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Abstract

The ultrapowers, relative to a fixed ultrafilter, of all the Köthe function spaces
with non trivial concavity over the same measure space can be represented as
Köthe function spaces over the same (enlarged) measure space. The existence of
a uniform homeomorphism between the unit spheres of two such Köthe function
spaces is reproved.

Introduction

Ultrapowers and ultraproducts were introduced in Banach Spaces theory quite a
long time ago ([2]); their main interest in this field is to give a qualitative approach
to the local structure of Banach spaces.

Here we focus on a description of the ultrapowers of Köthe function spaces with
non trivial concavity. Let us recall some definitions.

Given a measure space (Ω,A, µ), a Köthe function space over (Ω,A, µ) is
an order ideal (or solid linear subspace) of the space L0(Ω,A, µ) (of classes of
µ-measurable scalar functions), equipped with a norm for which it is a Banach
lattice, and whose support is the whole of Ω. A Köthe function space (or simply a
Banach lattice) X has non trivial concavity if it is q-concave for some q < ∞, i. e.
(see [9], §1.d):

∃C, ∀x1, ...xn ∈ X
( n∑

i=1

‖xi‖q
)1/q

≤ C

∥∥∥∥∥
( n∑

i=1

|xi|q
)1/q

∥∥∥∥∥
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Let I be an index set and U a non trivial ultrafilter over I. We shall denote by X̃ the
ultrapower XI/U (we refer to [7], [12] for basic facts and results about Banach space
ultrapowers). Since X̃ is a quotient of �∞(I;X), its elements are equivalence classes
of bounded families of elements of X, indexed by I; we shall denote by (xi)•i∈I the
equivalence class of the family (xi)i∈I .

In the case where X = L1(Ω,A, µ), it is well known that X̃ is an abstract
L1-space, hence by Kakutani’s theorem ([9], th. 1.b.2) can be identified with (i.e. is
isometrically Riesz isomorphic to) a space L1(Ω̃, Ã, µ̃) over some measure space
(Ω̃, Ã, µ̃). On the other hand, the ultrapower X̃ of a q-concave Köthe function space
over (Ω̃, Ã, µ̃) is q-concave as well, hence order continuous, hence can be identified
with some Köthe function space over some measure space (S,Σ,m) ([9], th. 1.b.14).

The aim of this note is to show that it is possible to identify (Ω̃, Ã, µ̃) with
(S,Σ,m), i. e. to represent X̃ as a Köthe function space over (Ω̃, Ã, µ̃). In an-
other paper ([11]), we obtained this identification using a result of [1] (generalizing
an observation of [10]) on the existence of a support preserving homeomorphism
between the unit spheres of X and of L1(Ω,A, µ). In this note we obtain directly
this representation of X̃ as a K. f. s. over (Ω̃, Ã, µ̃) (see th. 10 of §4), and we deduce
very simply the result of [1] from this representation theorem (see th. 12 of §5 be-
low). Of course the ransom to pay for this simplicity is the loss of the quantitative
information (on moduli of uniform continuity) contained in [1], as is always the case
for proofs using ultrapower (or non-standard) methods.

Recall that the result of [1] is also a corollary of a more general result on inter-
polation spaces given later by [3] (where however the preservation of the supports
by the uniform homeomorphism seems to be less transparent).

1. The bilinear map X̃∗ × X̃ → L1(Ω̃, Ã, µ̃)

If X is a q-concave Köthe function space over (Ω,A, µ), it is in particular order
continuous, hence X∗ identifies with a Köthe function space over the same measure
space (the Köthe dual X ′). The bilinear map:

X∗ ×X → L1(Ω,A, µ) (x∗, x) �→ x∗.x

is bounded, hence has an ultrapower extension:

X̃∗ × X̃ → L1(Ω̃, Ã, µ̃) (x̃∗, x̃) �→ x̃∗.x̃

defined by x̃∗.x̃ = (x∗i .xi)
•
i∈I when x̃ = (xi)•i∈I and x̃∗ = (x∗i )

•
i∈I .
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Let Z = L∞(Ω,A, µ) and Z̃ = ZI/U (which identifies with a sub-C∗-algebra
of L∞(Ω̃, Ã, µ̃)). Then, similarly, the natural bilinear products:

Z ×X → X (h, x) �→ h.x

Z ×X∗ → X∗ (h, x∗) �→ h.x∗

extend to bilinear maps:

Z̃ × X̃ → X̃ (h̃, x̃) �→ h̃.x̃

Z̃ × X̃∗ → X̃∗ (h̃, x̃∗) �→ h̃.x̃∗

and we have clearly:
h̃.(x̃∗.x̃) = (h̃.x̃∗).x̃ = x̃∗.(h̃.x̃) .

As is well known ([12], p. 78), the ultrapower of the dual space, X̃∗, isometri-
cally identifies with a w∗-dense, norm closed subspace of the dual of the ultrapower
space, X̃∗, by setting 〈x̃∗, x̃〉 = limi,U 〈x∗i , xi〉 when x̃ = (xi)•i∈I and x̃∗ = (x∗i )

•
i∈I . In

fact the unit ball of X̃∗ is w∗-dense in that of X̃∗. If X is superreflexive, then in
fact X̃∗ = X̃∗.

For a Banach lattice, this embedding j: X̃∗ → X̃∗ is a lattice homomorphism:
it is clearly positive, and if x̃∗, ỹ∗ are two positive disjoint elements of X̃∗, then j(x̃∗)
and j(ỹ∗) are disjoint in X̃∗. (Use the fact that there are representing families (x∗i )i
and (y∗i )i for x̃∗, resp. ỹ∗, with x∗i ⊥ y∗i for every i ∈ I; then for every z̃ ∈ X̃+, and
ε > 0, choose any representing family (zi)i of z̃ with nonnegative elements, and for
every i ∈ I, choose xi, yi ∈ X+, with zi = xi + yi, |〈x∗i , yi〉| ≤ ε and |〈y∗i , xi〉| ≤ ε;
set x̃ = (xi)•i and ỹ = (yi)•i . Then z̃ = x̃+ ỹ and |〈j(x̃∗), ỹ〉| ≤ ε, |〈j(ỹ∗), x̃〉| ≤ ε).

We equip the dual space X̃∗ with the locally convex topology τ , defined by
the family of seminorms (px̃)x̃∈X̃+

, where px̃(ξ) = 〈|ξ| , x̃〉, for every ξ ∈ X̃∗. This
topology is stronger than the w∗-topology, but the continuous linear forms are the
same for the two topologies. For, every F ∈ (X̃∗, τ)∗ is order continuous, since
every downwards directed set (ξα)α ∈ X̃∗ with g. l. b. 0 converges to 0 for the
w∗-topology, hence for the τ -topology (since the ξα are nonnegative). Since X̃ is
q-concave, hence a KB-space, the order-continuous dual of X̃∗ identifies with X̃

(see [13], p. 92–93).
In particular, the convex sets of X̃∗ have the same w∗ and τ closures; hence

the unit ball of X̃∗ is τ -dense in the unit ball of X̃∗. On the other hand, for every
x̃ ∈ X̃, the linear map X̃∗ → L1(Ω̃, Ã, µ̃), x̃∗ �→ x̃∗.x̃ is τ to norm continuous, since
for every x̃∗ ∈ X̃∗ and x̃ ∈ X̃, we have:

‖x̃∗.x̃‖1 = lim
i,U

‖x∗i .xi‖1 = lim
i,U

〈
|x∗i | , |xi|

〉
=

〈
|x̃∗| , |x̃|

〉
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Hence this linear map has a unique τ to norm continuous extension ξ → ξ.x̃ to the
whole of of X̃∗.

Lemma 1

a) The map X̃∗ × X̃ → L1(Ω̃, Ã, µ̃), (ξ, x̃) �→ ξ.x̃ is bilinear and bounded.

b) We have 〈ξ, x̃〉 = 〈ξ.x̃, 1l〉 for every ξ ∈ X̃∗ and x̃ ∈ X̃.

c) We have |ξ.x̃| = |ξ| . |x̃| for every ξ ∈ X̃∗ and x̃ ∈ X̃.

d) We have ξ.(h̃.x̃) = h̃.(ξ.x̃) for every ξ ∈ X̃∗, h̃ ∈ Z̃ and x̃ ∈ X̃.

Proof. a) The left linearity is clear, the right one is a consequence of the formula:

ξ.x̃ = lim
x̃∗→

τ
ξ
x̃∗.x̃ .

Since in this limit we may suppose that ‖x̃∗‖ ≤ ‖ξ‖, we have

‖ξ.x̃‖ ≤ ‖ξ‖ ‖x̃‖ .

b), c), d): These formulas are true when ξ ∈ X̃∗, and their two members are
τ -continuous functions of ξ (resp. τ to norm continuous in the case c),d)). Note
that the map X̃∗ → X̃∗

+, ξ �→ |ξ| is τ -continuous. �

2. The action of L∞(Ω̃, Ã, µ̃) on X̃

We define now an action of L∞(Ω̃) on X̃: for every f ∈ L∞(Ω̃, Ã, µ̃) and x̃ ∈ X̃, let
f.x̃ be the element of X̃∗∗ defined by:

∀ ξ ∈ X̃∗, 〈f.x̃, ξ〉 = 〈f, ξ.x̃〉 .

We have:
|〈f.x̃, ξ〉| ≤ ‖f‖∞ ‖ξ.x̃‖1 = ‖f‖∞ 〈|ξ| , |x̃|〉

hence f.x̃ is a τ -continuous linear form, i. e. belongs to X̃.

Lemma 2

a) The map (f, x̃) �→ f.x̃, L∞(Ω̃) × X̃ → X̃ is a bounded bilinear map with norm

one, which extends the bilinear map Z̃ × X̃ → X̃, (h̃, x̃) �→ h̃.x̃.

b) For every f, g ∈ L∞(Ω̃) and x̃ ∈ X̃, f.(g.x̃) = (f.g).x̃.
c) For every f ∈ L∞(Ω̃) and x̃ ∈ X̃, |f.x̃| = |f | . |x̃|.
d) The map (f, x̃) �→ f.x̃ is continuous on the product of unit balls B(L∞(Ω̃)) ×

B(X̃) for the topologies τ(L∞(Ω̃), L1(Ω̃)) and τ(X̃, X̃∗).
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Proof. a) is clear (the last sentence is a consequence of Lemma 1 (d)).
d): We observe first that, for every f ∈ L∞(Ω̃) and x̃ ∈ X̃, we have |f.x̃| ≤

|f | |x̃|, since, for every ξ ∈ X̃∗, we have (using Lemma 1 (c)):

|〈ξ, f.x̃〉| = |〈ξ.x̃, f〉| ≤ 〈|ξ.x̃| , |f |〉 = 〈|ξ| . |x̃| , |f |〉 = 〈|ξ| , |f | . |x̃|〉 .

Now if f, g ∈ B(L∞(Ω̃)) and x̃, ỹ ∈ B(X̃), we have:

|f.x̃− g.ỹ| ≤ |(f − g).x̃| + |g.(x̃− ỹ)|
≤ |f − g| . |x̃| + |g| . |x̃− ỹ| ≤ |f − g| . |x̃| + |x̃− ỹ|

since |g| ≤ 1l, and 1l.z̃ = z̃ for every z̃ ∈ X̃ by a). Hence, for every ξ ∈ X̃∗
+:

〈ξ, |f.x̃− g.ỹ|〉 ≤ 〈ξ, |f − g| . |x̃|〉 + 〈ξ, |x̃− ỹ|〉 = 〈|x̃| .ξ, |f − g|〉 + 〈ξ, |x̃− ỹ|〉

which goes to zero when g → f and ỹ → x̃ for the τ -topologies.
b): The equality is true when f, g ∈ Z̃, we extend it by using the τ -density of

B(Z̃) in B(L∞(Ω̃)) and the point d).
c): We showed above that |f.x̃| ≤ |f | . |x̃|. Conversely, let ε ∈ L∞(Ω̃) and

h̃ ∈ Z̃, with |ε| = 1l =
∣∣∣h̃∣∣∣, ε.f = |f | and h̃.x̃ = |x̃|. Then, using the point b):

|f | . |x̃| = (ε.f).(h̃.x̃) = (ε.h̃).(f.x̃) ≤
∣∣∣ε.h̃∣∣∣ . |f.x̃| = |f.x̃| . �

Lemma 3

For every x̃ ∈ X̃, ξ ∈ X̃∗, and f ∈ L∞(Ω̃), we have: ξ.(f.x̃) = f.(ξ.x̃).

Proof. For every g ∈ L∞(Ω̃), we have, using Lemma 2 (b):

〈ξ.(f.x̃), g〉 def= 〈ξ, g.(f.x̃)〉 = 〈ξ, (g.f).x̃〉 def= 〈ξ.x̃, g.f〉 = 〈f.(ξ.x̃), g〉. �

3. The support of an element of X̃

Definition 4. We call support of an element x̃ ∈ X̃ (and we denote by σx̃) the
g. l. b. of the set of idempotents of L∞(Ω̃, Ã, µ̃) leaving x̃ invariant:

σx̃ =
∧ {

e ∈ L∞(Ω̃, Ã, µ̃)/ e2 = e; e.x̃ = x̃
}
.
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The idempotent σx̃ is the indicator function of some element Supp (x̃) of Ã,
which we call also support of x̃.

Remark 5. We have σx̃.x̃ = x̃.
For, the set Ex̃ = {e ∈ L∞(Ω̃, Ã, µ̃)/ e2 = e; e.x̃ = x̃} is downwards directed (as

a consequence of Lemma 2 (b)) and τ -closed (by Lemma 2 (d)), hence contains its
g. l. b..

Remark 6. If |z̃| ≤ |x̃|, then σz̃ ≤ σx̃. In particular, the elements x̃ and |x̃| have
the same support.

For, there exists h̃ ∈ Z̃ such that z̃ = h̃.x̃ (choose representing families (zi)i
and (xi) for z̃ and x̃ respectively, with |zi| ≤ |xi|, and hi ∈ Z with |hi| ≤ 1l, such
that zi = hi.xi, and set h̃ = (hi)•i ). Then σx̃.z̃ = σx̃.(h̃.x̃) = h̃.(σx̃.x̃) = h̃.x̃ = z̃.

Lemma 7
Two elements of X̃ are disjoint iff they have disjoint supports.

Proof. a) Suppose that x̃ ⊥ ỹ. Then there exist idempotents h̃, k̃ of Z̃, such that
h̃ ⊥ k̃ and h̃.x̃ = x̃, k̃.ỹ = ỹ: choose representing families (xi)i and (yi)i for x̃, resp.
ỹ, with xi ⊥ yi for all i ∈ I, let Ai and Bi be the supports of xi, resp. yi, set
hi = 1lAi

, ki = 1lBi
and finally h̃ = (hi)•i , k̃ = (ki)•i . Since σx̃ ≤ h̃ and σỹ ≤ k̃, we

have σx̃ ⊥ σỹ.
b) Conversely, if σx̃ ⊥ σỹ, then by Remark 6, for every z̃ with 0 ≤ z̃ ≤ |x̃| ∧ |ỹ|,

we have σz̃ = 0, hence z̃ = 0. �

Lemma 8
An idempotent e ∈ L∞(Ω̃, ã, µ̃) is the support of an element x̃ ∈ X̃ iff it is

sigma-finite.

Proof. a) If x̃ ∈ X̃ and σx̃ is not sigma-finite, we have σx̃ =
∑

α eα, where (eα)α
is an uncountable family of mutually disjoint, non null idempotents of L∞(Ω); then
x̃ =

∑
α eαx̃, with eα.x̃ �= 0 for every α (by minimality of σx̃) and these elements

are pairwise disjoint: this is impossible in a q-concave Banach lattice.
b) If e is a non null sigma-finite element of L∞(Ω̃), there exists an element ũ ∈

L1(Ω̃, Ã, µ̃) whose support is e. There are x̃ ∈ X̃ and x̃∗ ∈ X̃∗ such that x̃∗.x̃ = ũ:
for, let (ui)i be a representing family for ũ; using Lozanovskii’s factorization theorem
([8]) we may write ui = x∗i .xi, with x∗i ∈ X∗, xi ∈ X and ‖x∗i ‖ = ‖xi‖ =

√
‖ui‖; set

x̃∗ = (x∗i )
•
i and x̃ = (xi)•i . Since σx̃.ũ = x̃∗.(σx̃.x̃) = x̃∗.x̃ = ũ we have e ≤ σx̃; set

ỹ = e.x̃, then σỹ = e. �

Lemma 9
If x̃, ỹ ∈ X̃ verify |ỹ| ≤ x̃, there is a unique f ∈ L∞(Ω̃) with Supp f ⊂ Supp x̃

and ỹ = f.x̃.
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Proof. a) Choose representing families (xi)i, (yi)i for x̃, resp. ỹ, with |yi| ≤ xi, for
every i ∈ I; then choose for every i a hi ∈ L∞(Ω) with |hi| ≤ 1l and yi = hi.xi. We
have clearly ỹ = h̃.x̃. Then set f = σx̃.h̃.

b) Suppose that g ∈ L∞(Ω̃) verifies g.x̃ = 0. Then |g| .x̃ = 0, hence, for every
n ≥ 0, (1l∧n |g|).x̃ = 0. Set σg = 1lSupp g. We have 1l∧n |g| ↑ σg (in order, hence for
the τ(L∞, L1) topology), hence by lemma 2 (d), we see that σg.x̃ = 0, which means
that σg ⊥ σx̃. If σg ≤ σx̃, we deduce that g = 0. �

4. The representation of X̃ as Köthe function space over (Ω̃, Ã, µ̃)

At this stage it is easy to identify Ãµ̃ (the quotient of Ã by the ideal of µ̃-null
sets) with the Boole algebra of band projections of X̃, and using [9], th. 1.b.14, to
represent X̃ as a Köthe function space over (Ω̃, Ã, µ̃). We shall be more explicit by
giving directly a Riesz homomorphism of X̃ onto an order ideal of L0(Ω̃, Ã, µ̃).

Theorem 10
There is an injective, order continuous Riesz homomorphism from X̃ onto an

order ideal X̂ of L0(Ω̃, Ã, µ̃), which commutes with the action of L∞(Ω̃, Ã, µ̃). The
support of X̂ equals Ω̃. Two such homomorphisms coincide up to the multiplication
by a constant, a. e. positive element of L0(Ω̃).

Proof. Let (eα)α∈A be a maximal system of mutually disjoint sigma-finite, non
null idempotents of L∞(Ω̃); we have

∨
α eα = 1l. For each α ∈ A, let x̃α be a

nonnegative element of X̃ with support eα (Lemma 8). Then (x̃α)α is a system of
mutually disjoint elements of X̃, and is maximal by Lemma 7. Let I be the (non
closed) order ideal generated in the Banach lattice X̃ by the family (x̃α)α. Note
that I is σ-order dense in X̃. More specifically, every element x̃ of X̃+ can be
written x̃ =

∑
k ỹk, for some sequence of mutually disjoint elements ỹk of I+ (for,

by a standard exhaustion argument, it is sufficient to prove that x̃ = ỹ + z̃, with a
non zero ỹ ∈ I+ disjoint from z̃; it suffices then to choose α and n ∈ IN such that
ũα,n := (nx̃α − x̃)+ �= 0, and let ỹ be the projection of x̃ on the band generated by
ũα,n). By Lemma 9, every x̃ ∈ I can be written uniquely:

x̃ =
∑
α

fα.x̃α

where fα ∈ L∞(Ω̃), σfα ≤ eα and the family (fα)α has only finitely many nonzero
elements. We set

π : I → L∞(Ω̃, Ã, µ̃) x̃ �→ π(x̃) =
∑
α

fα.eα
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Then π is an injective Riesz homomorphism, which is ordercontinuous (if the net
x̃β ↓ 0 then π(x̃β) ↓ 0). For every x̃ ∈ X̃+, set:

π(x̃) =
∨

{π(ỹ)/ ỹ ∈ I+, 0 ≤ ỹ ≤ x̃}

where the supremum at the right hand is meant a priori in the space L0(Ω̃; IR+);
in fact it belongs to L0(Ω̃; IR+); for, let us write x̃ =

∑
k ỹk, for some sequence

(ỹk) of mutually disjoint elements of I+; then, by order continuity of π, we have
π(x̃) =

∑
k π(ỹk), and (π(ỹk))k is a family of mutually disjoint elements of L∞(Ω̃).

Finally, since π is clearly additive over X̃+, it extends to X̃ by setting π(x̃) =
π(x̃+)−π(x̃−), where x̃+ and x̃− are the positive and negative parts of x̃: we obtain
thus the desired Riesz homomorphism. From its very definition, it is clear that
π(f.x̃) = f.π(x̃) for every f ∈ L∞(Ω̃) and x̃ ∈ X̃.

Conversely, any such homomorphism conserves clearly the support. If π′ is an-
other such homomorphism, and (x̃α) is the maximal family of nonzero nonnegative,
mutually disjoint elements of X̃ used in the definition of π, let ϕα = π′(x̃α). These
elements are disjoint, and their supports coincide with the eα’s. Set ϕ =

∑
α ϕα, it

is easy to see that π′(x̃) = ϕ.π(x̃) for every x̃ ∈ X̃. �

Remark 11. Since X̃ is order continuous, the dual X̃∗ identifies with the Köthe dual
X̂ ′ of the Köthe function space X̂. Then the bilinear map X̃∗ × X̃ → L1(Ω̃, Ã, µ̃)
identifies with the pointwise multiplication X̂ ′ × X̂ → L1(Ω̃).

For, let π∗ : X̃∗ → L0(Ω̃, Ã, µ̃) be the Riesz homomorphism resulting from the
identification of X̃∗ and X̂ ′. For every ξ ∈ X̃∗, x̃ ∈ X̃ and f ∈ L∞(Ω̃), we have:

〈ξ.x̃, f〉 = 〈ξ, f.x̃〉 =
∫

Ω̃

π∗(ξ).π(f.x̃) dµ̃ =
∫

Ω̃

π∗(ξ).π(x̃).f dµ̃

whence ξ.x̃ = π∗(ξ).π(x̃).

5. The uniform homeomorphism between the unit balls of two Köthe

function spaces with non trivial concavity

Theorem 12 ([10], [1])

Let X be a Köthe function space over the measure space (Ω,A, µ), with non

trivial concavity. There is a uniform homeomorphism from the unit sphere of X

onto the unit sphere of L1(Ω,A, µ) which preserves supports.



Ultrapowers of Köthe function spaces 741

Proof. We may suppose, as in [1], that X is, say, 2-convex (since the Mazur map
x→ x2 maps uniformly homeomorphically the unit sphere of the 2-convexified space
X(2) onto that of X) and that the 2-convexity and q-concavity constants of X equal
one, hence that X is uniformly convex and uniformly smooth.

If x ∈ S(X), let J(x) ∈ S(X∗) be the unique normalized norming functional
for x. Since X is order continuous, J(x) is an element of the Köthe dual X ′,
and G(x) = |J(x)| .x an element of L1(Ω,A, µ), in fact G(x) belongs to the unit
sphere of L1(Ω). The map x �→ J(x) is a norm-norm uniformly continuous map
S(X) → S(X∗), ([5], p. 36), and so is G: S(X) �→ S(L1).

Conversely, for every u ∈ S(L1(Ω)) there are x ∈ X,x∗ ∈ X∗
+ such that u =

x∗.x, and ‖x‖ = ‖x∗‖ = 1 (by [6], th. 1; note that X has Fatou property, and
that the hypothesis of sigma-finiteness of the measure is unnecessary). Moreover
this factorization is unique under the supplementary condition that Supp (x) =
Supp (x∗) = Supp (u) ([6], th. 3). (Note that in the case whereX is uniformly convex
and uniformly smooth, this condition is automatically verified). Then necessarily
G(x) = u, i. e. G−1 : S(L1) → S(X) is well defined.

Now let us show that G−1 is uniformly continuous. If not, there are a real
number ε > 0 and sequences (un)n and (vn)n in S(L1(Ω)) such that ‖un − vn‖ → 0
but

∥∥G−1(un) −G−1(vn)
∥∥ ≥ ε. Let xn = G−1(un) and yn = G−1(vn). Let U be a

non trivial ultrafilter over IN, and consider in X̃ = XIN/U the points x̃ = (xn)•n and
ỹ = (yn)•n, and in L1(Ω̃, Ã, µ̃) = L1(Ω)IN/U the point ũ = (un)•n = (vn)•n. Consider
also in X̃∗ the points x̃∗ = (J(xn))•n and ỹ∗ = (J(yn))•n. All these points have
norm one, in their respective spaces. We have x̃∗.x̃ = ũ = ỹ∗.ỹ. Since X̃ and X̃∗

can be represented as dual Köthe function spaces over (Ω̃, Ã, µ̃) in such a way that
the pairing X̃∗ × X̃ → L1(Ω̃, Ã, µ̃) is just the pointwise multiplication, we see that
x̃ = G−1(ũ) = ỹ, which contradicts the fact that ‖x̃− ỹ‖ ≥ ε. �
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