Collect. Math. **48**, 4-6 (1997), 701–712 © 1997 Universitat de Barcelona

On the relationships between $H^p(\mathbb{T}, X/Y)$ and $H^p(\mathbb{T}, X)/H^p(\mathbb{T}, Y)^*$

Artur Michalak

Faculty of Mathematics and Computer Science, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland E-mail address: michalak@math.amu.edu.pl

Abstract

First we show that for every $1 \leq p < \infty$ the space $H^p(\mathbb{T}, L^1(\lambda)/H^1)$ cannot be naturally identified with $H^p(\mathbb{T}, L^1(\lambda))/H^p(\mathbb{T}, H^1)$. Next we show that if Y is a closed locally complemented subspace of a complex Banach space X and $0 , then the space <math>H^p(\mathbb{T}, X/Y)$ is isomorphic to the quotient space $H^p(\mathbb{T}, X)/H^p(\mathbb{T}, Y)$. This allows us to show that all odd duals of the James Tree space JT_2 have the analytic Radon-Nikodym property.

As usual, \mathbb{D} and \mathbb{T} will stand for the open unit disk and the unit circle in the complex plain \mathbb{C} . The normalized Lebesgue measure on \mathbb{T} will be denoted by λ . Throughout, X will be a complex Banach space and Y its closed subspace. If Z is a Banach space, then $\|\cdot\|_Z$ denotes its norm, B_Z its closed unit ball and Z^* its topological dual. For $0 , we denote by <math>h^p(\mathbb{D}, X)$ the space of all harmonic functions $F: \mathbb{D} \to X$ such that

$$\|F\| = \left(\sup_{0 < r < 1} \int_{\mathbb{T}} \|F(rt)\|^p d\lambda(t)\right)^{1/p} < \infty \quad \text{if} \quad 0 < p < \infty$$
$$\|F\| = \sup\left\{\|F(z)\| : z \in \mathbb{D}\right\} < \infty \quad \text{if} \quad p = \infty,$$

equipped with the norm (when $1 \le p \le \infty$) or quasi-norm (when $0) <math>\|\cdot\|$ defined above. The subspace of $h^p(\mathbb{D}, X)$ consisting of all holomorphic functions is

701

^{*} This research was supported in part by Komitet Badań Naukowych (State Committee for Scientific Research), Poland, grant no. 2 P301 003 07.

denoted $H^p(\mathbb{D}, X)$. The spaces $h^p(\mathbb{D}, \mathbb{C})$ and $H^p(\mathbb{D}, \mathbb{C})$ are denoted briefly by h^p and H^p . The spaces $h^p(\mathbb{D}, X)$ and $H^p(\mathbb{D}, X)$ are Banach for $1 \leq p \leq \infty$, and *p*-Banach for $0 . For <math>0 , we denote by <math>h^p(\mathbb{T}, X)$ the closure of the set of all harmonic polynomials in $h^p(\mathbb{D}, X)$, and by $H^p(\mathbb{T}, X)$ the closure of the set of all polynomials in $H^p(\mathbb{D}, X)$. Every function in $h^p(\mathbb{T}, X)$ as well as in $H^r(\mathbb{T}, X)$ for $1 \leq p < \infty$ and $0 < r < \infty$ has radial limits λ -a.e. on \mathbb{T} . Furthermore, for $1 \leq p < \infty$ every function in $h^p(\mathbb{T}, X)$ is representable as the Poisson integral of its boundary function (defined by radial limits) that belongs to $L^p(\lambda, X)$. Boundary functions of members of $H^p(\mathbb{T}, X)$ for $1 \leq p < \infty$ belong to the set $\{f \in L^p(\lambda, X) : \hat{f}(n) = 0 \text{ for } n \in \mathbb{Z}_-\}$, where \mathbb{Z}_- denotes the set of all negative integers.

In order to answer the question for which Banach spaces X the class $H^p(\mathbb{D}, X)$ coincides with $H^p(\mathbb{T}, X)$, Buchvalov and Danilevič introduced the notion of the analytic Radon-Nikodym property. Recall that a complex Banach space X has the *analytic Radon-Nikodym property* (aRNP) if every bounded holomorphic function $F : \mathbb{D} \to X$ has radial limits λ -a.e. on \mathbb{T} . By [5, Prop. 2] a complex Banach space X has the aRNP if and only if $H^p(\mathbb{T}, X) = H^p(\mathbb{D}, X)$ for all 0 .

For $0 and a given complex Banach space Z, with every bounded linear operator <math>S: X \to Z$ we associate the operator

$$\tilde{S}_p: h^p(\mathbb{D}, X) \to h^p(\mathbb{D}, Z),$$

where $\tilde{S}_p(F) = S \circ F$. In this paper we are going to examine properties of the operator \tilde{Q}_p , associated with the quotient map $Q : X \to X/Y$. Applying the representation of any function in $h^p(\mathbb{T}, X)$ with the aid of the Poisson integral of some function from $L^p(\lambda, X)$ we easily see that

$$B_{h^p(\mathbb{T},X/Y)} \subset 2 \tilde{Q}_p(B_{h^p(\mathbb{T},X)}),$$

hence $\tilde{Q}_p(h^p(\mathbb{T}, X)) = h^p(\mathbb{T}, X/Y)$ for $1 \leq p < \infty$. The following example shows that the equality $\tilde{Q}_p(H^p(\mathbb{T}, X)) = H^p(\mathbb{T}, X/Y)$ does not always hold.

EXAMPLE 1: Let $Q: L^1(\lambda) \to L^1(\lambda)/H^1$ be the quotient map (here we identify H^1 with the subspace of $L^1(\lambda)$ consisting of functions f such that $\hat{f}(n) = 0$ for $n \in \mathbb{Z}_-$). We are going to show that for any $1 \leq p < \infty$ neither

$$\tilde{Q}_p(H^p(\mathbb{D}, L^1(\lambda))) \neq H^p(\mathbb{D}, L^1(\lambda)/H^1)$$

nor

$$\tilde{Q}_p(H^p(\mathbb{T}, L^1(\lambda))) \neq H^p(\mathbb{T}, L^1(\lambda)/H^1).$$

The space $L^1(\lambda)$ as a Banach lattice without isomorphic copies of c_0 has the aRNP (see [5, Th. 1]), but the space $L^1(\lambda)/H^1$ does not have the aRNP. Hence for every $0 the space <math>H^p(\mathbb{D}, L^1(\lambda))$ is separable in contrast to $H^p(\mathbb{D}, L^1(\lambda)/H^1)$ (see [13, Cor. 5.9]). Hence

$$\tilde{Q}_p(H^p(\mathbb{D}, L^1(\lambda))) \neq H^p(\mathbb{D}, L^1(\lambda)/H^1).$$

Consider now the second inequality. For $n \in \mathbb{Z}$ let $\varphi_n : \mathbb{T} \to \mathbb{C}$ be given by

$$\varphi_n(t) = t^n.$$

For every $n \in \mathbb{N}$ let $w_n : \mathbb{D} \to L^1(\lambda)$ be the polynomial of the form

$$w_n(z) = \sum_{k=0}^n \left(1 - \frac{k}{n+1}\right) \cdot \varphi_{-k} \cdot z^k.$$

Since w_n is continuous on $\overline{\mathbb{D}}$,

$$\begin{split} \|\tilde{Q}_p(w_n)\|_{H^1(\mathbb{D},L^1(\lambda)/H^1)} &= \int_{\mathbb{T}} \|\tilde{Q}_p(w_n)(t)\|_{L^1(\lambda)/H^1} \, d\lambda(t) \\ &\leq \int_{\mathbb{T}} \left\| \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1} \right) \cdot \varphi_k \cdot t^{-k} \right\|_{L^1(\lambda)} \, d\lambda(t) \\ &= \int_{\mathbb{T}} \int_{\mathbb{T}} |K_n(st^{-1})| \, d\lambda(s) \, d\lambda(t) = 1 \,, \end{split}$$

where $K_n = \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) \varphi_k$ is the *n*-th Fejer kernel. On the other hand for every polynomial u in $H^1(\mathbb{D}, H^1)$ of the form

$$u(z) = \sum_{k=0}^{l} a_k \cdot z^k,$$

where a_k for k = 0, ..., l are scalar polynomials from H^1 ,

$$\|w_n - u\|_{H^1(\mathbb{D}, L^1(\lambda))} = \int_{\mathbb{T}} \|w_n(t) - u(t)\|_{L^1(\lambda)} \, d\lambda(t) = \int_{\mathbb{T}} \int_{\mathbb{T}} |v_s(t)| \, d\lambda(s) \, d\lambda(t),$$

where for every $s \in \mathbb{T}$ the polynomial v_s is given by

$$v_s(z) = w_n(z)(s) - u(z)(s) = \sum_{k=0}^n \left(1 - \frac{k}{n+1}\right) \cdot \varphi_{-k}(s) \cdot z^k - \sum_{k=0}^l a_k(s) \cdot z^k.$$

By the Hardy inequality (see [7, p. 48]) we have

$$\int_{\mathbb{T}} |v_s(t)| \, d\lambda(t) \ge \frac{1}{\pi} \cdot \sum_{k=0}^n \frac{|\hat{v}_s(k)|}{k+1} = \frac{1}{\pi} \cdot \sum_{k=0}^n \frac{1}{k+1} \left| \left(1 - \frac{k}{n+1} \right) \cdot s^{-k} - a_k(s) \right|.$$

Moreover, for every $k \in \mathbb{N}$ we have

$$\int_{\mathbb{T}} \left| \left(1 - \frac{k}{n+1} \right) \cdot s^{-k} - a_k(s) \right| d\lambda(s) \ge \left(\left(1 - \frac{k}{n+1} \right) \cdot \varphi_{-k} - a_k \right) \widehat{}(-k) = 1 - \frac{k}{n+1}.$$

Applying the Fubini theorem we get

$$||w_n - u|| \ge \frac{1}{\pi} \cdot \sum_{k=0}^n \frac{1}{k+1} \left(1 - \frac{k}{n+1} \right) > \frac{1}{\pi} \cdot \left(\sum_{k=1}^{n+1} \frac{1}{k} - 1 \right).$$

Since polynomials form a dense subset of H^1 , for every polynomial h in $H^1(\mathbb{D}, H^1)$

$$||w_n - h|| \ge \frac{1}{\pi} \cdot \left(\sum_{k=1}^{n+1} \frac{1}{k} - 1\right).$$

Since the space H^1 possesses the aRNP, polynomials are dense in $H^1(\mathbb{D},H^1)=H^1(\mathbb{T},H^1).$ Hence

$$\lim_{n} \|w_{n} + H^{1}(\mathbb{T}, H^{1})\|_{H^{1}(\mathbb{T}, L^{1}(\lambda))/H^{1}(\mathbb{T}, H^{1})} = \infty.$$

As easily seen ker $\tilde{Q}_1 = H^1(\mathbb{T}, H^1)$. If $Q_1(H^1(\mathbb{T}, L^1(\lambda)))$ were a closed subspace of $H^1(\mathbb{T}, L^1(\lambda)/H^1)$, then sequences $(\|\tilde{Q}_1(w_n)\|)$ and $(\|w_n + H^1(\mathbb{T}, H^1)\|)$ would be simultaneously bounded or unbounded. Therefore $\tilde{Q}_1(H^1(\mathbb{T}, L^1(\lambda)))$ is not a closed subspace of $H^1(\mathbb{T}, L^1(\lambda)/H^1)$.

If $s^{-1} + r^{-1} = 1$, $f \in H^s$ and $G \in H^r(\mathbb{D}, X)$, then $F = f \cdot G$ belongs to $H^1(\mathbb{D}, X)$ and $\tilde{Q}_p(F) = f \cdot Q \circ G$. Hence, applying the factorization theorem (see [14, Prop. 1.2] or [13, Th. 2.10]) we easily obtain

$$H^1(\mathbb{T}, L^1(\lambda)/H^1) = \left\{ f \cdot G : f \in H^s, G \in H^r(\mathbb{T}, L^1(\lambda)/H^1) \right\}$$
$$= H^s \cdot H^r(\mathbb{T}, L^1(\lambda)/H^1).$$

It follows that for every $1 \le p < \infty$

$$\tilde{Q}_p(H^p(\mathbb{T}, L^1(\lambda))) \neq H^p(\mathbb{T}, L^1(\lambda)/H^1).$$

704

Since $\tilde{Q}_p(H^p(\mathbb{T}, L^1(\lambda)))$ contains all polynomials in $H^p(\mathbb{T}, L^1(\lambda)/H^1)$, it is not closed.

Remark. Similar considerations allow us to show that $\tilde{Q}_p(H^p(\mathbb{T}, ca(\mathbb{T})))$ is not a closed subspace of $H^p(\mathbb{T}, ca(\mathbb{T})/H^1)$ for every $1 \leq p < \infty$, where $ca(\mathbb{T})$ is the space of all complex Borel measures on \mathbb{T} .

Next remark was communicated to the author by 0. Blasco.

Remark. An alternative proof of the inequality

$$\tilde{Q}_1(H^1(\mathbb{T}, L^1(\lambda))) \neq H^1(\mathbb{T}, L^1(\lambda)/H^1)$$

follows from the Hardy property of the space $L^1(\lambda)$ which does not work for the space $L^1(\lambda)/H^1$ (see [2]). Recall, that a complex Banach space X has the Hardy property if

$$\sum_{n=1}^{\infty} \frac{\|\hat{F}(n)\|}{n} < \infty \qquad \text{for every} \quad F \in H^1(\mathbb{T}, X) \,.$$

In the remaining part of the paper we are going to give some positive results.

For any $F : \mathbb{D} \to X$ and 0 < r < 1, the function $W_r(F) : \mathbb{D} \to X$ is defined by

$$W_r(F)(z) = F(rz).$$

Clearly, for any F in $h^p(\mathbb{D}, X)$ the function $W_r(F)$ belongs to $h^p(\mathbb{T}, X)$ and $||W_r(F)|| \leq ||F||$. If F belongs to $H^p(\mathbb{D}, X)$, then of course $W_r(F)$ is in $H^p(\mathbb{T}, X)$. In the sequel we will need the following analogue of a result of Drewnowski (see [6, Prop. 3]).

Proposition 2

Let Y be a closed subspace of X and let 0 . Then the map

$$J: F + H^p(\mathbb{T}, Y) \to F + H^p(\mathbb{T}, X)$$

is an isomorphic embedding of the quotient space $H^p(\mathbb{D}, Y)/H^p(\mathbb{T}, Y)$ into the quotient space $H^p(\mathbb{D}, X)/H^p(\mathbb{T}, X)$. Proof. Let $s = \min\{1, p\}$ and (r_n) be an increasing sequence of positive numbers converging to 1. Let us take any F in $H^p(\mathbb{D}, Y)$ and G in $H^p(\mathbb{T}, X)$. For every $n \in \mathbb{N}$ the function $W_{r_n}(G)$ belongs to $H^p(\mathbb{T}, X)$. Furthermore, by [14, Prop. 2.1], $\lim_n W_{r_n}(G) = G$ in $H^p(\mathbb{D}, X)$. Hence

$$||F - G|| = \lim_{n} ||F - W_{r_n}(G)||.$$

For every n we have

$$||F - W_{r_n}(G)||^s \ge ||F - W_{r_n}(F)||^s - ||W_{r_n}(G - F)||^s$$
$$\ge ||F - W_{r_n}(F)||^s - ||G - F||^s.$$

Therefore

$$2 \cdot ||F - G||^s \ge \limsup ||F - W_{r_n}(F)||^s.$$

For every n the function $W_{r_n}(F)$ belongs to $H^p(\mathbb{T},Y)$, so

$$2^{1/s} \|F + H^p(\mathbb{T}, X)\| \ge \|F + H^p(\mathbb{T}, Y)\| \ge \|F + H^p(\mathbb{T}, X)\|,$$

which completes the proof. \Box

For every $t \in \mathbb{T}$, the *t*-translate of a function $F : \mathbb{D} \to X$ is the function $F_t : \mathbb{D} \to X$ given by the formula

$$F_t(z) = F(zt^{-1}).$$

If 0 and <math>F belongs to $H^p(\mathbb{D}, X)$, then also F_t belongs to $H^p(\mathbb{D}, X)$ and $||F_t|| = ||F||$. With every F in $H^p(\mathbb{D}, X)$ we associate a function $T_F : \mathbb{T} \to H^p(\mathbb{D}, X)$ defined by

$$T_F(t) = F_t.$$

The following proposition taken from [13, Th. 5.4] exhibits the relationships between properties of functions F and T_F .

Proposition 3

Let $0 . Then for every <math>F \in H^p(\mathbb{D}, X)$ the following assertions are equivalent:

(a) $F \in H^p(\mathbb{T}, X)$,

(b) F has radial limits λ -a.e. on \mathbb{T} ,

(c) $T_F : \mathbb{T} \to H^p(\mathbb{D}, X)$ is continuous,

(d) $T_F(\mathbb{T})$ is a separable subset of $H^p(\mathbb{D}, X)$,

(e) there exists a λ -measurable subset A of \mathbb{T} such that $\lambda(A) > 0$ and $T_F(A)$ is a separable subset of $H^p(\mathbb{D}, X)$.

706

For a given Banach space Z denote by q_Z the quotient mapping of $H^p(\mathbb{D}, Z)$ onto $H^p(\mathbb{D}, Z)/H^p(\mathbb{T}, Z)$. The following corollary is a local version of the main result in [6] for Hardy classes of holomorphic functions.

Corollary 4

Let $0 . If <math>F \in H^p(\mathbb{D}, X) \setminus H^p(\mathbb{T}, X)$, then $q_X \circ T_F(A)$ is a nonseparable subset of $H^p(\mathbb{D}, X)/H^p(\mathbb{T}, X)$ for every λ -measurable subset A of \mathbb{T} such that $\lambda(A) > 0$.

Proof. Let A be a λ -measurable subset of \mathbb{T} such that $\lambda(A) > 0$. The closed linear hull Y of $F(\mathbb{D})$ is separable and F belongs to $H^p(\mathbb{D}, Y)$. Since F does not belong to $H^p(\mathbb{T}, Y)$, in view of Proposition 3 $T_F(A)$ is a nonseparable subset of $H^p(\mathbb{D}, Y)$. Since the space $H^p(\mathbb{T}, Y)$ is separable, the set $q_Y(T_F(A))$ is also nonseparable. For every $t \in \mathbb{T}$,

$$J(q_Y(T_F(t))) = J(F_t + H^p(\mathbb{T}, Y)) = q_X(T_F(t)),$$

hence $q_X \circ T_F = J \circ q_Y \circ T_F$, where J is the the mapping defined in Proposition 2. Since J is an isomorphic embedding, the set $q_X(T_F(A))$ is nonseparable. \Box

Theorem 5

Let 0 . Let Y be a closed subspace of a complex Banach space X $and Q the quotient map of X onto X/Y. If Y has the aRNP and <math>\tilde{Q}_p(H^p(\mathbb{D}, X))$ contains $H^p(\mathbb{T}, X/Y)$, then $\tilde{Q}_p(H^p(\mathbb{T}, X)) = H^p(\mathbb{T}, X/Y)$.

Proof. Let $W = \tilde{Q}_p^{-1}(H^p(\mathbb{T}, X/Y))$. Consider the kernel of the mapping \tilde{Q}_p . If G belongs to $\ker \tilde{Q}_p$, then Q(G(z)) = 0 for every $z \in \mathbb{D}$. Hence G belongs to $H^p(\mathbb{D}, Y) = H^p(\mathbb{T}, Y)$ by the analytic Radon-Nikodym property of Y. Clearly, \tilde{Q}_p generates an isomorphism I between $H^p(\mathbb{T}, X/Y)$ and the quotient space $W/H^p(\mathbb{T}, Y)$. Let $L: H^p(\mathbb{D}, X)/H^p(\mathbb{T}, Y) \to H^p(\mathbb{D}, X)/H^p(\mathbb{T}, X)$ be given by

$$L(F + H^p(\mathbb{T}, Y)) = F + H^p(\mathbb{T}, X).$$

It is easily seen that L is a continuous linear operator.

We show that W coincides with $H^p(\mathbb{T}, X)$. Let us take any F in W. Since $\tilde{Q}_p(F)$ belongs to $H^p(\mathbb{T}, X/Y)$, by Proposition 3 the function $T_{\tilde{Q}_p(F)}$ has separable range in $H^p(\mathbb{T}, X/Y)$. As easily checked

$$q_X \circ T_F = L \circ I \circ T_{\tilde{Q}_p(F)}.$$

Therefore $q_X \circ T_F(\mathbb{T})$ is a separable subset of $H^p(\mathbb{D}, X)/H^p(\mathbb{T}, X)$. In view of Corollary 4, F belongs to $H^p(\mathbb{T}, X)$. Since F was taken arbitrary, $W = H^p(\mathbb{T}, X)$, which completes the proof. \Box

Corollary 6

Let Y be a closed subspace of X and Q the quotient map of X onto X/Y. If Y has the aRNP and $\tilde{Q}_p(H^p(\mathbb{D}, X)) = H^p(\mathbb{T}, X/Y)$ for some 0 , then X has the aRNP.

Proof. Let us take any F in $H^p(\mathbb{D}, X)$. By Theorem 5 there is \tilde{F} in $H^p(\mathbb{T}, X)$ such that $\tilde{Q}_p(F) = \tilde{Q}_p(\tilde{F})$. Therefore $F - \tilde{F}$ belongs to $H^p(\mathbb{T}, Y) = \ker \tilde{Q}_p$. Hence F belongs to $H^p(\mathbb{T}, X)$. Since F was taken arbitrary, X possesses the analytic Radon-Nikodym property. \Box

In the sequel we will need the following sequence of operators. For $1 \leq p < \infty$ and $n \in \mathbb{N}$ the operator $\mathbb{K}_n : h^p(\mathbb{D}, X) \to h^p(\mathbb{D}, X)$ is given by

$$\mathbb{K}_n(F)(z) = \sum_{k=-n}^n \hat{F}(k) \cdot \left(1 - \frac{|k|}{n+1}\right) \cdot |z|^{|k|} s^k \quad \text{for } z = |z|s \in \mathbb{D}.$$

As easily checked the operators \mathbb{K}_n have the following properties:

Fact 7. Let $1 \le p < \infty$ and $n \in \mathbb{N}$.

- (1) $\mathbb{K}_n(h^p(\mathbb{D},X)) \subset h^p(\mathbb{T},X),$
- (2) $\mathbb{K}_n(H^p(\mathbb{D},X)) \subset H^p(\mathbb{T},X),$
- (3) $\|\mathbb{K}_n(F)\| \leq \|F\|$ for every F in $h^p(\mathbb{D}, X)$,
- (4) $\lim_{m \to \infty} \mathbb{K}_m(F) = F$ in $h^p(\mathbb{D}, X)$ for every F in $h^p(\mathbb{T}, X)$.

A closed subspace Y of a Banach space X is *locally complemented* if there exists a constant κ such that for every finite dimensional subspace Z in X and for every $\varepsilon > 0$ there is an linear operator $T : Z \to Y$ such that $||T|| \le \kappa$ and $||T(y)-y|| \le \varepsilon ||y||$ for every $y \in Y \cap Z$ (see [10]).

Theorem 8

Let Y be a closed locally complemented subspace of a complex Banach space X and Q the quotient map of X onto X/Y, and let 0 . Then

$$\tilde{Q}_p(H^p(\mathbb{T},X)) = H^p(\mathbb{T},X/Y).$$

Proof. Consider first the case $1 \le p < \infty$. Let us take any F in $H^p(\mathbb{T}, X/Y)$. Let (α_n) be a sequence of positive numbers such that $\sum_{n=1}^{\infty} \alpha_n < \infty$ and $\alpha_0 = ||F||$.

We construct a sequence of polynomials (w_n) in $H^p(\mathbb{T}, X/Y)$ and a sequence of harmonic polynomials (u_n) in $h^p(\mathbb{T}, X)$ such that for every $n \in \mathbb{N}$ we have:

- (1) $\tilde{Q}_p(u_n) = w_n$,
- (2) $||u_{n+1}||_{h^p(\mathbb{D},X)} \le 2 \cdot (\kappa + 2)\alpha_n$,
- (3) $\hat{u}_n(k) = 0$ for $k \in \mathbb{Z}_-$,
- (4) $||F \sum_{k=0}^{n} w_k||_{H^p(\mathbb{D}, X/Y)} \le \alpha_n.$

By (3), u_n belongs to $H^p(\mathbb{T}, X)$ for every n. If we put $u = \sum_{n=1}^{\infty} u_n$ then, as easily seen, $\tilde{Q}_p(u) = F$.

It remains to select sequences (w_n) and (u_n) . Let us put $w_0 = 0$, $u_0 = 0$. Suppose that we have been able to construct polynomials w_n and u_n for all $0 \le n < k$ with properties (1)–(4). Let $F_k = F - \sum_{n=0}^{k-1} w_n$. Since $\lim_m \mathbb{K}_m(F_k) = F_k$ in $H^p(\mathbb{D}, X/Y)$, there exists $n_k \in \mathbb{N}$ such that $\|F_k - \mathbb{K}_{n_k}(F_k)\|_{H^p(\mathbb{D}, X/Y)} \le 2^{-1}\alpha_k$. Since $B_{h^p(\mathbb{T}, X/Y)} \subset 2 \tilde{Q}_p(B_{h^p(\mathbb{T}, X)})$, there exists v_k in $h^p(\mathbb{T}, X)$ such that $\tilde{Q}_p(v_k) = \mathbb{K}_{n_k}(F_k)$ and $\|v_k\|_{h^p(\mathbb{T}, X)} \le 2 \|F_k\|_{H^p(\mathbb{D}, X/Y)}$. In view of Fact 7 there is $m_k \in \mathbb{N}$ such that

$$\left\|F_k - \mathbb{K}_{m_k}\left(\mathbb{K}_{n_k}(F_k)\right)\right\|_{H^p(\mathbb{D}, X/Y)} \le \alpha_k.$$

It is clear that $\hat{Q}_p(\mathbb{K}_{m_k}(v_k)) = \mathbb{K}_{m_k}(\mathbb{K}_{n_k}(F_k))$. Let us put $w_k = \mathbb{K}_{m_k}(\mathbb{K}_{n_k}(F_k))$. The polynomial w_k has property (4). Let Z_k be the linear hull of $\mathbb{K}_{m_k}(v_k)(\mathbb{T})$. As easily seen dim $Z_k \leq 2m_k + 1$. Since Y is a locally complemented subspace of X, for Z_k and $\varepsilon_k = m_k^{-1}$ there is a linear operator $T_k : Z_k \to Y$ such that $||T_k|| \leq \kappa$ and $||T_k(y) - y|| \leq \varepsilon_k ||y||$ for every $y \in Z_k \cap Y$. Hence $T_k \circ \mathbb{K}_{m_k}(v_k)$ belongs to $h^p(\mathbb{T}, Y)$ and $||T_k \circ \mathbb{K}_{m_k}(v_k)||_{h^p(\mathbb{T},X)} \leq \kappa \cdot ||v_k||_{h^p(\mathbb{T},X)}$. Define $r_k : \mathbb{D} \to Y$ by the formula

$$r_k(z) = \sum_{n \in \mathbb{Z}_-} \left(\mathbb{K}_{m_k}(v_k) - T_k \circ \mathbb{K}_{m_k}(v_k) \right) \widehat{}(n) \cdot |z|^{|n|} s^n \quad \text{for } z = |z|s \in \mathbb{D}.$$

Since $Q_p(\mathbb{K}_{m_k}(v_k))$ belongs to $H^p(\mathbb{D}, X/Y)$, $\mathbb{K}_{m_k}(v_k)^{\widehat{}}(n)$ is a member of Y for every $n \in \mathbb{Z}_-$. Hence r_k takes its values in Y. For every $l \in \mathbb{Z}$, $(T_k \circ \mathbb{K}_{m_k}(v_k))^{\widehat{}}(l) = T_k(\mathbb{K}_{m_k}(v_k)^{\widehat{}}(l))$ and

$$\begin{aligned} \|\mathbb{K}_{m_k}(v_k)(l)\| &\leq \|\mathbb{K}_{m_k}(v_k)\|_{h^p(\mathbb{T},X)} \leq \|v_k\|_{h^p(\mathbb{T},X)} \\ &\leq 2 \cdot \|F_k\|_{H^p(\mathbb{D},X/Y)} \leq 2 \cdot \alpha_{k-1}. \end{aligned}$$

Hence for every $n \in \mathbb{Z}_{-}$

$$\left\|\left(\mathbb{K}_{m_k}(v_k) - (T_k \circ (\mathbb{K}_{m_k}(v_k)))^{\widehat{}}(n)\right\| \le 2 \cdot m_k^{-1} \cdot \alpha_{k-1}\right)\right\|$$

Since at most m_k of the summands of r_k do not vanish, $||r_k||_{h^p(\mathbb{T},X)} \leq 2 \cdot \alpha_{k-1}$. Let us put

$$u_k = \mathbb{K}_{m_k}(v_k) - T_k \circ \mathbb{K}_{m_k}(v_k) - r_k$$

It is clear that the polynomial u_k has properties (1) and (3), furthermore

$$\begin{aligned} \|u_k\|_{h^p(\mathbb{T},X)} &\leq \|\mathbb{K}_{m_k}(v_k) - T_k \circ \mathbb{K}_{m_k}(v_k)\|_{h^p(\mathbb{T},X)} + \|r_k\|_{h^p(\mathbb{T},X)} \\ &\leq (\kappa+1) \cdot \|\mathbb{K}_{m_k}(v_k)\|_{h^p(\mathbb{T},X)} + 2 \cdot \alpha_{k-1} \leq 2 \cdot (\kappa+2) \cdot \alpha_{k-1}, \end{aligned}$$

which completes the proof in the case $1 \le p < \infty$.

Consider now the case $0 . Let us take <math>n \in \mathbb{N}$ so that $2^n p > 1$. From the factorization theorem for Hardy classes of holomorphic functions it follows that for every $0 < s < \infty$

$$H^{s}(\mathbb{T}, X) = H^{2s} \cdot H^{2s}(\mathbb{T}, X).$$

Hence

$$\tilde{Q}_s\big(H^s(\mathbb{T},X)\big) = H^{2s} \cdot \tilde{Q}_{2s}\big(H^{2s}(\mathbb{T},X)\big).$$

Immediately from the above considerations and the first part of the proof it follows that

$$\tilde{Q}_p(H^p(\mathbb{T},X)) = H^{2p} \cdot H^{4p} \cdot \ldots \cdot \tilde{Q}_{2^n p}(H^{2^n p}(\mathbb{T},X)) = H^p(\mathbb{T},X/Y). \square$$

Applying Corollary 6 we get

Corollary 9

Let Y be a closed locally complemented subspace of X. If Y has the aRNP and $\tilde{Q}_p(H^p(\mathbb{D}, X)) \subset H^p(\mathbb{T}, X/Y)$ for some 0 , then X has the aRNP.

By the principle of local reflexivity (see [12]), every Banach space X is locally complemented in X^{**} . Therefore, as a straightforward consequence of the above theorem we get

Corollary 10

For 0 and any complex Banach space X

$$\tilde{Q}_p(H^p(\mathbb{T}, X^{**})) = H^p(\mathbb{T}, X^{**}/X).$$

Applying Corollary 6 we get

Corollary 11

If the complex Banach spaces X and X^{**}/X have the aRNP, then so does X^{**} .

EXAMPLE 12: Let $T = \bigcup_{k=0}^{\infty} \{0,1\}^k$. The James Tree space JT_2 consists of all functions $x: T \to \mathbb{C}$ such that

$$||x||_{JT_2} = \sup\left(\sum_{i=1}^n \left|\sum_{t\in S_i} x(t)\right|^2\right)^{1/2} < \infty,$$

where the supremum is taken over all families (S_1, \ldots, S_n) of pairwise disjoint finite intervals of the tree T. The unit vectors $(e_t)_{t\in T}$ form a boundedly complete basis of JT_2 . Let \mathbb{B} be the closed subspace of JT_2^* spanned by the biorthogonal functionals associated with $(e_t)_{t\in T}$. Then \mathbb{B}^* is isomorphic to JT_2 . The space \mathbb{B} does not have the Radon-Nikodym property but, as was shown in [8, Cor. 1.4], it has the analytic Radon-Nikodym property. Since the space $\mathbb{B}^{**}/\mathbb{B}$ is isomorphic to $l_2(\mathbb{R})$ (see [11]), applying Corollary 11 we obtain

Corollary 13

The space JT_2^* has the aRNP.

By [11, Cor. 1], for every n > 1 the space $\mathbb{B}^{(2n)*}$ is isomorphic to $\mathbb{B}^{**} \oplus l_2(\mathbb{R})$. Therefore the last corollary implies immediately.

Corollary 14

All odd duals $JT_2^{(2n+1)*}$ of the James Tree space JT_2 have the aRNP.

References

- 1. O. Blasco, Boundary values of function in vector valued Hardy spaces and geometry of Banach spaces, *J. Funct. Anal.* **78** (1988), 346–364.
- O. Blasco and A. Pelczyński, Theorems of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces, *Trans. Amer. Math. Soc.* 323 (1991), 335–367.
- A. V. Buchvalov, Hardy spaces of vector-valued functions, *Zap. Nauchn. Sem. LOMI* 65 (1976), 5–16 (in Russian).
- A. V. Buchvalov, On the analytic Radon-Nikodym property, Function Spaces: Proc. Second Intern. Conf., Poznań 1989, Teubner-Texte zur Mathematik; Bd. 120, 211–228.
- A. V. Buchvalov, A. A. Danilevič, Boundary properties of analytic functions with values in Banach spaces, *Mat. Zametki* 31 (1982), 203–214 (in Russian).
- 6. L. Drewnowski, Nonseparability of the quotient space $cabv(\Sigma, m; X)/L^1(m; X)$ for Banach spaces X without the Radon-Nikodym property, *Studia Math.* **104** (1993), 125–132.
- 7. P. L. Duren, Theory of H^p Spaces, Pure Appl. Math. 38, Academic Press, New-York, 1970.

- 8. G. Ghoussoub, B. Maurey and W. Schachermayer, Pluriharmonically dentable complex Banach spaces, *J. Reine Angew. Math.* **402** (1989), 76–127.
- 9. U. Haagerup and G. Pisier, Factorization of analytic functions with values in non-commutative L^1 -spaces and applications, *Canad. J. Math.* **41** (1989), 882–906.
- 10. N. J. Kalton, Locally complemented subspaces and \mathcal{L}_p -spaces for 0 , Math. Nachr. 115 (1984), 71–97.
- 11. J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain l_1 and whose duals are non-separable, *Studia Math.* **54** (1975), 81–105.
- 12. J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_p spaces, Israel J. Math. 7 (1969), 325–349.
- 13. A. Michalak, Translations of functions in vector Hardy classes on the unit disk, *Dissertationes Math.* **359** (1996).
- 14. M. Nawrocki, Duals of vector-valued H^p -spaces for 0 , Indag. Math. 2 (1991), 233–241.