 in X then

|||x||| =
(
µO1(x), . . . , µOn

(x), . . .
)
,

where µO is the Minkowski functional of a set O, is a K-norm in X with values in s.
5. F-metric spaces and F-normed linear spaces. In these K-metric

and K-normed linear spaces K-metric and K-norm take their values in the space
B = F(Ω,R). This type of spaces covers arbitrary local convex spaces, Ovsjannikov’s
scales of Banach spaces and others. Really all uniform spaces can be considered as
F-metric ones and, similarly, all topological linear (not only local convex) spaces as
F-normed linear spaces. However as of now there do not exist serious examples of
utilization of these spaces in the fixed point theory.
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6. S-metric spaces and S-normed linear spaces. In these K-metric and
K-normed linear spaces K-metric and K-norm take their values in the space B =
S(Ω,R).

7. Riesz and Kantorovich spaces. Each Riesz space (ordered linear space
with the Riesz property) and, in particular, each Kantorovich space (ordered linear
space with Dedekind property) is a K-normed linear space; in this case

B = X, |||x||| = |x|,

where |x| = sup {x,−x}. Partial cases of these spaces are ideal spaces and Riesz
spaces.

8. Bochner function spaces. Each Bochner function space can be considered
as K-normed linear space with

B = Z, |||x||| = ||x(t)||,

where Z ⊆ S(Ω,R) is an ideal Banach space; usual ideal spaces are a special case of
these spaces yet.

9. Ideal-metric and ideal-normed linear spaces. In this class of K-
metric and K-normed linear spaces K-metric or K-norm takes its values from an
ideal Banach space Z of sequences or functions; Bochner function spaces lie in this
class. This class of K-metric and K-normed linear spaces plays an important role
in the operator equations theory since allows to use all enormous arsenal of analysis
in Banach spaces.

10. Direct sums of metric or Banach spaces. Each direct sum
∑

ω∈Ω E(ω)
of metric or Banach spaces E(ω) from some family E = {E(ω) : ω ∈ Ω} is really
K-metric or K-normed linear space for which

B = F(Ω,R), |||x(·)|||(ω) = ||x(ω)||ω (ω ∈ Ω).

Theory of K-metric and K-normed linear spaces were developed in different di-
rections; here we have special interest in the fixed point theory for operators in
K-metric and K-normed linear spaces. This aspect was intensively studied by L.V.
Kantorovich and then B.Z. Vulikh [50-53,92]; they considered the case when B was
a K-space (or, in other words, an abstract linear space with the order generated
with the Dedekind property and the Kantorovich o-convergence generated with this
cone). The second direction deals with situation when B is a Banach space ordered
with a closed cone K, it is developed by A.I. Perov and his pupils [62,70-71], E.M.
Mukhamadijev - V.J. Stetsenko [66] and others. The third direction is related to the
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case when B is a semi-field and systematically studied by M.J. Antonovskii, V.G.
Boltjanskii and T.A Sarymsakov [9], and then A.V. Mironov and T.A. Sarymsakov
[65]. At least it is necessary to cite articles by J. Schröder [81-84], L. Collatz [25],
E. Bohl [16-17], J. Vandergraft [90], in which were made numerous attempts to con-
struct general theory. Remark here articles by N.V. Azbelev and Z.B. Tsaljuk [13],
J.W. Daniel [26], G. Kurepa [60], W.J. Kammerer - R.H. Kasriel [48], S.N. Slugin
[85-86], J. Reinermann [74], N.S. Kurpel’ [61], and articles of mathematicians from
Yugoslavia and Rumania.

3. Banach-Caccioppoli’s principle with linear Lipschitz condition

In this section K-analogs of the classical Banach-Caccioppoli fixed point principle
of contracting mappings are presented. More exactly, here is formulated the gene-
ral fixed point principle for operators in K-metric spaces X with K-metric ρ(·, ·)
satisfying the Lipschitz condition of type

ρ(Ax1, Ax2) ≤ Qρ(x1, x2) (x1, x2 ∈ X) (1)

where Q is a linear and nonnegative (QK ⊆ K) operator acting in B.
The main assumption in the classical Banach-Caccioppoli fixed point principle

is the inequality Q < 1; the latter has a sense because Q is a usual number. However,
in general case this inequality loses sense and, thus, must be modified. The most
natural and simple modification is based on the usual school theorem: the inequality
Q < 1 is equivalent to existence of a sum for an infinite geometrical progression with
ratio Q, or, in other words, to the convergence of the Neuman series

ν(Q) =
∞∑

n=0

Qn.

In what follows we use the following definitions:

C(Q) =
{
ξ ∈ K : lim

n→∞
Qnξ = 0

}
, (2)

D(Q) =
{
ξ ∈ K :

∞∑
n=0

Qnξ <∞
}

(3)

(the inequality here, as usual, means the convergence of the corresponding series).
The equality

H(Q)ξ =
∞∑

n=0

Qnξ, (4)
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obviously, is defined a linear nonnegative operator H(Q) on the set D(Q); in the case
when 1 is not a positive eigenvalue of the operator Q (i.e. the equality Qξ = ξ, ξ ∈ K
implies ξ = 0) the operator H(Q) is usually denoted with (I − Q)−1. It is evident
that the sets C(Q) and D are normal (a set M is normal if η ≤ ξ, η ∈ K, ξ ∈ M
implies η ∈M).

Of course, analysis of the sets C(Q) and D(Q) in general case demands getting
over serious difficulties. However as of now a lot of concrete facts in this field are
well known; the main of them are gathered in the following statement.

Proposition 1

Let Q be a linear nonnegative operator in the space B. Then the following

assertions hold:

a) The equality D(Q) = K is true if and only if C(Q) = K and (I −Q) K = K.

b) In general case the following relations

D(Q) = (I −Q)C(Q) ⊆ C(Q)

hold.

c) In the case when B is a Banach space with a generating and normal cone K, the

equality D(Q) = K is hold if

ρ(Q) < 1;

this equality is necessary and sufficient if the operator Q is compact or, at least, its

peripherical spectrum is Fredholm.

d) In the case when B is an C-ordered semi-algebra the inequality r(Q)ξ ≤ 1 and the

positive invertibility of the element 1− r(Q)ξ imply the inclusion < 0, ξ >⊆ D(Q);
conversely, the inequality r(Q)ξ �≤ 1 implies the relation < ξ,∞ > ∩D(Q) = ∅;
here

r(Q)ξ = lim sup
n→∞

(Qnξ)1/n.

Notice that the operator H(Q) satisfies two functional identities:

H(Q) = QH(Q) + I (5)

and
H(Q) = H(Q)Q + I. (6)

The general fixed point principle can be formulated in the following manner:
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Theorem 1

Let X be a sequentially complete (in the Weierstrass sense) K-metric space and

A be an operator which acts in X and satisfies the Lipschitz condition (1) in which
the Lipschitz coefficient Q is a linear and nonnegative operator acting in B. Assume
that

ρ(Ax0, x0) ∈ D(Q).

Then A has a fixed point x∗ ∈ X which lies in the ball B(x0, H(Q)(ρ(Ax0, x0));
further this fixed point is the limit of successive approximations xn+1 = Axn (n =
0, 1, . . .), and satisfies the inequalities

ρ(xn, x∗) ≤ H(Q)Qnρ(Ax0, x0) (n = 0, 1, . . .);

at last, this fixed point is unique on the set

U(x0, Q) =
{
x ∈ X : ρ(x, x0) ∈ C(Q)

}
.

Error estimates in Theorem 1 are completely similar to classical estimates for
operators in metric spaces, however, they are really more complicated. So, even in
simple cases analysis of asymptotic behavior of the sequence (H(Q)Qnξ) for different
initial values ξ ∈ K is not sufficient.

The simplest situation is when ξ is a nonnegative eigenvector e0 of the lin-
ear nonnegative operator Q (in the case of Banach spaces classical theorems on li-
near nonnegative operators describe natural conditions of existence of nonnegative
eigenvectors with eigenvalue which coincides with the spectral radius ρ (Q) of the
operator Q). In this case the equalities

H(Q)Qne0 =
ρn(Q)

1− ρ(Q)
e0 (n = 1, 2, . . .)

holds and analysis of the sequence (H(Q)Qne0) is reduced to analysis of the usual
number sequence. A weaker assertion holds for elements ξ ∈ K from the order
component K(e0) generated with the eigenvector e0 which by definition is a set of
ξ ∈ K for which the inequalities αe0 < ξ < βe0 are true for suitable α, β, 0 < α <

β <∞. The inequalities

αe0(ξ)
ρn(Q)

1− ρ(Q)
e0 ≤ H(Q)Qnξ ≤ βe0(ξ)

ρn(Q)
1− ρ(Q)

e0 (n = 1, 2, . . .),

where
αu(ξ) = sup {α : ξ ≥ αu}, βu(ξ) = inf{β : ξ ≤ βu} (u ∈ K)
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characterize rather well asymptotic behavior of the sequence (H(Q)Qnξ) with ξ ∈
K(e0). The similar inequalities

αe0(Q
sξ)

ρn−s(Q)
1− ρ(Q)

e0 ≤W (Q)Qnξ ≤ βe0(Q
sξ)

ρn−s(Q)
1− ρ(Q)

e0 (n = 1, 2, . . .)

are true for ξ from the set Ks(Q) = Q(−s)(K(e0)), s = 1, 2, . . .
It is obvious that the nonnegative eigenvector e0 of the operator Q can be found

in the explicit form only in exceptional cases. However, in numerous cases it can be
replaced with a vector u0 = Q1 (or u0 = Qs1 for a suitable s > 1); here 1 is a weak
order unit in K. In these cases the nonnegative eigenvector e0 is usually lies in the
component K(u0) generated with u0, or, in other words, the inequality

δ = inf {βα−1 : αu0 < e0 < β u0} <∞

holds. Unfortunately, simple and general conditions, under which these inequalities
hold true are unknown; besides in many cases the operator Q is e0-bounded (i.e.
Ks(Q) = B for some s); in this situation the conditions of e0-boundedness and
u0-boundedness of the operator Q are equivalent each other.

In many important cases the operator Q has no nonnegative eigenvectors; in
particular, the latter is true if Q is a compact Volterra integral operator. In this
case the asymptotic behavior of sequences (H(Q)Qnz) (z ∈ K) can be described if
simple formulas for iterations Qn (n = 1, 2, . . .) are known; the latter is true, for
example, for Liouville’s integral operators.

In some applications it were useful to make analysis in details of the set Tn(Q)
of elements z ∈ K satisfying the inequalities Qnz ≤ cz for suitable c ∈ (0,∞) and
subadditive functionals

γn(z) = inf {c : Qnz ≤ cz} (n = 0, 1, ...)

defined on these sets. In particular, it is of interest to find conditions, under which
the formula

ρ(Q) = inf {γ1(z) : z ∈ K}

holds (the answer is, of course, evident if Q possesses an nonnegative eigenvector).
The estimates considered above are estimates in ordered linear space B. If B

is a Banach space it is natural to pass from such order estimates to usual estimates
with norms. Usually the corresponding passing is trivial in the case the cone K is
normal; the latter means the existence of a constant L such that the order inequal-
ities ξ ≤ η, (ξ, η ∈ K) imply the scalar inequality ||ξ|| ≤ L ||η||. However one can
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consider usual scalar estimates for the sequence (H(Q)Qnρ(Ax0, x0)) without anal-
ysis corresponding order inequalities. This problem is studied insufficiently; some
new results and unsolved problems in this field is presented in [97,98].

It is not possible to say who discovered and proved Theorem 1. Below we
present only a list of mathematicians who dealt with special cases of Theorem 1 or
its analogs: M.J. Antonovskii, V.G. Boltjanskii, T.A. Sarymsakov [9], N.V. Azbelev
- Z.B. Tsaljuk [13], E. Bohl [16-17], L. Collatz [25], J.W. Daniel [26], N.A. Evkhuta
- P.P. Zabrejko [39], F. Gandac [42-44], W.J. Kammerer - R.H. Kasriel [48], L.V.
Kantorovich [49-52,54], M.A. Krasnosel’skii - G.M. Vainikko - P.P. Zabrejko - J.B.
Rutitskii - V.J. Stetsenko [58], G. Kurepa [60], N.S. Kurpel’ [61], A.V. Mironov
- T.A. Sarymsakov [65], E.M. Mukhamadiev - V.J. Stetsenko [66], J.M. Ortega -
W.C. Rheingoldt [69], A.I. Perov [70], A.I. Perov, A.V. Kibenko [71], J.V. Radyno
[72-73],J. Reinermann [74], T. Sabirov - F. Nazarov - E.M. Mukhamadiev [77], J.
Schröder [81-84], S.N. Slugin [85- 86], E. Tarafdar [87], B.Z. Vulikh [92], P.P. Zabre-
jko [94-101], P.P. Zabrejko - T.A. Makarevich [103-104], P.P. Zabrejko - J.V. Radyno
[105].

4. Banach-Caccioppoli’s principle with nonlinear Lipschitz condition

This section is devoted to K-analogs of the classical Banach-Caccioppoli principle
of contractive mappings A which act in K-metric spaces X with K-metric ρ(·, ·) and
satisfy the Lipschitz condition of type

ρ(Ax1, Ax2) ≤ Qρ(x1, x2) (x1, x2 ∈ X) (7)

where Q is a nonlinear and nonnegative operator acting in B. The condition (7) is
called the nonlinear Lipschitz condition.

Fixed points of operators satisfying the nonlinear Lipschitz conditions in met-
ric spaces were begun to study intensively since sixties (see s.g. [47]); however,
analogous operators acting in K-metric spaces were almost not of interest.

There are two approaches to investigation of operators satisfying the nonlinear
Lipschitz conditions. The first of them is based on analysis of Neuman series for
the operator coefficient Q and the second is based on analysis of successive approx-
imations with small shift-perturbations of the operator coefficient Q. By contrast
to linear case both methods lead to different statements and results obtained with
these methods are not comparable in general.
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In what follows we need some definitions. Let the nonlinear nonnegative op-
erator Q : K → K satisfy the condition Q0 = 0 and be monotone (the inequality
ξ ≤ η (ξ, η ∈ K) implies the inequality Qξ ≤ Qη). Set

C(Q) =
{
ξ ∈ K : lim

n→∞
Qnξ = 0

}
, (8)

L(Q) =
{
ξ ∈ K :

∞∑
n=0

Qnξ <∞
}

(9)

(as usual, an inequality here means convergence of a corresponding series with non-
negative members), and

M(Q) =
{
ξ ∈ K : Qξ ≤ ξ, lim

n→∞
Qnξ = 0, lim

n→∞
Sn(ξ) <∞

}
(10)

where
S0(ξ) = 0, Sn+1(ξ) = QSn(ξ) + ξ (n = 1, 2, . . .)

(an inequality in (10) means convergence of a corresponding monotonically increas-
ing sequence).

The equality

L(Q)ξ =
∞∑

n=0

Qnξ, (11)

obviously, defines a nonlinear nonnegative and monotone operator L(Q) on the set
L(Q); this operator satisfies the equation

L(Q) = L(Q)Q + I. (12)

Similarly, the equality
M(Q)ξ = lim

n→∞
Sn(ξ), (13)

obviously, defines a nonlinear nonnegative and monotone operator M(Q) on the set
M(Q); this operator satisfies the equation

M(Q) = QM(Q) + I. (14)

In the linear case both operators L(Q) and M(Q) coincides with the operator
H(Q) = (I − Q)−1 which is defined with natural way; in the nonlinear case op-
erators L(Q) and M(Q) are different.
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Of course, analysis of the sets L(Q) and M(Q) in the nonlinear case and cal-
culation of the operators L(Q) and M(Q) turn out to be rather difficult problem in
the comparison with its analog in the linear case. However some statements keep
true and in the nonlinear case.

First remark that L(Q),M(Q) ⊆ C(Q) and all three sets C(Q), L(Q) andM(Q)
are normal as in the linear case.

An operator Q satisfies the upper Fatou property if the relations z0 ≤ z1 ≤ . . . ≤
zn ≤ . . . , z∗ = sup{zn} imply the inequality Qz∗ ≤ sup{Qzn}, and, similarly, Q
satisfies the lower Fatou property if the relations z0 ≥ z1 ≥ . . . ≥ zn ≥ . . . , z∗ =
inf{zn} imply the inequality Qz∗ ≥ sup{Qzn}.

Proposition 2

Let Q be a nonlinear nonnegative and monotone operator in the space B. Then

the following statements are true:

a) In the case when B is an C-ordered semi-algebra the inequality r(Q)ξ ≤ 1 and the

positive invertibility of the element 1 − r(Q)ξ imply the relation < 0, ξ >⊆ L(Q);
conversely, the inequality r(Q)ξ �≤ 1 implies the relation < ξ,∞ > ∩L(Q) = ∅; here

r(Q)ξ = lim sup
n→∞

(Qnξ)1/n.

b) If an element ξ ∈ K satisfies the inequality Qξ ≤ ξ, the operator Q has no

nonzero fixed points on the segment < 0, ξ > and has the lower Fatou property,

then < 0, ξ >⊆ C(Q). Conversely, if an element ξ ∈ K satisfies the inequality

Qξ ≥ ξ, then < ξ,∞ > ∩C(Q) = ∅.
c) If for an element z ∈ K there exists an element ξ ∈ K such that the inequality

Qξ + z ≤ ξ is true and let the operator Q have the upper Fatou property, then

< 0, z >⊆ M(Q). Conversely, if for an element z ∈ K there exists an element

ξ ∈ K such that the inequality Qξ + z ≥ ξ is true, then < z,∞ > ∩M(Q) = ∅.
d) If the space B satisfies the Weierstrass property and the operator Q satisfies the

upper Fatou property then the operator M(Q) is continuous at zero.

The general fixed point principle for operators satisfying the nonlinear Lipschitz
condition can be formulated in the following manner.
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Theorem 2
Let X be a K-metric space and A be an operator A which acts in X and satisfies

the Lipschitz condition (7) in which the Lipschitz coefficient Q is a nonlinear and
nonnegative operator acting in B. Assume that either

ρ(Ax0, x0) ∈ L(Q)

and the space X is sequentially complete in the Weierstrass sense or

ρ(Ax0, x0) ∈M(Q),

the operator M(Q) be continuous at zero, and the space X is sequentially complete
in the Kantorovoch sense. Then A has a fixed point x∗ ∈ X which lies in the ball
B(x0, L(Q) ρ(Ax0, x0)) or in the ball B(x0,M(Q) ρ(Ax0, x0)); further, this fixed
point is the limit of successive approximations xn+1 = Axn (n = 0, 1, . . .), and
satisfies the inequalities

ρ(xn, x∗) ≤ L(Q)Qnρ(Ax0, x0) (n = 0, 1, . . .)

or, correspondingly, the inequalities(
ρ(xn, x∗) ≤M(Q)Qnρ(Ax0, x0) (n = 0, 1, . . .)

)
;

at last, this fixed point is unique at the set

U(x0, Q) = {x ∈ X : ρ(x, x0) ∈ C(Q)}.

There appears a natural question which of the operators L(Q) and M(Q) allows
to catch the strongest statement on existence of a fixed point for the original operator
A. The answer is not unique and depends on special properties of the operator Q.
In particular, if the operator Q is subadditive (i.e. it satisfies the inequality

Q(ξ1 + ξ2) ≤ Qξ1 + Qξ2 (ξ1, ξ2 ∈ K)

Theorem 2 gives a stronger existence result with the operator M(Q); however, if the
operator Q is superadditive (i.e., it satisfies the inequality

Q(ξ1 + ξ2) ≥ Qξ1 + Qξ2 (ξ1, ξ2 ∈ K)

Theorem 2 gives stronger existence result with the operator M(Q).
L(Q)-variant of Theorem 2 seems to go back to E. Hille; some its modifications

were offered by F. Gandac [42-44], S. Vakhidov [88-89], P.P. Zabrejko - T.A. Makare-
vich [103-104], P.P. Zabrejko [96,99-100,102]. M(Q)-variant of Theorem 2 seems to
go back to the article by T. Waẑewski [93]; the original variant was improved by M.
Kwapisch [63], N.S. Kurpel’ [62], J. Eisenfeld - V. Lakshmikantham [33-35], K.-J.
Chung [19-24], S.T. Dzhabarov [30-32] and others. The variant presented is new.
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5. Kantorovoch’s majorant principle

Let A be an operator acting in K-metric space X. By definition a nonnegative and
monotone operator Φ (Φ(0) = 0) is called Kantorovich majorant (at the point x0)
of the operator A if the inequalities

ρ(Ax̃,Ax) ≤ Φ(r + h)− Φ(r)
(
ρ(x, x0) ≤ r, ρ(x̃, x) ≤ h (r, h ∈ K)

)
(15)

hold. There is the deepest connection (discovered by L.V. Kantorovich) between
fixed points of the operator A or, in other words, solutions to the equation

x = Ax

and solutions to the equation

ξ = Φ(ξ) + a
(
a = ρ(x0, Ax0)

)
. (16)

This fact allows to catch fixed point of the operator A if we have sufficient informa-
tion about solutions of the essentially simpler equation (16). As a result there ap-
pears a problem of constructing Kantorovich majorants to the operator A; moreover,
there appears a problem of constructing of optimal Kantorovich majorants. Both
problems lead to definite difficulties even for concrete nonlinear operators (some re-
sults in this direction were obtained in [108] for superposition and Uryson integral
operators; further statements one can find in [12]).

In Kantorovich spaces one can write abstract formulas for Kantorovich majo-
rants. In particular the formula

Φ(ξ) = sup

{
s∑

σ=1

∆(ξσ−1, ξσ − ξσ−1) : 0 = ξ0 ≤ ξ1 ≤ . . . ≤ ξs = ξ, s = 1, 2, . . .

}

holds; here

∆(a, b) = sup {ρ(Ax,Ax̃) : ρ(x, x0) ≤ a, ρ(x̃, x) ≤ b}.
There are formulas of other type; the following section is devoted to some of them.

Put
Sn+1(z, ξ) = Φ(z)

(
Sn(z, ξ)

) (
S0(z, ξ) = ξ, n = 0, 1, . . .

)
where

Φ(z) (ξ) = Φ(ξ) + z

and, further,
S(Φ) =

{
z ∈ K : lim

n→∞
Sn(z, 0) <∞

}
, (17)

S(Φ)(z) = lim
n→∞

Sn(z, 0) (18)

and, at last,
T (Φ, z) =

{
ξ ∈ K : lim

n→∞
Sn(z, ξ) = S(Φ)(z)

}
. (19)
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Theorem 3

Let X be a sequentially complete (in the Weierstrass sense) K-metric space, A

be an operator acting in the space X, and Φ be its Kantorovich majorant. Assume

that the condition

ρ(Ax0, x0) ∈ S(Φ)

holds. Then A has a fixed point x∗ ∈ X which lies in the ball B(x0, S(Φ)ρ(Ax0, x0));
further, this fixed point is the limit of successive approximations xn+1 = Axn (n =
0, 1, . . .) and satisfies the inequalities

ρ(xn, x∗) ≤ S(Φ)
(
ρ(Ax0, x0)

)
− Sn

(
ρ(Ax0, x0)

)
(n = 0, 1, . . .),

at last, this fixed point is unique in the set

U(x0,Φ) =
{
x ∈ X : ρ(x, x0) ∈ T

(
Φ, ρ(Ax0, x0)

)}
.

It is natural way there appears a problem on relations between Theorems 1-2
and Theorem 3. One can see that (1) is a special case of (7) and (15); thus, Theorem
1 is a consequence of both Theorems 2 and 3. Further, (7) implies (15) if

Qh ≤ Φ(r + h)− Φ(r);

it holds for Φ = Q provided that Q is a superadditive operator. Therefore, in this
special case Theorem 2 is a consequence of Theorem 3; unfortunately, this case is
unnatural and seems not to be interesting. In Kantorovich spaces under conditions
of Theorem 2 one can try to define a Kantorovich majorant Φ by the formula

Φ(r) = lim
n→∞

Φn(r)

where

Φ0(r) = Q(r), Φn+1(r) = sup {Φn(ξ) + Q(r − ξ) : (0 ≤ ξ ≤ r)} (n = 0, 1, . . .);

if this process is convergent the corresponding Kantorovich majorant is the best one.
But one can notice that usually direct application of Theorem 2 in this and other
similar cases is more effective than application of Theorem 3 with the corresponding
Kantorovich majorant. At last, it is necessary to note that (15) implies (7) with
Qh = Φ(r+h)−Φ(r) on the ball B(x0, r) ⊆ X. This passing usually lead to serious
loss of information about the operator A.
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Thus, Theorems 2 and 3 are independent from each other. There are other inter-
esting relations between Theorems 1-3; some of them are discussed in the following
section.

Theorem 3 is really stated by L.V. Kantorovich [51,54].

6. The Lipschitz condition and Kantorovich majorants

In many applications we deals with operators satisfying the local Lipschitz condition
of type

ρ(Ax1, Ax2) ≤ Q(r) ρ(x1, x2)
(
x1, x2 ∈ B(x0, r), r ∈ K

)
(20)

where Q(r) is a monotone function defined on the cone K and taking values in
the cone K(B) of linear nonnegative operators acting in the space B. It is easy to
formulate some fixed point principles for such operators using Theorem 1. Really, if
for some r ∈ K the operator Q(r) satisfies the conditions

ρ(x0, Ax0) ∈ S
(
Q(r)

)
, ρ(x0, Ax0) ≤

(
I −Q(r)

)
r

then the operator A satisfies the condition of Theorem 1 in which the space X is
changed with its subspace B(x0, r). However there exists an essentially more ef-
fective approach. This approach is based on the passing from the local Lipschitz
condition (20) to the condition (15) with a suitable Kantorovich majorant Φ(r).
Evident reasoning shows that such approach will be more effective than smaller a
Kantorovich majorant Φ(r). However, a problem of construction of minimal Kan-
torovich majorant is open in general case.

Remark that the simplest Kantorovich majorant for the operator A satisfying
the local Lipschitz condition (20) can be defined by the formula

Φ(r) = Q(r)r

(this fact is an evident consequence of the inequalities ρ(Ax̃,Ax) ≤ Q(r + h)h =
Q(r+h)(r+h)−Q(r+h)r ≤ Q(r+h)(r+h)−Q(r)r = Φ(r+h)−Φ(r) (ρ(x, x0) ≤
r, ρ(x, x̃) ≤ h)).

Assume that X is a K-normed linear space (although many constructions and
speculations can be enlarged on more general types of K-metric spaces). In this
case the passing from the local Lipschitz condition to the Kantorovich majorant
condition is possible in the case when the operator-function Q(r) is potential or, in
other words, has a primitive Φ(r). As it is well known the potentiality conditions
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for an operator-function Q(r) in the case when B �= R are rigid and not trivial; they
are equivalent to independence on a way of a curve integral

I(L) =
∫
L
Q(t) dt;

if these conditions hold then the corresponding potential is defined by the curve
integral

Φ(r) =
∫ r

0

Q(t) dt.

It is evident to see that this Kantorovich majorant is minimal. The passing described
for differentiable operators A in normed linear spaces was discovered by L.V. Kan-
torovich [52] and for differentiable operators A in K-metric spaces was done by B.Z.
Vulikh [92]; in general case it was considered in [12,101].

In other cases it is necessary to pass from the original Lipschitz coefficient
Q(r) to the larger Lipschitz coefficients Q̃(r) which has a primitive; in this case the
operator

Φ(r) =
∫ r

0

Q̃(t) dt

is a Kantorovich majorant for the operator A at the point x0. It is unknown, whether
it is minimal; moreover, the passing Q(r)→ Q̃(r) was almost not studied.

Consider now the cases B = R
m and B = s. Then Kantorovich majorant can

be defined by the simple formula

Φ(r) =
∫

Π(r)

Q(t) dt,

where Π(r) is the multi-path consisting the closed intervals

Πj(r) = {(r1, . . . , rj−1, t, rj+1, . . . , rm) : 0 ≤ t ≤ rm}

(j ∈ {1, . . . ,m}, r = (r1, . . . , rm) ∈ K)

in the case B = R
m and

Πj(r) = {(r1, . . . , rj−1, t, rj+1, . . .) : 0 ≤ t ≤ rm}

(j ∈ {1, 2, . . .}, r = (r1, r2, . . .) ∈ K)

in the case B = s. This passing was suggested by T.V. Savchenko [78] and then
studied in [40,106].
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In conclusion of this section we consider some special conditions of Lipschitz-like
type (these conditions are systematically studied by L.V. Ovsjannikov in connection
with Cauchy problem for singular differential equations in Banach spaces). Let B is
a space of functions z(ω) which are defined on a set Ω and take their values from a
cone k in a Banach space Z, K = {z(ω) ∈ Z : z(ω) ∈ k (ω ∈ Ω)}. The operator A

satisfies the Ovsjannikov condition if

ρ(Ax1, Ax2)(ω′′) ≤ C(ω′, ω′′) ρ(x1, x2)(ω′)
(
(ω′, ω′′) ∈ W, x1, x2 ∈ X

)
, (21)

where C(ω′, ω′′) ((ω′, ω′′)) ∈ W) is a family of linear nonnegative operators acting
in the space Z, W is a sufficiently ‘rich’ subset of Ω×Ω or, in other words, a subset
for which the following property holds

H(W) ∩ (ω × Ω) �= ∅, H(W) ∩ (ω × Ω) �= ∅ (ω ∈ Ω);

here

H(W) =
∞⋂

n=1

Hn(W), Hn(W) =
{
(ω′, ω′′) : ∆n(ω′, ω′′) �= ∅

}
,

∆n(ω′, ω′′) = {(ω0, ω1, . . . , ωn) : ω0 = ω′, ωn = ω′′, (ωj−1, ωj) ∈ W (j = 1, . . . , n)}.

It is easy to see that Ovsjannikov condition (21) for the operator A is equivalent the
usual Lipschitz condition (7) in which the operator Q is defined by the formula

Qz(ω) = inf
ω̃∈Ω

C(ω, ω̃) z(ω̃) (22)

provided that the right hand side of (22) has a sense. This operator is homogeneous
but nonlinear (in deed it is a suplinear operator); the latter leads to natural difficul-
ties. However in many cases one can pass to a rougher Lipschitz condition (1) with
a linear operator coefficient. Such pass can de realized with many ways; we describe
two of them.

Let λ be a probabilistic measure on the set Ω and

C̃(ω′, ω′′) =
{
C(ω′, ω′′) if (ω′, ω′′) ∈ W,

0 if (ω′, ω′′) �∈ W.

Then the Ovsjannikov (21) condition implies the Lipschitz condition (1), in which
the operator coefficient Q is defined with the formula

Qz(ω) =
∫

Ω

C̃(ω, ω̃) z(ω̃) dλ(ω). (23)
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Let θ : Ω→ Ω be a mapping of the set Ω into itself for which (ω, θ(ω)) ∈ W (ω ∈ Ω);
in this case the Ovsjannikov condition implies the Lipschitz condition (1), in which
the operator coefficient Q is defined by the formula

Qz(ω) = C
(
ω, θ(ω)

)
z
(
θ(ω)

)
. (24)

Analysis of different properties of the nonlinear operator (22) and linear operators
(23) and (24) can usually be realized on standard schemes; remark that analysis of
the operator (24) is often reduced to applying Antonevich-Kitover-Lebedev theorem
on the spectral radius of generalized shift operators (see [6,8]).

In conclusion of this section we remark that the foregoing fixed point principles
(Theorem 1-3) are formulated as statements in terms of K-metric and K-normed
linear spaces. However, as was noticed above local convex spaces, general topolog-
ical linear spaces and even arbitrary uniform spaces are special types of K-metric
(or K-normed linear) spaces; thus one can formulate specializations of Theorem 1-3
for these types of spaces. We omit exact assertions, however, note that articles [3-5,
13,18,27-29,46,64,76,87,91,94] are devoted to fixed point principles for operators act-
ing in uniform, local convex spaces and so on.

7. Applications

The fixed point theory for operators in K-metric and K-normed linear spaces has
numerous applications in analysis, theory of differential and integral equations, nu-
merous methods and so on. However, we omit classical and standard applications
(one can find the description of numerous applications in details, s.g. [10-12,13,25,
53-54,59,61,69-71,76,81-84,94,106]). In this section we restrict ourselves only some
new and unexpected applications; moreover, for reasons of room, we give only gen-
eral moments concerning these applications.

7.1. Bogoljubov’s and Bohl’s theorems about bounded solutions of dif-
ferential equations. Let X be a Banach space. As is well known the problem
on bounded (on the whole axe R) solutions for differential or functional-differential
equations of type

dx

dt
= Ax + F (x), (25)

where A is linear and F (·) is nonlinear operators in the space of C(R,X) of bounded
and continuous functions x(t) : R → X. In special case when F is a superposition
operator Fx(s) = f(s, x(s)) generated with a function f(s, u) : R × X → X these
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assumptions cover different types of ordinary and partial differential equations; in
general case these assumptions as well cover differential equations with retarded
arguments, some types of stochastic differential equations and so on.

The problem on bounded solution to (25) is equivalent to Hammerstein’s inte-
gral equation

x(t) =
∫ +∞

−∞
g(t, s)F

(
x(s)

)
ds, (26)

where g(t, s) is the Green function of the problem on bounded solutions for the
linear differential equation x′ = Ax. Classical Bohl’s and Bogoljubov’s theorems
on existence and continuous continuation of bounded solutions to Equation (25)
are based on applying Banach-Caccioppoli fixed point principle to the operator A

defined by the right hand side of (26) in the space C(R,X). It turns out that essential
sharpening of Bohl and Bogoljubov theorems can be obtained if the operator A is
considered in the bi-normed linear space C1(R,X) of bounded and differentiable
functions with bounded and continuous derivatives. In this case the operator A

satisfies the local Lipschitz condition with the operator-function coefficient

Q(r) =
(
a(r) b(r)
c(r) d(r)

)

where a(r), b(r), c(r), d(r) are defined by the nonlinear operator F (·). The applica-
tion of Theorem 1 (or Theorem 3) leads to generalizations of Bohl’s and Bogoljubov’s
theorems. Notice that the inequality ρ(Q(r)) < 1 is equivalent to the scalar inequa-
lities

a(r), d(r) < 1, b(r)c(r) <
(
1− a(r)

) (
1− d(r)

)
which allows b(r) to be large! Exact results and their numerous modifications are
described in details in [1,2,105].

7.2. Samojlenko’s successive approximations method in the oscillations
theory and theory of boundary value problems. Let X be a Banach space.
The problem on ω-periodic solutions for differential equation

dx

dt
= f(t, x), (27)

where f(·, ·) is a ω-periodic with respect to t and continuous with respect to both
variables is equivalent to the following system of Hammerstein’s integral equation

x(t) = ξ +
∫ ω

0

g(t, s) f(s, x(s)) ds, (28)
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where

g(t, s) =
{

1− t
ω if 0 ≤ s ≤ t ≤ ω

t
ω if 0 ≤ t < s ≤ ω

and the operator equation ∫ ω

0

f
(
s, x(s)

)
ds = 0.

Samojlenko’s successive approximations

xn+1(t, ξ) = A(ξ)xn(t, ξ)
(
x0(t, ξ) = ξ, n = 0, 1, . . .

)
with parameter ξ ∈ X for the operator A(ξ) which is defined by the right hand side
of (28); the parameter ξ is defined by the equation∫ ω

0

f
(
s, w(s, ξ)

)
ds = 0

(
w(t, ξ) = lim

n→∞
xn(t, ξ)

)
.

Analysis of convergence of Samojlenko’s approximations is reduced to applying The-
orem 1 for the operator A(ξ) in the space C([0, ω],X); the operator A satisfies the
Lipschitz condition with the operator coefficient

Qz(s) = c

∫ ω

0

g(t, s) z(s) ds

where c is a Lipschitz coefficient of the function f(t, x) with respect to x. Simple
calculations show that ρ(Q) = κ c, where κ = (4θ2)−1 and θ are positive roots of
the transcendent equation ∫ θ

0

exp σ2 dσ =
1
2θ

exp θ2

(κ ≈ 0, 293). Exact results and their numerous modifications for ordinary and partial
differential equations are described in details in [36-39].

7.3. The Cauchy and Goursat problems for differential equations with
deteriorating operators. Let Z(ω) (ω ∈ [0, 1]) be a family of Banach spaces Z(ω)
such that

Z(ω′′) ⊆ Z(ω′), ||z||ω′ ≤ ||z||ω′′ (0 ≤ ω′ ≤ ω′′ ≤ 1).

Furthermore, let X be a K-normed linear spaces of elements from X(0) with the
natural K-norm |||x|||(ω) = ||x||ω taking its values from the space B of real functions
on [0, 1] with values in Z. Consider the Cauchy problem for differential equation

dx

dt
= f(t, x), (29)
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where f(·, ·) is a function continuous with respect to t, satisfying the Ovsjannikov
condition

||f(t, x1)−f(t, x2)||ω′′ ≤ c(ω′, ω′′) ||x1−x2||ω′ (0 ≤ t ≤ T, x1, x2 ∈ X, ω′, ω′′ ∈ [0, 1])

with respect to x with a real function c(ω′, ω′′) taking finite values for ω′ > ω′′, and,
in addition, closed in a natural sense with respect to x. This Cauchy problem is
equivalent to the following Volterra’s integral equation

x(t) = ξ +
∫ t

0

f
(
s, x(s)

)
ds. (30)

The operator A generated by the right hand side of this integral equation satisfies
the Ovsjannikov condition with the operator coefficient

C(ω′, ω′′)z(t, ω′′) = c(ω′, ω′′)
∫ t

0

z(s, ω′) ds (0 ≤ ω′′ ≤ ω′ ≤ 1).

The application of Theorem 2 (or even Theorem 1) to the operator A allows to state
existence (uniqueness) of a solution to (29) on the interval [0, T ] in the space X(ω)
if

lim sup
n→∞

(
cn(0, ω)

n!

)1/n

<
1
T

(
lim sup
n→∞

(
cn(ω, 1)

n!

)1/n

<
1
T

)
;

here

cn(ω′, ω′′) = inf
ω′=ω0>ω1>...>ωn=ω′′

c(ω0, ω1) c(ω1, ω2) . . . c(ωn−1, ωn).

In classical case c(ω′, ω′′) = c(ω′′ − ω′)−1 and cn(ω′, ω′′) = cn nn (ω′′ − ω′)−n. This
result covers the classical Cauchy-Kowalewskaja theorem and its numerous analogs
by Gevreut for partial differential equations as well as their abstract variants, in
particular, Ovsjannikov’s theorem and their variants suggested by F. Treves and his
successors. Exact results and their numerous modifications are described in details
in [11,14,96,100,102-104].

Analogous speculations are applied to study of Goursat problem for differential
equations, in inverse problems of the scattering theory and other.
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18. I. Cacciopoli, Un teorema generale sull’esistenza di elementi uniti in una transformazione fun-

zionale, Rend. Lincei 11 (1930).
19. K.-J. Chung, Common fixed point theorems through abstract cones, Bull. Acad. Polon sci., ser.

sci. math. 28 (1980), No. 11-12, 619–626.



K-metric and K-normed linear spaces: survey 855

20. K.-J. Chung, Fixed point theorems in topological spaces, Bull. Acad. Polon sci., ser. sci. math.
29 (1981), No. 11-12, 617–626.

21. K.-J. Chung, Nonlinear contractions in abstract spaces, Kodai Math. J. 4 (1981), 288–292.
22. K.-J. Chung, Remarks on nonlinear contractions, Pacific J. Math. 101 (1982), No. 1, 41–48.
23. K.-J. Chung, On weakly nonlinear contractions, Kodai Math. J. 6 (1983), 301–307.
24. K.-J. Chung, On strong normalities, Kodai Math. J. 7 (1984), 208–210.
25. L. Collatz, Functional Analysis and Numerical Mathematics, New York, 1966.
26. J.W. Daniel, A generalized contraction mapping theorem in E-metric spaces, Studia Math. 50

(1974), 245–250.
27. E. De Pascale, G. Marino and P. Pietramala, The use of the E-metric space in the search for fixed

points, 1995, to appear.
28. J.B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a gener-

alized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305–309.
29. E. Dubinsky, Differential equations and differential calculus in Montel spaces, Trans. Amer.

Math. Soc. 110 (1964), No. 1, 1–21.
30. S.T. Dzhabarov, On a generalization of the principle of contracting mappings and its applications

to infinite systems of ordinary differential equations, VINITI 12.11.84 No. 7235-84 [Russian].
31. S.T. Dzhabarov, On a generalization of the principle of contracting mappings and its applications

to infinite systems of ordinary differential equations, Differentsial’nye Uravnenija 22 (1986),
No. 8, 1444–1446 [Russian].

32. S.T. Dzhabarov, On a generalization of the principle of contracting mappings and its applications
to investigation of asymptotic behaviour and stability of solutions of infinite systems of ordinary
differential equations, Partial communication [Russian].

33. J. Eisenfeld and V. Lakshmikantham, Comparison principle and nonlinear contractions in abstract
spaces, Journ. Math. Anal. Appl. 49 (1975), 504–511.

34. J. Eisenfeld and V. Lakshmikantham, Fixed point theorems through abstract cones, Journ. Math.
Anal. Appl. 52 (1975), 25–35.

35. J. Eisenfeld and V. Lakshmikantham, Remarks on nonlinear contraction and comparison principle
in abstract cones, Journ. Math. Anal. Appl. 61 (1977), 116–121.

36. N.A. Evkhuta and P.P. Zabrejko, On the convergence of the A.M. Samojlenko successive ap-
proximations method of finding periodic solutions, Doklady Acad. Nauk BSSR 29 (1985), No. 1,
15–18 [Russian].

37. N.A. Evkhuta and P.P. Zabrejko, Samojlenko’s method for finding periodic solutions of quasilinear
differential equations in a Banach space, Ukrainskii Matem. Zhurnal 37 (1985), No. 2, 162–168
[Russian]; English translation in: Ukrainian Mathematical Journal 37 (1985), No. 2, 137–142.

38. N.A. Evkhuta and P.P. Zabrejko, The Poincare method and Samojlenko method for the con-
struction of periodic solutions to ordinary differential equations, Math. Nachr. 153 (1991),
85–99.

39. N.A. Evkhuta and P.P. Zabrejko, Fixed point theorems in K-metric spaces and some their appli-
cations, Novocherkassk, 1994 [Russian].

40. N.A. Evkhuta, P.P. Zabrejko and T.V. Savchenko, Some fixed point principles inK-metric spaces,
Operators and Operator Equations, Novocherkassk, 1994, 89–106 [Russian].

41. H. Freudental, Teilweise geordnete Moduln, Proc. Acad. Amsterdam 39 (1936), 641–651.



856 Zabrejko

42. F. Gandac, Theoreme de punct fix in spatii local convexe, Studia Gerc. 24 (1972), No. 7, 1097–
1106.

43. F. Gandac, Metode iterative pentru rejolvarea ecuatiilor neliniare in spatii local convexe. I., Studii
si cercetari matematicae 25 (1973), No. 9, 1275–1302.

44. F. Gandac, Metode iterative pentru rejolvarea ecuatiilor neliniare in spatii local convexe. II.,
Studii si cercetari matematicae 25 (1973), No. 10, 1473–1506.

45. S. Heikilla and S. Seikkala, On the estimation of successive approximations in abstract cones,
Journ. Math. Anal. Appl. 58 (1977), 378–383.

46. K. Iseki, On Banach theorem on contraction mappings, Proc. Japan. Acad. 41 (1965), No. 2,
145–146.

47. A.A. Ivanov, Fixed points of mappings of metric spaces, Zapiski nauchnykh seminarov LOMI 66
(Investigations in Topology II), (1976), 5–102 [Russian].

48. W.J. Kammerer and R.H. Kasriel, On contractive mappings in uniform spaces, Proc. Amer.
Math. Soc. 15 (1964), 288–290.

49. L.V. Kantorovitch, Lineare halbgeordnete Räume, Matem. Sbornik 2 (1937), 121–168.
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