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Abstract

First we show that for every 1 ≤ p < ∞ the spaceHp(T, L1(λ)/H1) cannot
be naturally identified with Hp(T, L1(λ))/Hp(T, H1). Next we show that
if Y is a closed locally complemented subspace of a complex Banach space X
and 0 < p < ∞, then the space Hp(T, X/Y ) is isomorphic to the quotient
space Hp(T, X)/Hp(T, Y ). This allows us to show that all odd duals of the
James Tree space JT2 have the analytic Radon-Nikodym property.

As usual, D and T will stand for the open unit disk and the unit circle in the complex
plain C. The normalized Lebesgue measure on T will be denoted by λ. Throughout,
X will be a complex Banach space and Y its closed subspace. If Z is a Banach
space, then ‖ · ‖Z denotes its norm, BZ its closed unit ball and Z∗ its topological
dual. For 0 < p ≤ ∞, we denote by hp(D, X) the space of all harmonic functions
F : D → X such that

‖F‖ =
(

sup
0<r<1

∫
T

‖F (rt)‖p dλ(t)
)1/p

< ∞ if 0 < p < ∞

‖F‖ = sup
{
‖F (z)‖ : z ∈ D

}
< ∞ if p = ∞ ,

equipped with the norm (when 1 ≤ p ≤ ∞) or quasi-norm (when 0 < p < 1) ‖ · ‖
defined above. The subspace of hp(D, X) consisting of all holomorphic functions is
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denoted Hp(D, X). The spaces hp(D,C) and Hp(D,C) are denoted briefly by hp and
Hp. The spaces hp(D, X) and Hp(D, X) are Banach for 1 ≤ p ≤ ∞, and p-Banach
for 0 < p < 1. For 0 < p < ∞, we denote by hp(T, X) the closure of the set of
all harmonic polynomials in hp(D, X), and by Hp(T, X) the closure of the set of
all polynomials in Hp(D, X). Every function in hp(T, X) as well as in Hr(T, X)
for 1 ≤ p < ∞ and 0 < r < ∞ has radial limits λ-a.e. on T. Furthermore, for
1 ≤ p < ∞ every function in hp(T, X) is representable as the Poisson integral of its
boundary function (defined by radial limits) that belongs to Lp(λ,X). Boundary
functions of members of Hp(T, X) for 1 ≤ p < ∞ belong to the set {f ∈ Lp(λ,X) :
f̂(n) = 0 for n ∈ Z−}, where Z− denotes the set of all negative integers.

In order to answer the question for which Banach spaces X the class Hp(D, X)
coincides with Hp(T, X), Buchvalov and Danilevič introduced the notion of the
analytic Radon-Nikodym property. Recall that a complex Banach space X has the
analytic Radon-Nikodym property (aRNP) if every bounded holomorphic function
F : D → X has radial limits λ-a.e. on T. By [5, Prop. 2] a complex Banach space
X has the aRNP if and only if Hp(T, X) = Hp(D, X) for all 0 < p < ∞.

For 0 < p ≤ ∞ and a given complex Banach space Z, with every bounded linear
operator S : X → Z we associate the operator

S̃p : hp(D, X) → hp(D, Z) ,

where S̃p(F ) = S◦F . In this paper we are going to examine properties of the
operator Q̃p, associated with the quotient map Q : X → X/Y . Applying the
representation of any function in hp(T, X) with the aid of the Poisson integral of
some function from Lp(λ,X) we easily see that

Bhp(T,X/Y ) ⊂ 2 Q̃p(Bhp(T,X)),

hence Q̃p(hp(T, X)) = hp(T, X/Y ) for 1 ≤ p < ∞. The following example shows
that the equality Q̃p(Hp(T, X)) = Hp(T, X/Y ) does not always hold.

Example 1: Let Q : L1(λ) → L1(λ)/H1 be the quotient map (here we identify H1

with the subspace of L1(λ) consisting of functions f such that f̂(n) = 0 for n ∈ Z−).
We are going to show that for any 1 ≤ p < ∞ neither

Q̃p

(
Hp(D, L1(λ))

)
�= Hp

(
D, L1(λ)/H1

)
nor

Q̃p

(
Hp(T, L1(λ))

)
�= Hp

(
T, L1(λ)/H1

)
.
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The space L1(λ) as a Banach lattice without isomorphic copies of c0 has the aRNP
(see [5, Th. 1]), but the space L1(λ)/H1 does not have the aRNP. Hence for every
0 < p < ∞ the space Hp(D, L1(λ)) is separable in contrast to Hp(D, L1(λ)/H1)
(see [13, Cor. 5.9]). Hence

Q̃p

(
Hp(D, L1(λ))

)
�= Hp

(
D, L1(λ)/H1

)
.

Consider now the second inequality. For n ∈ Z let ϕn : T → C be given by

ϕn(t) = tn.

For every n ∈ N let wn : D → L1(λ) be the polynomial of the form

wn(z) =
n∑

k=0

(
1 − k

n + 1

)
· ϕ−k · zk.

Since wn is continuous on D,

‖Q̃p(wn)‖H1(D,L1(λ)/H1) =
∫

T

‖Q̃p(wn)(t)‖L1(λ)/H1 dλ(t)

≤
∫

T

∥∥∥∥
n∑

k=−n

(
1 − |k|

n + 1

)
· ϕk · t−k

∥∥∥∥
L1(λ)

dλ(t)

=
∫

T

∫
T

|Kn(st−1)| dλ(s) dλ(t) = 1 ,

where Kn =
∑n

k=−n

(
1 − |k|

n+1

)
ϕk is the n-th Fejer kernel. On the other hand for

every polynomial u in H1(D, H1) of the form

u(z) =
l∑

k=0

ak · zk,

where ak for k = 0, . . . , l are scalar polynomials from H1,

‖wn − u‖H1(D,L1(λ)) =
∫

T

‖wn(t) − u(t)‖L1(λ) dλ(t) =
∫

T

∫
T

|vs(t)| dλ(s) dλ(t),

where for every s ∈ T the polynomial vs is given by

vs(z) = wn(z)(s) − u(z)(s) =
n∑

k=0

(
1 − k

n + 1

)
· ϕ−k(s) · zk −

l∑
k=0

ak(s) · zk.
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By the Hardy inequality (see [7, p. 48]) we have

∫
T

|vs(t)| dλ(t) ≥ 1
π
·

n∑
k=0

|v̂s(k)|
k + 1

=
1
π
·

n∑
k=0

1
k + 1

∣∣∣∣
(

1 − k

n + 1

)
· s−k − ak(s)

∣∣∣∣.
Moreover, for every k ∈ N we have∫

T

∣∣∣∣
(

1− k

n + 1

)
·s−k−ak(s)

∣∣∣∣ dλ(s) ≥
((

1− k

n + 1

)
·ϕ−k−ak

)̂
(−k) = 1− k

n + 1
.

Applying the Fubini theorem we get

‖wn − u‖ ≥ 1
π
·

n∑
k=0

1
k + 1

(
1 − k

n + 1

)
>

1
π
·
( n+1∑

k=1

1
k

− 1
)
.

Since polynomials form a dense subset of H1, for every polynomial h in H1(D, H1)

‖wn − h‖ ≥ 1
π
·
( n+1∑

k=1

1
k

− 1
)
.

Since the space H1 possesses the aRNP, polynomials are dense in H1(D, H1) =
H1(T, H1). Hence

lim
n

∥∥wn + H1(T, H1)
∥∥
H1(T,L1(λ))/H1(T,H1)

= ∞ .

As easily seen ker Q̃1 = H1(T, H1). If Q1(H1(T, L1(λ))) were a closed subspace of
H1(T, L1(λ)/H1)), then sequences

(
‖Q̃1(wn)‖

)
and

(
‖wn + H1(T, H1)‖

)
would be

simultaneously bounded or unbounded. Therefore Q̃1(H1(T, L1(λ))) is not a closed
subspace of H1(T, L1(λ)/H1).

If s−1 + r−1 = 1, f ∈ Hs and G ∈ Hr(D, X), then F = f · G belongs to
H1(D, X) and Q̃p(F ) = f ·Q◦G. Hence, applying the factorization theorem (see [14,
Prop. 1.2] or [13, Th. 2.10]) we easily obtain

H1
(
T, L1(λ)/H1

)
=

{
f ·G : f ∈ Hs, G ∈ Hr(T, L1(λ)/H1)

}
= Hs ·Hr

(
T, L1(λ)/H1

)
.

It follows that for every 1 ≤ p < ∞

Q̃p

(
Hp(T, L1(λ))

)
�= Hp

(
T, L1(λ)/H1

)
.
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Since Q̃p(Hp(T, L1(λ))) contains all polynomials in Hp(T, L1(λ)/H1), it is not
closed.

Remark. Similar considerations allow us to show that Q̃p(Hp(T, ca(T))) is not a
closed subspace of Hp(T, ca(T)/H1) for every 1 ≤ p < ∞, where ca(T) is the space
of all complex Borel measures on T.

Next remark was communicated to the author by 0. Blasco.

Remark. An alternative proof of the inequality

Q̃1

(
H1(T, L1(λ))

)
�= H1

(
T, L1(λ)/H1

)
follows from the Hardy property of the space L1(λ) which does not work for the
space L1(λ)/H1 (see [2]). Recall, that a complex Banach space X has the Hardy
property if

∞∑
n=1

‖F̂ (n)‖
n

< ∞ for every F ∈ H1(T, X) .

In the remaining part of the paper we are going to give some positive results.
For any F : D → X and 0 < r < 1, the function Wr(F ) : D → X is defined by

Wr(F )(z) = F (rz).

Clearly, for any F in hp(D, X) the function Wr(F ) belongs to hp(T, X) and
‖Wr(F )‖ ≤ ‖F‖. If F belongs to Hp(D, X), then of course Wr(F ) is in Hp(T, X).
In the sequel we will need the following analogue of a result of Drewnowski (see [6,
Prop. 3]).

Proposition 2

Let Y be a closed subspace of X and let 0 < p < ∞. Then the map

J : F + Hp(T, Y ) → F + Hp(T, X)

is an isomorphic embedding of the quotient space Hp(D, Y )/Hp(T, Y ) into the quo-

tient space Hp(D, X)/Hp(T, X).
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Proof. Let s = min{1, p} and (rn) be an increasing sequence of positive numbers
converging to 1. Let us take any F in Hp(D, Y ) and G in Hp(T, X). For every
n ∈ N the function Wrn(G) belongs to Hp(T, X). Furthermore, by [14, Prop. 2.1],
limnWrn(G) = G in Hp(D, X). Hence

‖F −G‖ = lim
n

‖F −Wrn(G)‖.

For every n we have

‖F −Wrn(G)‖s ≥ ‖F −Wrn(F )‖s − ‖Wrn(G− F )‖s

≥ ‖F −Wrn(F )‖s − ‖G− F‖s.

Therefore
2 · ‖F −G‖s ≥ lim

n
sup ‖F −Wrn(F )‖s.

For every n the function Wrn(F ) belongs to Hp(T, Y ), so

21/s‖F + Hp(T, X)‖ ≥ ‖F + Hp(T, Y )‖ ≥ ‖F + Hp(T, X)‖,

which completes the proof. �
For every t ∈ T, the t-translate of a function F : D → X is the function

Ft : D → X given by the formula

Ft(z) = F (zt−1).

If 0 < p ≤ ∞ and F belongs to Hp(D, X), then also Ft belongs to Hp(D, X) and
‖Ft‖ = ‖F‖. With every F in Hp(D, X) we associate a function TF : T → Hp(D, X)
defined by

TF (t) = Ft.

The following proposition taken from [13, Th. 5.4] exhibits the relationships between
properties of functions F and TF .

Proposition 3

Let 0 < p < ∞. Then for every F ∈ Hp(D, X) the following assertions are

equivalent:

(a) F ∈ Hp(T, X),
(b) F has radial limits λ-a.e. on T,

(c) TF : T → Hp(D, X) is continuous,

(d) TF (T) is a separable subset of Hp(D, X),
(e) there exists a λ-measurable subset A of T such that λ(A) > 0 and TF (A) is a

separable subset of Hp(D, X).
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For a given Banach space Z denote by qZ the quotient mapping of Hp(D, Z)
onto Hp(D, Z)/Hp(T, Z). The following corollary is a local version of the main result
in [6] for Hardy classes of holomorphic functions.

Corollary 4

Let 0 < p < ∞. If F ∈ Hp(D, X) \Hp(T, X), then qX◦TF (A) is a nonsepara-

ble subset of Hp(D, X)/Hp(T, X) for every λ-measurable subset A of T such that

λ(A) > 0.

Proof. Let A be a λ-measurable subset of T such that λ(A) > 0. The closed linear
hull Y of F (D) is separable and F belongs to Hp(D, Y ). Since F does not belong
to Hp(T, Y ), in view of Proposition 3 TF (A) is a nonseparable subset of Hp(D, Y ).
Since the space Hp(T, Y ) is separable, the set qY (TF (A)) is also nonseparable. For
every t ∈ T,

J
(
qY (TF (t))

)
= J

(
Ft + Hp(T, Y )

)
= qX

(
TF (t)

)
,

hence qX◦TF = J◦qY ◦TF , where J is the the mapping defined in Proposition 2.
Since J is an isomorphic embedding, the set qX(TF (A)) is nonseparable. �

Theorem 5

Let 0 < p < ∞. Let Y be a closed subspace of a complex Banach space X

and Q the quotient map of X onto X/Y . If Y has the aRNP and Q̃p(Hp(D, X))
contains Hp(T, X/Y ), then Q̃p(Hp(T, X)) = Hp(T, X/Y ).

Proof. Let W = Q̃−1
p (Hp(T, X/Y )). Consider the kernel of the mapping Q̃p.

If G belongs to ker Q̃p, then Q(G(z)) = 0 for every z ∈ D. Hence G be-
longs to Hp(D, Y ) = Hp(T, Y ) by the analytic Radon-Nikodym property of Y .
Clearly, Q̃p generates an isomorphism I between Hp(T, X/Y ) and the quotient space
W/Hp(T, Y ). Let L : Hp(D, X)/Hp(T, Y ) → Hp(D, X)/Hp(T, X) be given by

L
(
F + Hp(T, Y )

)
= F + Hp

(
T, X

)
.

It is easily seen that L is a continuous linear operator.
We show that W coincides with Hp(T, X). Let us take any F in W . Since

Q̃p(F ) belongs to Hp(T, X/Y ), by Proposition 3 the function TQ̃p(F ) has separable
range in Hp(T, X/Y ). As easily checked

qX◦TF = L◦I◦TQ̃p(F ).
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Therefore qX◦TF (T) is a separable subset of Hp(D, X)/Hp(T, X). In view of Corol-
lary 4, F belongs to Hp(T, X). Since F was taken arbitrary, W = Hp(T, X), which
completes the proof. �

Corollary 6

Let Y be a closed subspace of X and Q the quotient map of X onto X/Y . If Y

has the aRNP and Q̃p(Hp(D, X)) = Hp(T, X/Y ) for some 0 < p < ∞, then X has

the aRNP.

Proof. Let us take any F in Hp(D, X). By Theorem 5 there is F̃ in Hp(T, X)
such that Q̃p(F ) = Q̃p(F̃ ). Therefore F − F̃ belongs to Hp(T, Y ) = ker Q̃p. Hence
F belongs to Hp(T, X). Since F was taken arbitrary, X possesses the analytic
Radon-Nikodym property. �

In the sequel we will need the following sequence of operators. For 1 ≤ p < ∞
and n ∈ N the operator Kn : hp(D, X) → hp(D, X) is given by

Kn(F )(z) =
n∑

k=−n

F̂ (k) ·
(

1 − |k|
n + 1

)
· |z||k|sk for z = |z|s ∈ D.

As easily checked the operators Kn have the following properties:

Fact 7. Let 1 ≤ p < ∞ and n ∈ N.

(1) Kn(hp(D, X)) ⊂ hp(T, X),
(2) Kn(Hp(D, X)) ⊂ Hp(T, X),
(3) ‖Kn(F )‖ ≤ ‖F‖ for every F in hp(D, X),
(4) limm Km(F ) = F in hp(D, X) for every F in hp(T, X).

A closed subspace Y of a Banach space X is locally complemented if there exists
a constant κ such that for every finite dimentional subspace Z in X and for every
ε > 0 there is an linear operator T : Z → Y such that ‖T‖ ≤ κ and ‖T (y)−y‖ ≤ ε‖y‖
for every y ∈ Y ∩ Z (see [10]).

Theorem 8

Let Y be a closed locally complemented subspace of a complex Banach space

X and Q the quotient map of X onto X/Y , and let 0 < p < ∞. Then

Q̃p

(
Hp(T, X)

)
= Hp

(
T, X/Y

)
.

Proof. Consider first the case 1 ≤ p < ∞. Let us take any F in Hp(T, X/Y ). Let
(αn) be a sequence of positive numbers such that

∑∞
n=1 αn < ∞ and α0 = ‖F‖.
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We construct a sequence of polynomials (wn) in Hp(T, X/Y ) and a sequence of
harmonic polynomials (un) in hp(T, X) such that for every n ∈ N we have:

(1) Q̃p(un) = wn,
(2) ‖un+1‖hp(D,X) ≤ 2 · (κ + 2)αn,
(3) ûn(k) = 0 for k ∈ Z−,
(4) ‖F − ∑n

k=0 wk‖Hp(D,X/Y ) ≤ αn.

By (3), un belongs to Hp(T, X) for every n. If we put u =
∑∞

n=1 un then, as
easily seen, Q̃p(u) = F .

It remains to select sequences (wn) and (un). Let us put w0 = 0, u0 = 0.
Suppose that we have been able to construct polynomials wn and un for all 0 ≤ n < k

with properties (1)–(4). Let Fk = F − ∑k−1
n=0 wn. Since limm Km(Fk) = Fk in

Hp(D, X/Y ), there exists nk ∈ N such that ‖Fk − Knk
(Fk)‖Hp(D,X/Y ) ≤ 2−1αk.

Since Bhp(T,X/Y ) ⊂ 2 Q̃p(Bhp(T,X)), there exists vk in hp(T, X) such that Q̃p(vk) =
Knk

(Fk) and ‖vk‖hp(T,X) ≤ 2 ‖Fk‖Hp(D,X/Y ). In view of Fact 7 there is mk ∈ N such
that ∥∥Fk − Kmk

(
Knk

(Fk)
)∥∥

Hp(D,X/Y )
≤ αk.

It is clear that Q̃p(Kmk
(vk)) = Kmk

(Knk
(Fk)). Let us put wk = Kmk

(Knk
(Fk)).

The polynomial wk has property (4). Let Zk be the linear hull of Kmk
(vk)(T). As

easily seen dimZk ≤ 2mk +1. Since Y is a locally complemented subspace of X, for
Zk and εk = m−1

k there is a linear operator Tk : Zk → Y such that ‖Tk‖ ≤ κ and
‖Tk(y) − y‖ ≤ εk‖y‖ for every y ∈ Zk ∩ Y . Hence Tk◦Kmk

(vk) belongs to hp(T, Y )
and ‖Tk◦Kmk

(vk)‖hp(T,X) ≤ κ · ‖vk‖hp(T,X). Define rk : D → Y by the formula

rk(z) =
∑
n∈Z−

(
Kmk

(vk) − Tk◦Kmk
(vk)

)̂
(n) · |z||n|sn for z = |z|s ∈ D.

Since Q̃p(Kmk
(vk)) belongs to Hp(D, X/Y ), Kmk

(vk )̂ (n) is a member of Y for
every n ∈ Z−. Hence rk takes its values in Y . For every l ∈ Z, (Tk◦Kmk

(vk))̂ (l) =
Tk(Kmk

(vk )̂ (l)) and

‖Kmk
(vk )̂ (l)‖ ≤ ‖Kmk

(vk)‖hp(T,X) ≤ ‖vk‖hp(T,X)

≤ 2 · ‖Fk‖Hp(D,X/Y ) ≤ 2 · αk−1.

Hence for every n ∈ Z−

∥∥(
Kmk

(vk) − (Tk◦(Kmk
(vk))

)̂
(n)

∥∥≤ 2 ·m−1
k · αk−1.
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Since at most mk of the summands of rk do not vanish, ‖rk‖hp(T,X) ≤ 2 · αk−1. Let
us put

uk = Kmk
(vk) − Tk◦Kmk

(vk) − rk.

It is clear that the polynomial uk has properties (1) and (3), furthermore

‖uk‖hp(T,X) ≤ ‖Kmk
(vk) − Tk◦Kmk

(vk)‖hp(T,X) + ‖rk‖hp(T,X)

≤ (κ + 1) · ‖Kmk
(vk)‖hp(T,X) + 2 · αk−1 ≤ 2 · (κ + 2) · αk−1,

which completes the proof in the case 1 ≤ p < ∞.
Consider now the case 0 < p < 1. Let us take n ∈ N so that 2np > 1. From the

factorization theorem for Hardy classes of holomorphic functions it follows that for
every 0 < s < ∞

Hs(T, X) = H2s ·H2s(T, X).

Hence
Q̃s

(
Hs(T, X)

)
= H2s · Q̃2s

(
H2s(T, X)

)
.

Immediately from the above considerations and the first part of the proof it follows
that

Q̃p

(
Hp(T, X)

)
= H2p ·H4p · . . . · Q̃2np

(
H2np(T, X)

)
= Hp

(
T, X/Y

)
. �

Applying Corollary 6 we get

Corollary 9

Let Y be a closed locally complemented subspace of X. If Y has the aRNP and

Q̃p(Hp(D, X)) ⊂ Hp(T, X/Y ) for some 0 < p < ∞, then X has the aRNP.

By the principle of local reflexivity (see [12]), every Banach space X is locally
complemented in X∗∗. Therefore, as a straightfoward consequence of the above
theorem we get

Corollary 10

For 0 < p < ∞ and any complex Banach space X

Q̃p

(
Hp(T, X∗∗)

)
= Hp

(
T, X∗∗/X

)
.

Applying Corollary 6 we get

Corollary 11

If the complex Banach spaces X and X∗∗/X have the aRNP, then so does X∗∗.
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Example 12: Let T =
⋃∞

k=0{0, 1}k. The James Tree space JT2 consists of all
functions x : T → C such that

‖x‖JT2 = sup
( n∑

i=1

∣∣∣∣ ∑
t∈Si

x(t)
∣∣∣∣
2)1/2

< ∞ ,

where the supremum is taken over all families (S1, . . . , Sn) of pairwise disjoint finite
intervals of the tree T . The unit vectors (et)t∈T form a boundedly complete basis of
JT2. Let B be the closed subspace of JT ∗

2 spanned by the biorthogonal functionals
associated with (et)t∈T . Then B

∗ is isomorphic to JT2. The space B does not have
the Radon-Nikodym property but, as was shown in [8, Cor. 1.4], it has the analytic
Radon-Nikodym property. Since the space B

∗∗/B is isomorphic to l2(R) (see [11]),
applying Corollary 11 we obtain

Corollary 13

The space JT ∗
2 has the aRNP.

By [11, Cor. 1], for every n > 1 the space B
(2n)∗ is isomorphic to B

∗∗ ⊕ l2(R).
Therefore the last corollary implies immediately.

Corollary 14

All odd duals JT
(2n+1)∗
2 of the James Tree space JT2 have the aRNP.
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2. O. Blasco and A. Pelczyński, Theorems of Hardy and Paley for vector-valued analytic functions
and related classes of Banach spaces, Trans. Amer. Math. Soc. 323 (1991), 335–367.

3. A. V. Buchvalov, Hardy spaces of vector-valued functions, Zap. Nauchn. Sem. LOMI 65 (1976),
5–16 (in Russian).

4. A. V. Buchvalov, On the analytic Radon-Nikodym property, Function Spaces: Proc. Second
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