Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 48, 4-6 (1997), 701-712
(c) 1997 Universitat de Barcelona

On the relationships between $H^{p}(\mathbb{T}, X / Y)$ and $H^{p}(\mathbb{T}, X) / H^{p}(\mathbb{T}, Y)^{*}$

Artur Michalak

Faculty of Mathematics and Computer Science, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

E-mail address: michalak@math.amu.edu.pl

Abstract

First we show that for every $1 \leq p<\infty$ the space $H^{p}\left(\mathbb{T}, L^{1}(\lambda) / H^{1}\right)$ cannot be naturally identified with $H^{p}\left(\mathbb{T}, L^{1}(\lambda)\right) / H^{p}\left(\mathbb{T}, H^{1}\right)$. Next we show that if Y is a closed locally complemented subspace of a complex Banach space X and $0<p<\infty$, then the space $H^{p}(\mathbb{T}, X / Y)$ is isomorphic to the quotient space $H^{p}(\mathbb{T}, X) / H^{p}(\mathbb{T}, Y)$. This allows us to show that all odd duals of the James Tree space $J T_{2}$ have the analytic Radon-Nikodym property.

As usual, \mathbb{D} and \mathbb{T} will stand for the open unit disk and the unit circle in the complex plain \mathbb{C}. The normalized Lebesgue measure on \mathbb{T} will be denoted by λ. Throughout, X will be a complex Banach space and Y its closed subspace. If Z is a Banach space, then $\|\cdot\|_{Z}$ denotes its norm, B_{Z} its closed unit ball and Z^{*} its topological dual. For $0<p \leq \infty$, we denote by $h^{p}(\mathbb{D}, X)$ the space of all harmonic functions $F: \mathbb{D} \rightarrow X$ such that

$$
\begin{array}{ll}
\|F\|=\left(\sup _{0<r<1} \int_{\mathbb{T}}\|F(r t)\|^{p} d \lambda(t)\right)^{1 / p}<\infty & \text { if } 0<p<\infty \\
\|F\|=\sup \{\|F(z)\|: z \in \mathbb{D}\}<\infty & \text { if } \quad p=\infty
\end{array}
$$

equipped with the norm (when $1 \leq p \leq \infty$) or quasi-norm (when $0<p<1$) \|•\| defined above. The subspace of $h^{p}(\mathbb{D}, X)$ consisting of all holomorphic functions is

[^0]denoted $H^{p}(\mathbb{D}, X)$. The spaces $h^{p}(\mathbb{D}, \mathbb{C})$ and $H^{p}(\mathbb{D}, \mathbb{C})$ are denoted briefly by h^{p} and H^{p}. The spaces $h^{p}(\mathbb{D}, X)$ and $H^{p}(\mathbb{D}, X)$ are Banach for $1 \leq p \leq \infty$, and p-Banach for $0<p<1$. For $0<p<\infty$, we denote by $h^{p}(\mathbb{T}, X)$ the closure of the set of all harmonic polynomials in $h^{p}(\mathbb{D}, X)$, and by $H^{p}(\mathbb{T}, X)$ the closure of the set of all polynomials in $H^{p}(\mathbb{D}, X)$. Every function in $h^{p}(\mathbb{T}, X)$ as well as in $H^{r}(\mathbb{T}, X)$ for $1 \leq p<\infty$ and $0<r<\infty$ has radial limits λ-a.e. on \mathbb{T}. Furthermore, for $1 \leq p<\infty$ every function in $h^{p}(\mathbb{T}, X)$ is representable as the Poisson integral of its boundary function (defined by radial limits) that belongs to $L^{p}(\lambda, X)$. Boundary functions of members of $H^{p}(\mathbb{T}, X)$ for $1 \leq p<\infty$ belong to the set $\left\{f \in L^{p}(\lambda, X)\right.$: $\hat{f}(n)=0$ for $\left.n \in \mathbb{Z}_{-}\right\}$, where \mathbb{Z}_{-}denotes the set of all negative integers.

In order to answer the question for which Banach spaces X the class $H^{p}(\mathbb{D}, X)$ coincides with $H^{p}(\mathbb{T}, X)$, Buchvalov and Danilevič introduced the notion of the analytic Radon-Nikodym property. Recall that a complex Banach space X has the analytic Radon-Nikodym property (aRNP) if every bounded holomorphic function $F: \mathbb{D} \rightarrow X$ has radial limits λ-a.e. on \mathbb{T}. By [5, Prop. 2] a complex Banach space X has the aRNP if and only if $H^{p}(\mathbb{T}, X)=H^{p}(\mathbb{D}, X)$ for all $0<p<\infty$.

For $0<p \leq \infty$ and a given complex Banach space Z, with every bounded linear operator $S: X \rightarrow Z$ we associate the operator

$$
\tilde{S}_{p}: h^{p}(\mathbb{D}, X) \rightarrow h^{p}(\mathbb{D}, Z)
$$

where $\tilde{S}_{p}(F)=S \circ F$. In this paper we are going to examine properties of the operator \tilde{Q}_{p}, associated with the quotient map $Q: X \rightarrow X / Y$. Applying the representation of any function in $h^{p}(\mathbb{T}, X)$ with the aid of the Poisson integral of some function from $L^{p}(\lambda, X)$ we easily see that

$$
B_{h^{p}(\mathbb{T}, X / Y)} \subset 2 \tilde{Q}_{p}\left(B_{h^{p}(\mathbb{T}, X)}\right),
$$

hence $\tilde{Q}_{p}\left(h^{p}(\mathbb{T}, X)\right)=h^{p}(\mathbb{T}, X / Y)$ for $1 \leq p<\infty$. The following example shows that the equality $\tilde{Q}_{p}\left(H^{p}(\mathbb{T}, X)\right)=H^{p}(\mathbb{T}, X / Y)$ does not always hold.
Example 1: Let $Q: L^{1}(\lambda) \rightarrow L^{1}(\lambda) / H^{1}$ be the quotient map (here we identify H^{1} with the subspace of $L^{1}(\lambda)$ consisting of functions f such that $\hat{f}(n)=0$ for $\left.n \in \mathbb{Z}_{-}\right)$. We are going to show that for any $1 \leq p<\infty$ neither

$$
\tilde{Q}_{p}\left(H^{p}\left(\mathbb{D}, L^{1}(\lambda)\right)\right) \neq H^{p}\left(\mathbb{D}, L^{1}(\lambda) / H^{1}\right)
$$

nor

$$
\tilde{Q}_{p}\left(H^{p}\left(\mathbb{T}, L^{1}(\lambda)\right)\right) \neq H^{p}\left(\mathbb{T}, L^{1}(\lambda) / H^{1}\right) .
$$

The space $L^{1}(\lambda)$ as a Banach lattice without isomorphic copies of c_{0} has the aRNP (see [5, Th. 1]), but the space $L^{1}(\lambda) / H^{1}$ does not have the aRNP. Hence for every $0<p<\infty$ the space $H^{p}\left(\mathbb{D}, L^{1}(\lambda)\right)$ is separable in contrast to $H^{p}\left(\mathbb{D}, L^{1}(\lambda) / H^{1}\right)$ (see [13, Cor. 5.9]). Hence

$$
\tilde{Q}_{p}\left(H^{p}\left(\mathbb{D}, L^{1}(\lambda)\right)\right) \neq H^{p}\left(\mathbb{D}, L^{1}(\lambda) / H^{1}\right)
$$

Consider now the second inequality. For $n \in \mathbb{Z}$ let $\varphi_{n}: \mathbb{T} \rightarrow \mathbb{C}$ be given by

$$
\varphi_{n}(t)=t^{n}
$$

For every $n \in \mathbb{N}$ let $w_{n}: \mathbb{D} \rightarrow L^{1}(\lambda)$ be the polynomial of the form

$$
w_{n}(z)=\sum_{k=0}^{n}\left(1-\frac{k}{n+1}\right) \cdot \varphi_{-k} \cdot z^{k}
$$

Since w_{n} is continuous on $\overline{\mathbb{D}}$,

$$
\begin{aligned}
\left\|\tilde{Q}_{p}\left(w_{n}\right)\right\|_{H^{1}\left(\mathbb{D}, L^{1}(\lambda) / H^{1}\right)} & =\int_{\mathbb{T}}\left\|\tilde{Q}_{p}\left(w_{n}\right)(t)\right\|_{L^{1}(\lambda) / H^{1}} d \lambda(t) \\
& \leq \int_{\mathbb{T}}\left\|\sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) \cdot \varphi_{k} \cdot t^{-k}\right\|_{L^{1}(\lambda)} d \lambda(t) \\
& =\int_{\mathbb{T}} \int_{\mathbb{T}}\left|K_{n}\left(s t^{-1}\right)\right| d \lambda(s) d \lambda(t)=1
\end{aligned}
$$

where $K_{n}=\sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) \varphi_{k}$ is the n-th Fejer kernel. On the other hand for every polynomial u in $H^{1}\left(\mathbb{D}, H^{1}\right)$ of the form

$$
u(z)=\sum_{k=0}^{l} a_{k} \cdot z^{k}
$$

where a_{k} for $k=0, \ldots, l$ are scalar polynomials from H^{1},

$$
\left\|w_{n}-u\right\|_{H^{1}\left(\mathbb{D}, L^{1}(\lambda)\right)}=\int_{\mathbb{T}}\left\|w_{n}(t)-u(t)\right\|_{L^{1}(\lambda)} d \lambda(t)=\int_{\mathbb{T}} \int_{\mathbb{T}}\left|v_{s}(t)\right| d \lambda(s) d \lambda(t)
$$

where for every $s \in \mathbb{T}$ the polynomial v_{s} is given by

$$
v_{s}(z)=w_{n}(z)(s)-u(z)(s)=\sum_{k=0}^{n}\left(1-\frac{k}{n+1}\right) \cdot \varphi_{-k}(s) \cdot z^{k}-\sum_{k=0}^{l} a_{k}(s) \cdot z^{k}
$$

By the Hardy inequality (see [7, p. 48]) we have

$$
\int_{\mathbb{T}}\left|v_{s}(t)\right| d \lambda(t) \geq \frac{1}{\pi} \cdot \sum_{k=0}^{n} \frac{\left|\hat{v}_{s}(k)\right|}{k+1}=\frac{1}{\pi} \cdot \sum_{k=0}^{n} \frac{1}{k+1}\left|\left(1-\frac{k}{n+1}\right) \cdot s^{-k}-a_{k}(s)\right|
$$

Moreover, for every $k \in \mathbb{N}$ we have
$\int_{\mathbb{T}}\left|\left(1-\frac{k}{n+1}\right) \cdot s^{-k}-a_{k}(s)\right| d \lambda(s) \geq\left(\left(1-\frac{k}{n+1}\right) \cdot \varphi_{-k}-a_{k}\right) \wedge(-k)=1-\frac{k}{n+1}$.
Applying the Fubini theorem we get

$$
\left\|w_{n}-u\right\| \geq \frac{1}{\pi} \cdot \sum_{k=0}^{n} \frac{1}{k+1}\left(1-\frac{k}{n+1}\right)>\frac{1}{\pi} \cdot\left(\sum_{k=1}^{n+1} \frac{1}{k}-1\right)
$$

Since polynomials form a dense subset of H^{1}, for every polynomial h in $H^{1}\left(\mathbb{D}, H^{1}\right)$

$$
\left\|w_{n}-h\right\| \geq \frac{1}{\pi} \cdot\left(\sum_{k=1}^{n+1} \frac{1}{k}-1\right)
$$

Since the space H^{1} possesses the aRNP, polynomials are dense in $H^{1}\left(\mathbb{D}, H^{1}\right)=$ $H^{1}\left(\mathbb{T}, H^{1}\right)$. Hence

$$
\lim _{n}\left\|w_{n}+H^{1}\left(\mathbb{T}, H^{1}\right)\right\|_{H^{1}\left(\mathbb{T}, L^{1}(\lambda)\right) / H^{1}\left(\mathbb{T}, H^{1}\right)}=\infty
$$

As easily seen $\operatorname{ker} \tilde{Q}_{1}=H^{1}\left(\mathbb{T}, H^{1}\right)$. If $Q_{1}\left(H^{1}\left(\mathbb{T}, L^{1}(\lambda)\right)\right)$ were a closed subspace of $\left.H^{1}\left(\mathbb{T}, L^{1}(\lambda) / H^{1}\right)\right)$, then sequences $\left(\left\|\tilde{Q}_{1}\left(w_{n}\right)\right\|\right)$ and $\left(\left\|w_{n}+H^{1}\left(\mathbb{T}, H^{1}\right)\right\|\right)$ would be simultaneously bounded or unbounded. Therefore $\tilde{Q}_{1}\left(H^{1}\left(\mathbb{T}, L^{1}(\lambda)\right)\right)$ is not a closed subspace of $H^{1}\left(\mathbb{T}, L^{1}(\lambda) / H^{1}\right)$.

If $s^{-1}+r^{-1}=1, f \in H^{s}$ and $G \in H^{r}(\mathbb{D}, X)$, then $F=f \cdot G$ belongs to $H^{1}(\mathbb{D}, X)$ and $\tilde{Q}_{p}(F)=f \cdot Q \circ G$. Hence, applying the factorization theorem (see [14, Prop. 1.2] or [13, Th. 2.10]) we easily obtain

$$
\begin{aligned}
H^{1}\left(\mathbb{T}, L^{1}(\lambda) / H^{1}\right) & =\left\{f \cdot G: f \in H^{s}, G \in H^{r}\left(\mathbb{T}, L^{1}(\lambda) / H^{1}\right)\right\} \\
& =H^{s} \cdot H^{r}\left(\mathbb{T}, L^{1}(\lambda) / H^{1}\right)
\end{aligned}
$$

It follows that for every $1 \leq p<\infty$

$$
\tilde{Q}_{p}\left(H^{p}\left(\mathbb{T}, L^{1}(\lambda)\right)\right) \neq H^{p}\left(\mathbb{T}, L^{1}(\lambda) / H^{1}\right)
$$

Since $\tilde{Q}_{p}\left(H^{p}\left(\mathbb{T}, L^{1}(\lambda)\right)\right.$) contains all polynomials in $H^{p}\left(\mathbb{T}, L^{1}(\lambda) / H^{1}\right)$, it is not closed.

Remark. Similar considerations allow us to show that $\tilde{Q}_{p}\left(H^{p}(\mathbb{T}, c a(\mathbb{T}))\right.$) is not a closed subspace of $H^{p}\left(\mathbb{T}, c a(\mathbb{T}) / H^{1}\right)$ for every $1 \leq p<\infty$, where $c a(\mathbb{T})$ is the space of all complex Borel measures on \mathbb{T}.

Next remark was communicated to the author by 0 . Blasco.
Remark. An alternative proof of the inequality

$$
\tilde{Q}_{1}\left(H^{1}\left(\mathbb{T}, L^{1}(\lambda)\right)\right) \neq H^{1}\left(\mathbb{T}, L^{1}(\lambda) / H^{1}\right)
$$

follows from the Hardy property of the space $L^{1}(\lambda)$ which does not work for the space $L^{1}(\lambda) / H^{1}$ (see [2]). Recall, that a complex Banach space X has the Hardy property if

$$
\sum_{n=1}^{\infty} \frac{\|\hat{F}(n)\|}{n}<\infty \quad \text { for every } \quad F \in H^{1}(\mathbb{T}, X)
$$

In the remaining part of the paper we are going to give some positive results.
For any $F: \mathbb{D} \rightarrow X$ and $0<r<1$, the function $W_{r}(F): \mathbb{D} \rightarrow X$ is defined by

$$
W_{r}(F)(z)=F(r z)
$$

Clearly, for any F in $h^{p}(\mathbb{D}, X)$ the function $W_{r}(F)$ belongs to $h^{p}(\mathbb{T}, X)$ and $\left\|W_{r}(F)\right\| \leq\|F\|$. If F belongs to $H^{p}(\mathbb{D}, X)$, then of course $W_{r}(F)$ is in $H^{p}(\mathbb{T}, X)$. In the sequel we will need the following analogue of a result of Drewnowski (see $[6$, Prop. 3]).

Proposition 2

Let Y be a closed subspace of X and let $0<p<\infty$. Then the map

$$
J: F+H^{p}(\mathbb{T}, Y) \rightarrow F+H^{p}(\mathbb{T}, X)
$$

is an isomorphic embedding of the quotient space $H^{p}(\mathbb{D}, Y) / H^{p}(\mathbb{T}, Y)$ into the quotient space $H^{p}(\mathbb{D}, X) / H^{p}(\mathbb{T}, X)$.

Proof. Let $s=\min \{1, p\}$ and $\left(r_{n}\right)$ be an increasing sequence of positive numbers converging to 1 . Let us take any F in $H^{p}(\mathbb{D}, Y)$ and G in $H^{p}(\mathbb{T}, X)$. For every $n \in \mathbb{N}$ the function $W_{r_{n}}(G)$ belongs to $H^{p}(\mathbb{T}, X)$. Furthermore, by [14, Prop. 2.1], $\lim _{n} W_{r_{n}}(G)=G$ in $H^{p}(\mathbb{D}, X)$. Hence

$$
\|F-G\|=\lim _{n}\left\|F-W_{r_{n}}(G)\right\| .
$$

For every n we have

$$
\begin{aligned}
\left\|F-W_{r_{n}}(G)\right\|^{s} & \geq\left\|F-W_{r_{n}}(F)\right\|^{s}-\left\|W_{r_{n}}(G-F)\right\|^{s} \\
& \geq\left\|F-W_{r_{n}}(F)\right\|^{s}-\|G-F\|^{s} .
\end{aligned}
$$

Therefore

$$
2 \cdot\|F-G\|^{s} \geq \lim _{n} \sup \left\|F-W_{r_{n}}(F)\right\|^{s} .
$$

For every n the function $W_{r_{n}}(F)$ belongs to $H^{p}(\mathbb{T}, Y)$, so

$$
2^{1 / s}\left\|F+H^{p}(\mathbb{T}, X)\right\| \geq\left\|F+H^{p}(\mathbb{T}, Y)\right\| \geq\left\|F+H^{p}(\mathbb{T}, X)\right\|,
$$

which completes the proof.
For every $t \in \mathbb{T}$, the t-translate of a function $F: \mathbb{D} \rightarrow X$ is the function $F_{t}: \mathbb{D} \rightarrow X$ given by the formula

$$
F_{t}(z)=F\left(z t^{-1}\right)
$$

If $0<p \leq \infty$ and F belongs to $H^{p}(\mathbb{D}, X)$, then also F_{t} belongs to $H^{p}(\mathbb{D}, X)$ and $\left\|F_{t}\right\|=\|F\|$. With every F in $H^{p}(\mathbb{D}, X)$ we associate a function $T_{F}: \mathbb{T} \rightarrow H^{p}(\mathbb{D}, X)$ defined by

$$
T_{F}(t)=F_{t} .
$$

The following proposition taken from [13, Th. 5.4] exhibits the relationships between properties of functions F and T_{F}.

Proposition 3

Let $0<p<\infty$. Then for every $F \in H^{p}(\mathbb{D}, X)$ the following assertions are equivalent:
(a) $F \in H^{p}(\mathbb{T}, X)$,
(b) F has radial limits λ-a.e. on \mathbb{T},
(c) $T_{F}: \mathbb{T} \rightarrow H^{p}(\mathbb{D}, X)$ is continuous,
(d) $T_{F}(\mathbb{T})$ is a separable subset of $H^{p}(\mathbb{D}, X)$,
(e) there exists a λ-measurable subset A of \mathbb{T} such that $\lambda(A)>0$ and $T_{F}(A)$ is a separable subset of $H^{p}(\mathbb{D}, X)$.

For a given Banach space Z denote by q_{Z} the quotient mapping of $H^{p}(\mathbb{D}, Z)$ onto $H^{p}(\mathbb{D}, Z) / H^{p}(\mathbb{T}, Z)$. The following corollary is a local version of the main result in [6] for Hardy classes of holomorphic functions.

Corollary 4

Let $0<p<\infty$. If $F \in H^{p}(\mathbb{D}, X) \backslash H^{p}(\mathbb{T}, X)$, then $q_{X} \circ T_{F}(A)$ is a nonseparable subset of $H^{p}(\mathbb{D}, X) / H^{p}(\mathbb{T}, X)$ for every λ-measurable subset A of \mathbb{T} such that $\lambda(A)>0$.

Proof. Let A be a λ-measurable subset of \mathbb{T} such that $\lambda(A)>0$. The closed linear hull Y of $F(\mathbb{D})$ is separable and F belongs to $H^{p}(\mathbb{D}, Y)$. Since F does not belong to $H^{p}(\mathbb{T}, Y)$, in view of Proposition $3 T_{F}(A)$ is a nonseparable subset of $H^{p}(\mathbb{D}, Y)$. Since the space $H^{p}(\mathbb{T}, Y)$ is separable, the set $q_{Y}\left(T_{F}(A)\right)$ is also nonseparable. For every $t \in \mathbb{T}$,

$$
J\left(q_{Y}\left(T_{F}(t)\right)\right)=J\left(F_{t}+H^{p}(\mathbb{T}, Y)\right)=q_{X}\left(T_{F}(t)\right),
$$

hence $q_{X} \circ T_{F}=J \circ q_{Y} \circ T_{F}$, where J is the the mapping defined in Proposition 2. Since J is an isomorphic embedding, the set $q_{X}\left(T_{F}(A)\right)$ is nonseparable.

Theorem 5

Let $0<p<\infty$. Let Y be a closed subspace of a complex Banach space X and Q the quotient map of X onto X / Y. If Y has the aRNP and $\tilde{Q}_{p}\left(H^{p}(\mathbb{D}, X)\right)$ contains $H^{p}(\mathbb{T}, X / Y)$, then $\tilde{Q}_{p}\left(H^{p}(\mathbb{T}, X)\right)=H^{p}(\mathbb{T}, X / Y)$.

Proof. Let $W=\tilde{Q}_{p_{\tilde{Q}}}^{-1}\left(H^{p}(\mathbb{T}, X / Y)\right)$. Consider the kernel of the mapping \tilde{Q}_{p}. If G belongs to $\operatorname{ker} \tilde{Q}_{p}$, then $Q(G(z))=0$ for every $z \in \mathbb{D}$. Hence G belongs to $H^{p}(\mathbb{D}, Y)=H^{p}(\mathbb{T}, Y)$ by the analytic Radon-Nikodym property of Y. Clearly, \tilde{Q}_{p} generates an isomorphism I between $H^{p}(\mathbb{T}, X / Y)$ and the quotient space $W / H^{p}(\mathbb{T}, Y)$. Let $L: H^{p}(\mathbb{D}, X) / H^{p}(\mathbb{T}, Y) \rightarrow H^{p}(\mathbb{D}, X) / H^{p}(\mathbb{T}, X)$ be given by

$$
L\left(F+H^{p}(\mathbb{T}, Y)\right)=F+H^{p}(\mathbb{T}, X)
$$

It is easily seen that L is a continuous linear operator.
We show that W coincides with $H^{p}(\mathbb{T}, X)$. Let us take any F in W. Since $\tilde{Q}_{p}(F)$ belongs to $H^{p}(\mathbb{T}, X / Y)$, by Proposition 3 the function $T_{\tilde{Q}_{p}(F)}$ has separable range in $H^{p}(\mathbb{T}, X / Y)$. As easily checked

$$
q_{X} \circ T_{F}=L \circ I \circ T_{\tilde{Q}_{p}(F)} .
$$

Therefore $q_{X} \circ T_{F}(\mathbb{T})$ is a separable subset of $H^{p}(\mathbb{D}, X) / H^{p}(\mathbb{T}, X)$. In view of Corollary $4, F$ belongs to $H^{p}(\mathbb{T}, X)$. Since F was taken arbitrary, $W=H^{p}(\mathbb{T}, X)$, which completes the proof.

Corollary 6

Let Y be a closed subspace of X and Q the quotient map of X onto X / Y. If Y has the aRNP and $\tilde{Q}_{p}\left(H^{p}(\mathbb{D}, X)\right)=H^{p}(\mathbb{T}, X / Y)$ for some $0<p<\infty$, then X has the aRNP.

Proof. Let us take any F in $H^{p}(\mathbb{D}, X)$. By Theorem 5 there is \tilde{F} in $H^{p}(\mathbb{T}, X)$ such that $\tilde{Q}_{p}(F)=\tilde{Q}_{p}(\tilde{F})$. Therefore $F-\tilde{F}$ belongs to $H^{p}(\mathbb{T}, Y)=\operatorname{ker} \tilde{Q}_{p}$. Hence F belongs to $H^{p}(\mathbb{T}, X)$. Since F was taken arbitrary, X possesses the analytic Radon-Nikodym property.

In the sequel we will need the following sequence of operators. For $1 \leq p<\infty$ and $n \in \mathbb{N}$ the operator $\mathbb{K}_{n}: h^{p}(\mathbb{D}, X) \rightarrow h^{p}(\mathbb{D}, X)$ is given by

$$
\mathbb{K}_{n}(F)(z)=\sum_{k=-n}^{n} \hat{F}(k) \cdot\left(1-\frac{|k|}{n+1}\right) \cdot|z|^{|k|} s^{k} \quad \text { for } z=|z| s \in \mathbb{D}
$$

As easily checked the operators \mathbb{K}_{n} have the following properties:
Fact 7. Let $1 \leq p<\infty$ and $n \in \mathbb{N}$.
(1) $\mathbb{K}_{n}\left(h^{p}(\mathbb{D}, X)\right) \subset h^{p}(\mathbb{T}, X)$,
(2) $\mathbb{K}_{n}\left(H^{p}(\mathbb{D}, X)\right) \subset H^{p}(\mathbb{T}, X)$,
(3) $\left\|\mathbb{K}_{n}(F)\right\| \leq\|F\|$ for every F in $h^{p}(\mathbb{D}, X)$,
(4) $\lim _{m} \mathbb{K}_{m}(F)=F$ in $h^{p}(\mathbb{D}, X)$ for every F in $h^{p}(\mathbb{T}, X)$.

A closed subspace Y of a Banach space X is locally complemented if there exists a constant κ such that for every finite dimentional subspace Z in X and for every $\varepsilon>0$ there is an linear operator $T: Z \rightarrow Y$ such that $\|T\| \leq \kappa$ and $\|T(y)-y\| \leq \varepsilon\|y\|$ for every $y \in Y \cap Z$ (see [10]).

Theorem 8

Let Y be a closed locally complemented subspace of a complex Banach space X and Q the quotient map of X onto X / Y, and let $0<p<\infty$. Then

$$
\tilde{Q}_{p}\left(H^{p}(\mathbb{T}, X)\right)=H^{p}(\mathbb{T}, X / Y)
$$

Proof. Consider first the case $1 \leq p<\infty$. Let us take any F in $H^{p}(\mathbb{T}, X / Y)$. Let $\left(\alpha_{n}\right)$ be a sequence of positive numbers such that $\sum_{n=1}^{\infty} \alpha_{n}<\infty$ and $\alpha_{0}=\|F\|$.

We construct a sequence of polynomials $\left(w_{n}\right)$ in $H^{p}(\mathbb{T}, X / Y)$ and a sequence of harmonic polynomials $\left(u_{n}\right)$ in $h^{p}(\mathbb{T}, X)$ such that for every $n \in \mathbb{N}$ we have:
(1) $\tilde{Q}_{p}\left(u_{n}\right)=w_{n}$,
(2) $\left\|u_{n+1}\right\|_{h^{p}(\mathbb{D}, X)} \leq 2 \cdot(\kappa+2) \alpha_{n}$,
(3) $\hat{u}_{n}(k)=0 \quad$ for $k \in \mathbb{Z}_{-}$,
(4) $\left\|F-\sum_{k=0}^{n} w_{k}\right\|_{H^{p}(\mathbb{D}, X / Y)} \leq \alpha_{n}$.

By (3), u_{n} belongs to $H^{p}(\mathbb{T}, X)$ for every n. If we put $u=\sum_{n=1}^{\infty} u_{n}$ then, as easily seen, $\tilde{Q}_{p}(u)=F$.

It remains to select sequences $\left(w_{n}\right)$ and $\left(u_{n}\right)$. Let us put $w_{0}=0, u_{0}=0$. Suppose that we have been able to construct polynomials w_{n} and u_{n} for all $0 \leq n<k$ with properties (1)-(4). Let $F_{k}=F-\sum_{n=0}^{k-1} w_{n}$. Since $\lim _{m} \mathbb{K}_{m}\left(F_{k}\right)=F_{k}$ in $H^{p}(\mathbb{D}, X / Y)$, there exists $n_{k} \in \mathbb{N}$ such that $\left\|F_{k}-\mathbb{K}_{n_{k}}\left(F_{k}\right)\right\|_{H^{p}(\mathbb{D}, X / Y)} \leq 2^{-1} \alpha_{k}$. Since $B_{h^{p}(\mathbb{T}, X / Y)} \subset 2 \tilde{Q}_{p}\left(B_{h^{p}(\mathbb{T}, X)}\right)$, there exists v_{k} in $h^{p}(\mathbb{T}, X)$ such that $\tilde{Q}_{p}\left(v_{k}\right)=$ $\mathbb{K}_{n_{k}}\left(F_{k}\right)$ and $\left\|v_{k}\right\|_{h^{p}(\mathbb{T}, X)} \leq 2\left\|F_{k}\right\|_{H^{p}(\mathbb{\mathbb { D }}, X / Y)}$. In view of Fact 7 there is $m_{k} \in \mathbb{N}$ such that

$$
\left\|F_{k}-\mathbb{K}_{m_{k}}\left(\mathbb{K}_{n_{k}}\left(F_{k}\right)\right)\right\|_{H^{p}(\mathbb{D}, X / Y)} \leq \alpha_{k} .
$$

It is clear that $\tilde{Q}_{p}\left(\mathbb{K}_{m_{k}}\left(v_{k}\right)\right)=\mathbb{K}_{m_{k}}\left(\mathbb{K}_{n_{k}}\left(F_{k}\right)\right)$. Let us put $w_{k}=\mathbb{K}_{m_{k}}\left(\mathbb{K}_{n_{k}}\left(F_{k}\right)\right)$. The polynomial w_{k} has property (4). Let Z_{k} be the linear hull of $\mathbb{K}_{m_{k}}\left(v_{k}\right)(\mathbb{T})$. As easily seen $\operatorname{dim} Z_{k} \leq 2 m_{k}+1$. Since Y is a locally complemented subspace of X, for Z_{k} and $\varepsilon_{k}=m_{k}^{-1}$ there is a linear operator $T_{k}: Z_{k} \rightarrow Y$ such that $\left\|T_{k}\right\| \leq \kappa$ and $\left\|T_{k}(y)-y\right\| \leq \varepsilon_{k}\|y\|$ for every $y \in Z_{k} \cap Y$. Hence $T_{k} \circ \mathbb{K}_{m_{k}}\left(v_{k}\right)$ belongs to $h^{p}(\mathbb{T}, Y)$ and $\left\|T_{k^{\prime}} \circ \mathbb{K}_{m_{k}}\left(v_{k}\right)\right\|_{h^{p}(\mathbb{T}, X)} \leq \kappa \cdot\left\|v_{k}\right\|_{h^{p}(\mathbb{T}, X)}$. Define $r_{k}: \mathbb{D} \rightarrow Y$ by the formula

$$
r_{k}(z)=\sum_{n \in \mathbb{Z}_{-}}\left(\mathbb{K}_{m_{k}}\left(v_{k}\right)-T_{k} \circ \mathbb{K}_{m_{k}}\left(v_{k}\right)\right)^{\wedge}(n) \cdot|z|^{|n|} s^{n} \quad \text { for } z=|z| s \in \mathbb{D} .
$$

Since $\tilde{Q}_{p}\left(\mathbb{K}_{m_{k}}\left(v_{k}\right)\right)$ belongs to $H^{p}(\mathbb{D}, X / Y), \mathbb{K}_{m_{k}}\left(v_{k}\right)^{\wedge}(n)$ is a member of Y for every $n \in \mathbb{Z}_{-}$. Hence r_{k} takes its values in Y. For every $l \in \mathbb{Z},\left(T_{k} \circ \mathbb{K}_{m_{k}}\left(v_{k}\right)\right)^{\wedge}(l)=$ $T_{k}\left(\mathbb{K}_{m_{k}}\left(v_{k}\right)^{\wedge}(l)\right)$ and

$$
\begin{aligned}
\left\|\mathbb{K}_{m_{k}}\left(v_{k}\right)^{\wedge}(l)\right\| & \leq\left\|\mathbb{K}_{m_{k}}\left(v_{k}\right)\right\|_{h^{p}(\mathbb{T}, X)} \leq\left\|v_{k}\right\|_{h^{p}(\mathbb{T}, X)} \\
& \leq 2 \cdot\left\|F_{k}\right\|_{H^{p}(\mathbb{D}, X / Y)} \leq 2 \cdot \alpha_{k-1} .
\end{aligned}
$$

Hence for every $n \in \mathbb{Z}_{-}$

$$
\|\left(\mathbb{K}_{m_{k}}\left(v_{k}\right)-\left(T_{k^{\circ}}\left(\mathbb{K}_{m_{k}}\left(v_{k}\right)\right)\right)^{-}(n) \| \leq 2 \cdot m_{k}^{-1} \cdot \alpha_{k-1} .\right.
$$

Since at most m_{k} of the summands of r_{k} do not vanish, $\left\|r_{k}\right\|_{h^{p}(\mathbb{T}, X)} \leq 2 \cdot \alpha_{k-1}$. Let us put

$$
u_{k}=\mathbb{K}_{m_{k}}\left(v_{k}\right)-T_{k} \circ \mathbb{K}_{m_{k}}\left(v_{k}\right)-r_{k}
$$

It is clear that the polynomial u_{k} has properties (1) and (3), furthermore

$$
\begin{aligned}
\left\|u_{k}\right\|_{h^{p}(\mathbb{T}, X)} & \leq\left\|\mathbb{K}_{m_{k}}\left(v_{k}\right)-T_{k} \circ \mathbb{K}_{m_{k}}\left(v_{k}\right)\right\|_{h^{p}(\mathbb{T}, X)}+\left\|r_{k}\right\|_{h^{p}(\mathbb{T}, X)} \\
& \leq(\kappa+1) \cdot\left\|\mathbb{K}_{m_{k}}\left(v_{k}\right)\right\|_{h^{p}(\mathbb{T}, X)}+2 \cdot \alpha_{k-1} \leq 2 \cdot(\kappa+2) \cdot \alpha_{k-1}
\end{aligned}
$$

which completes the proof in the case $1 \leq p<\infty$.
Consider now the case $0<p<1$. Let us take $n \in \mathbb{N}$ so that $2^{n} p>1$. From the factorization theorem for Hardy classes of holomorphic functions it follows that for every $0<s<\infty$

$$
H^{s}(\mathbb{T}, X)=H^{2 s} \cdot H^{2 s}(\mathbb{T}, X)
$$

Hence

$$
\tilde{Q}_{s}\left(H^{s}(\mathbb{T}, X)\right)=H^{2 s} \cdot \tilde{Q}_{2 s}\left(H^{2 s}(\mathbb{T}, X)\right)
$$

Immediately from the above considerations and the first part of the proof it follows that

$$
\tilde{Q}_{p}\left(H^{p}(\mathbb{T}, X)\right)=H^{2 p} \cdot H^{4 p} \cdot \ldots \cdot \tilde{Q}_{2^{n} p}\left(H^{2^{n} p}(\mathbb{T}, X)\right)=H^{p}(\mathbb{T}, X / Y)
$$

Applying Corollary 6 we get

Corollary 9

Let Y be a closed locally complemented subspace of X. If Y has the aRNP and $\tilde{Q}_{p}\left(H^{p}(\mathbb{D}, X)\right) \subset H^{p}(\mathbb{T}, X / Y)$ for some $0<p<\infty$, then X has the aRNP.

By the principle of local reflexivity (see [12]), every Banach space X is locally complemented in $X^{* *}$. Therefore, as a straightfoward consequence of the above theorem we get

Corollary 10

For $0<p<\infty$ and any complex Banach space X

$$
\tilde{Q}_{p}\left(H^{p}\left(\mathbb{T}, X^{* *}\right)\right)=H^{p}\left(\mathbb{T}, X^{* *} / X\right)
$$

Applying Corollary 6 we get

Corollary 11

If the complex Banach spaces X and $X^{* *} / X$ have the aRNP, then so does $X^{* *}$.

Example 12: Let $T=\bigcup_{k=0}^{\infty}\{0,1\}^{k}$. The James Tree space $J T_{2}$ consists of all functions $x: T \rightarrow \mathbb{C}$ such that

$$
\|x\|_{J T_{2}}=\sup \left(\sum_{i=1}^{n}\left|\sum_{t \in S_{i}} x(t)\right|^{2}\right)^{1 / 2}<\infty
$$

where the supremum is taken over all families $\left(S_{1}, \ldots, S_{n}\right)$ of pairwise disjoint finite intervals of the tree T. The unit vectors $\left(e_{t}\right)_{t \in T}$ form a boundedly complete basis of $J T_{2}$. Let \mathbb{B} be the closed subspace of $J T_{2}^{*}$ spanned by the biorthogonal functionals associated with $\left(e_{t}\right)_{t \in T}$. Then \mathbb{B}^{*} is isomorphic to $J T_{2}$. The space \mathbb{B} does not have the Radon-Nikodym property but, as was shown in [8, Cor. 1.4], it has the analytic Radon-Nikodym property. Since the space $\mathbb{B}^{* *} / \mathbb{B}$ is isomorphic to $l_{2}(\mathbb{R})$ (see [11]), applying Corollary 11 we obtain

Corollary 13

The space $J T_{2}^{*}$ has the aRNP.

By $[11$, Cor. 1$]$, for every $n>1$ the space $\mathbb{B}^{(2 n) *}$ is isomorphic to $\mathbb{B}^{* *} \oplus l_{2}(\mathbb{R})$. Therefore the last corollary implies immediately.

Corollary 14

All odd duals $J T_{2}^{(2 n+1) *}$ of the James Tree space $J T_{2}$ have the aRNP.

References

1. O. Blasco, Boundary values of function in vector valued Hardy spaces and geometry of Banach spaces, J. Funct. Anal. 78 (1988), 346-364.
2. O. Blasco and A. Pelczyński, Theorems of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces, Trans. Amer. Math. Soc. 323 (1991), 335-367.
3. A. V. Buchvalov, Hardy spaces of vector-valued functions, Zap. Nauchn. Sem. LOMI $\mathbf{6 5}$ (1976), 5-16 (in Russian).
4. A. V. Buchvalov, On the analytic Radon-Nikodym property, Function Spaces: Proc. Second Intern. Conf., Poznań 1989, Teubner-Texte zur Mathematik; Bd. 120, 211-228.
5. A. V. Buchvalov, A. A. Danilevič, Boundary properties of analytic functions with values in Banach spaces, Mat. Zametki 31 (1982), 203-214 (in Russian).
6. L. Drewnowski, Nonseparability of the quotient space $\operatorname{cabv}(\Sigma, m ; X) / L^{1}(m ; X)$ for Banach spaces X without the Radon-Nikodym property, Studia Math. 104 (1993), 125-132.
7. P. L. Duren, Theory of H^{p} Spaces, Pure Appl. Math. 38, Academic Press, New-York, 1970.
8. G. Ghoussoub, B. Maurey and W. Schachermayer, Pluriharmonically dentable complex Banach spaces, J. Reine Angew. Math. 402 (1989), 76-127.
9. U. Haagerup and G. Pisier, Factorization of analytic functions with values in non-commutative L^{1}-spaces and applications, Canad. J. Math. 41 (1989), 882-906.
10. N. J. Kalton, Locally complemented subspaces and \mathcal{L}_{p}-spaces for $0<p<1$, Math. Nachr. 115 (1984), 71-97.
11. J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain l_{1} and whose duals are non-separable, Studia Math. 54 (1975), 81-105.
12. J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_{p} spaces, Israel J. Math. 7 (1969), 325-349.
13. A. Michalak, Translations of functions in vector Hardy classes on the unit disk, Dissertationes Math. 359 (1996).
14. M. Nawrocki, Duals of vector-valued H^{p}-spaces for $0<p<1$, Indag. Math. 2 (1991), 233-241.

[^0]: * This research was supported in part by Komitet Badań Naukowych (State Committee for Scientific Research), Poland, grant no. 2 P301 00307.

