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Abstract

Let X be a separable L1 or a separable C(K)-space, and let Y be any Banach
space. I(X,Y ) denotes the set of all isometries from X to Y . showed that
for any finite measure space (Ω, µ) and any 1 < p < ∞, every isometry
T : X → Lp(Ω, Y ) has the form

T x(t) = h(t)U(t)x ,

where h ∈ Lp with ‖h‖p = 1 and U is a strongly measurable function from
Ω into I(X,Y ). In this article, we extend this result to the Köthe-Bochner
function spaces E(Y ) when E is strictly convex. We also show that every
isometry from �n∞ into E(Y ) has the above form if n ≥ 3 and E is a strictly
monotone Köthe function space.

Let X be a Banach space and let E be a Köthe function space on a finite measure
space (Ω, µ). The Köthe-Bochner function space E(X) is the set of all measurable
functions f : Ω → X such that ‖f(·)‖X ∈ E. The norm of f is defined by

‖f‖ =
∥∥‖f(·)‖X

∥∥
E
.

For any two Banach spaces X,Y , let I(X,Y ) denote the set of all isometries from
X into Y . A mapping U : Ω → I(X,Y ) is called strongly measurable if for each x,
the function U(·)x is measurable. It is easy to see that if U is a strongly measurable
mapping from Ω into I(X,Y ) and if h ∈ E with ‖h‖E = 1, then the mapping
T : X → E(Y ) defined by

(1) T x(t) = h(t) · U(t)x
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is an isometry. In [2], Koldobsky showed that if X is either a separable L1-space or
a separable C(K) space, then every isometry T from X into Lp(Y ), 1 < p < ∞, has
the form (1). Recall a Banach space is said to be strictly convex if ‖x‖ = 1 = ‖y‖ =
1
2‖x + y‖ implies x = y. A Köthe function space is said to be strictly monotone if
x ≥ y ≥ 0 and ‖x‖ = ‖y‖ imply x = y. In this article, we prove the following two
Theorems.

Theorem 1
Let X be a real (respectively, complex) Banach space such that there are two

subsets A and B of X which satisfy the following conditions.

(i) A is a subset of the unit sphere of X and for any a1, a2 ∈ A there are a unit
vectors x and two scalars α1, α2 with |α1| = 1 = |α2| such that∥∥a1 + α1x

∥∥ = 2 =
∥∥a2 + α2x

∥∥ .

(ii) B is countable dense subset of X.
(iii) For any α ∈ Q (respectively, α ∈ Q + iQ) and any a1, a2 ∈ B, a1 + αa2 ∈ B.
(iv) For any b ∈ B there are an a ∈ A, a unit vector x, and a real number α,

0 ≤ α ≤ 1 such that

‖a + x‖ = 2

b = ‖b‖X ·
(
αa + (1 − α)x

)
.

If E is a strictly convex Köthe function space, then every isometry T : X → E(Y )
has the form

(2) T x(t) = h(t) ·
(
U(t)

)
(x)

where h ∈ E with ‖h‖E = 1 and U is a strongly measurable function from Ω into
I(X,Y ).

Theorem 2
Let X be a real (respectively, complex) Banach space. Suppose there are subsets

A and B of X which satisfy the following conditions.

(v) A is a subset of the unit sphere of X and for any a1, a2 ∈ A there is x in the
unit sphere of X such that∥∥a1 + x

∥∥ =
∥∥a1 − x

∥∥ = 1 =
∥∥a2 + x

∥∥ =
∥∥a2 − x

∥∥.
(vi) B satisfies the conditions (ii) and (iii) of Theorem 1.
(vii) For b ∈ B, there are e1 ∈ A and two unit vectors e2, e3 such that {e1, e2, e3} is

an �3∞ basis and b ∈ span {e1, e2, e3}.
If E is a strictly monotone Köthe function space, then every isometry T from X
into E(Y ) has form (2).
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First we need the following two lemmas. We only give a proof of the second
lemma and we leave the proof of the first lemma to the readers.

Lemma 3

Let Y be a Banach space and E be a strictly convex Köthe function space. If

f, g are two unit vectors in E(Y ) such that ‖f +g‖E(Y ) = 2, then for any 0 ≤ α ≤ 1,

‖f(·)‖Y = α‖f(·)‖Y + (1 − α)‖g(·)‖Y .

Particularly, we have ‖f(·)‖Y = ‖g(·)‖Y .

Lemma 4

Let Y be a Banach space and E be a strictly monotone Köthe function space.

If f, g are two nonzero elements in E(X) and if ‖f + g‖E(Y ) = ‖f‖E(Y ) + ‖g‖E(Y ),

then for any 0 ≤ α ≤ 1,

‖(αf + (1 − α)g)(·)‖Y = ‖αf(·)‖Y + ‖(1 − α)g(·)‖Y .

Proof. Exchange f and g if necessary. We may assume that α ≤ 1
2 . So

‖αf + (1 − α)g‖E(Y ) ≥ (1 − α)‖f + g‖E(Y ) − (1 − 2α)‖f‖E(Y )

= (1 − α)‖g‖E(Y ) + α‖f‖E(Y ) .

Note: 0 ≤ α ≤ 1, ‖(αf + (1 − α)g)(·)‖Y ≤ (1 − α)‖g(·)‖Y + α‖f(·)‖Y . But E is
strictly monotone. We have

∥∥(αf + (1 − α)g)(·)
∥∥
Y

=
∥∥αf(·)

∥∥
Y

+
∥∥(1 − α)g(·)

∥∥
Y

)

for 0 ≤ α ≤ 1. �

Proof of Theorem 1. Let a be any vector in A and let h(·) = ‖(T (a))(·)‖Y . We
claim that for any non-zero vector b ∈ B, h(·) = ‖(T (b))(·)‖Y

‖b‖X
. Note: T is an isometry.

Suppose that claim were proved. By (ii), B is a countable set and there exists a
measurable set D ⊆ Ω such that µ(Ω \ D) = 0 and for every t ∈ D and every
b1, b2 ∈ B and α ∈ Q (respectively, α ∈ Q + iQ),

∥∥T (b1)(t)
∥∥
Y

= h(t) ·
∥∥b1∥∥X(

T (b1 + αb2)
)
(t) = T (b1)(t) + T (αb2)(t) .
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Let t be any element in D such that h(t) �= 0. Define a mapping U(t) : B → Y by

U(t)(b) = T (b)(t)/h(t).

Since B is dense in X, U(t) can be uniquely extended to an isometry on X and we
still denote it by U(t). Clearly, U(t) is linear. So the set I(X,Y ) is non-empty. Let
S be any element in I(X,Y ). We define U(t) = S if h(t) = 0. Now we only need to
show that for any x ∈ X,

(T x)(·) = h(·)U(·)(x) a.e.

For any x ∈ X, there is a sequence {bn} ⊆ B such that limn→∞ bn = x. Then

0 = lim
k→∞

‖bk − x‖X
= lim

k→∞
‖T (bk) − T (x)‖E(Y )

≥ lim
k→∞

max{‖T (x)(·) · 1Ω\supp (h)(·)‖E(Y ), ‖T (x)(·) · 1supp (h)(·)−h(·)U(·) bk‖E(Y )}

= max{‖T (x)(·) · 1Ω\supp (h)(·)‖E(Y ), ‖T (x)(·) · 1supp (h)(·) − h(·)U(·)x‖E(Y )} .

This implies T x(·) = h(·)U(·)(x).
We claim that for any a, a′ ∈ A, ‖T (a)(·)‖Y = ‖T (a′)(·)‖Y . By (i), there are a

unit vector x and two numbers α1, α2 with |α1| = 1 = |α2| such that

∥∥a + α1x
∥∥
X

= 2 =
∥∥a′ + α2x

∥∥
X
.

Since T is an isometry and E is strictly convex, by Lemma 3, we have

∥∥T (a)(·)
∥∥
Y

=
∥∥α1T (x)(·)

∥∥
Y

= ‖T (x)(·)‖Y = h(·) =
∥∥T (a′)(·)

∥∥
Y
.

We proved our claim. By (iii), for any non-zero b ∈ B, there are a′ ∈ A and a unit
vector x ∈ X with ‖x + a′‖ = 2 such that

b

‖b‖X
= αa′ + (1 − α)x .

By Lemma 3 again, we have

∥∥T (b)(·)
∥∥

Y

‖b‖X
= h(·). The proof is complete. �

Proof of Theorem 2. Let a be any vector in A, and let

h(·) =
∥∥T (a)(·)

∥∥
Y
.
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As the proof of Theorem 1, we only need to show for any non-zero vector b ∈ B,

∥∥T (b1)(·)
∥∥
Y

=
∥∥b1∥∥X

· h(·) .

For any other vector a′ ∈ A, there is a unit vector x such that

∥∥a + x
∥∥
X

=
∥∥a− x

∥∥
X

= 1 =
∥∥a′ + x

∥∥
X

=
∥∥a′ − x

∥∥
X
.

So
2 = ‖2a‖X = ‖(a + x) + (a− x)‖X

= 2‖x‖X = ‖(a + x) + (x− a)‖X
= ‖(a′ + x) − (a′ − x)‖X
= 2‖a′‖X = ‖(a′ + x) + (a′ − x)‖X .

Since T is an isometry and E is strictly monotone, by Lemma 4, we have

2‖T (a)(·)‖Y = ‖T (a + x)(·)‖Y + ‖T (a− x)(·)‖Y
= 2‖T (x)(·)‖Y
= ‖T (a′ + x)(·)‖Y + ‖T (a′ − x)(·)‖Y
= ‖T (a′)(·)‖Y .

For any b ∈ B, there are three unit vectors {e1, e2, e3} of X such that e1 ∈ A,
b ∈ span {e1, e2, e3} and for any αj , 1 ≤ j ≤ 3

∥∥∥∥∥
3∑

j=1

αjej

∥∥∥∥∥ = max
{
|αj | : 1 ≤ j ≤ 3

}
.

Without loss of generality, we may assume that there are β2, β3 such that |β2| ≤ 1,
|β3| ≤ 1 and

b

‖b‖X
= e1 + β2e2 + β3e3 .

The above proof shows that for any 1 ≤ j < k ≤ 3,

∥∥T (αjej + αkek)(·)
∥∥
Y

= max
{
|αj |, |αk|

}
· h(·) .

Hence if max {|α2|, |α3|} ≤ 1, then

∥∥T (e1 + α2e2 + α3e3)(·)
∥∥
Y

+
∥∥T (e1 − α2e2)(·)

∥∥
Y

=
∥∥T (2e1 + α3e3)(·)

∥∥
Y

= 2h(·) .
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Note: ‖T (e1 − α2e2)(·)‖Y = h(·). We have

∥∥T (e1 + α2e2 + α3e3)(·)
∥∥
Y

= h(·) .

So we proved that for any b ∈ B, ‖T (b)(·)‖Y = h(t) · ‖b‖X . The proof is com-
plete. �

Example 1: Let X = L1[0, 1] and

A =
{
αn1(

0, 1
n

) : n ≥ 2 and |α| = 1
}
.

Let B be a countable dense subset of the set{
f ∈ X : f is constant on

(
0,

1
n

)
for some n ∈ N

}

such that B satisfies (ii) and (iii) of Theorem 1. For any a ∈ A, ‖a + 21( 1
2 ,1)

‖ = 2.
So A satisfies (i) of Theorem 1. Let b be any element of B. Then there is n ≥ 2
such that b is constant on (0, 1

n ).

Case 1. 1( 1
n ,1)·b = 0. In this case, there is α such that b = α1(0, 1

n ). Let a = nα
|α|1(0, 1

n )

and x = 21( 1
2 ,1)

. Then

b =
|α|
n

(a + 0x) .

Case 2. 1( 1
n ,1) · b �= 0. There is α such that 1(0, 1

n ) · b = α · 1(0, 1
n ). Without loss of

generality, we assume that α ≥ 0. Let

x =
1( 1

n ,1) · b
‖1( 1

n ,1) · b‖X
and a = n1(0, 1

n ) .

Then ‖x + a‖ = 2 and
b = ‖b‖X ·

(
(1 − α1)a + α1x

)
where α1 = ‖1( 1

n ,1) · b‖X
/
‖b‖X .

Hence if E is a strictly convex Köthe function space and if T is an isometry
from X into the vector valued Köthe function space E(Y ), then T has the form (2).

Example 2: Let X be a Banach space. Suppose that there is a unit vector a such
that for any y ∈ X there is α �= 0 such that ‖a+ αy‖ = ‖a‖+ |α|‖y‖. Let Z be any
separable subspace of X which contains a. Then there is a countable dense subset
B of Z such that B satisfies (ii) and (iii) of Theorem 1. Let A = {αa : |α| = 1}.
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Since A is contained in a one dimensional subspace, A satisfies (i). The assumption
implies A and B satisfies (iv). So if E is a strictly convex Köthe function space
and Y is any Banach space, then every isometry from Z into E(Y ) has form (2).
Examples of Banach spaces with this property.

(1) Let X = C(K) and let a = 1K . Then for any y ∈ X there is α �= 0 such
that ‖a + αy‖ = ‖a‖ + ‖αy‖.

(2) A Banach space Y is said to have the (DE)-property if for every weakly
compact operator T : X → X, ‖T + I‖ = ‖T‖ + 1. It is known that
L1([0, 1]) and L∞([0, 1]) have the (DE)-property (see [1] and its references).
For any Banach space Y with (DE)-property, let X be the space generated
by the weakly compact operators and the identity. Then for any T ∈ X,
T = S + αI for some compact operator and α. If α = 0, then ‖T + I‖ =
‖T‖ + 1. If α �= 0, then ‖I + α

|α|T‖ = ‖S‖ + (|α| + 1) = ‖T‖ + 1 .

Example 3: Let (�1, |‖ · ‖|) be the real �1 with the equivalent norm

∣∣‖x‖∣∣ = max
{
‖x+‖1, ‖x−‖1

}
.

Let {ek : k ∈ N} be the natural basis. Let

A =
{
± ek : k ∈ N

}
B =

{
n∑

k=1

akek : n ∈ N and ak ∈ Q for every ak

}
.

Clear, B satisfies (ii) and (iii) of Theorem 3. For any k, let i, j be two distinct
natural numbers such that i �= k �= j. Then

∣∣‖(ei − ej) ± ek
∥∥| = 2 = 2

∣∣‖ei − ej
∥∥| .

So A satisfies (i) of Theorem 1.
Let b =

∑n
k=1 akek �= 0 be any element of B. Then

2 = max
{∣∣∣∥∥ b

|‖b‖| + en+1

∥∥∣∣∣ , ∣∣∣∥∥ b

|‖b‖| − en+1

∥∥∣∣∣} .

Without loss of generality, we assume that |‖ b
|‖b‖| + en+1‖|. Then

b = |‖b‖| ·
(

b

|‖b‖| + 0 · en+1

)
.
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Hence if E is strictly convex, then every isometry from (�1, |‖ · ‖|) into E(Y ) has
form (2).

Example 4: Let {e1, e2, · · ·} be the natural basis of �p, 1 ≤ p < ∞ and

En = span {e1, e2, · · · , en}
Fn = span {en+1, · · ·} .

Let X be the set of all compact operator from �p, 1 ≤ p < ∞, into itself and let Sn

denote the operator

Sn

( ∞∑
k=1

αkek

)
= αnen .

Let
A =

{
Sn : n ∈ N

}
.

It is known that there is a countable dense subset B of X such that B satisfies (vi)
of Theorem 2 and for any S ∈ B there is n ∈ N such that S(En) ⊆ En and S|Fn

= 0.
Note: if S(En) ⊆ En, S|Fn

= 0, and ‖S‖ = 1, then

∥∥S ± Sn+1 ± Sn+2

∥∥ = 1 .

Hence if E is strictly monotone, then every isometry from X into E(Y ) has the
form (2).
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