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ABSTRACT
Let X be a separable L or a separable C'( K')-space, and let Y be any Banach
space. 1(X,Y) denotes the set of all isometries from X to Y. showed that
for any finite measure space (2, 1) and any 1 < p < 00, every isometry

T:X — L,(€,Y) has the form
Tx(t)=h(t)U(t)x,

where h € L,, with |||, = 1 and U is a strongly measurable function from
Qinto I(X,Y). In this article, we extend this result to the Kothe-Bochner
function spaces E(Y') when E is strictly convex. We also show that every
isometry from ¢ into E'(Y") has the above form if n > 3 and E is a strictly
monotone Kothe function space.

Let X be a Banach space and let £ be a Kothe function space on a finite measure
space (€2, u). The Kéthe-Bochner function space E(X) is the set of all measurable
functions f : Q — X such that ||f(-)||x € E. The norm of f is defined by

1A= 1 Ollx ] -

For any two Banach spaces X,Y, let I(X,Y) denote the set of all isometries from
X into Y. A mapping U : Q — I(X,Y) is called strongly measurable if for each x,
the function U(-)z is measurable. It is easy to see that if U is a strongly measurable
mapping from Q into I(X,Y) and if h € E with |||z = 1, then the mapping
T:X — E(Y) defined by

(1) Tx(t) = h(t) - U(t)z
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is an isometry. In [2], Koldobsky showed that if X is either a separable L;-space or
a separable C'(K) space, then every isometry T' from X into L,(Y), 1 < p < oo, has
the form (1). Recall a Banach space is said to be strictly convez if ||z]| =1 = ||y|| =
1llz + y|| implies = y. A Kothe function space is said to be strictly monotone if
x>y >0 and x| = ||y imply x = y. In this article, we prove the following two
Theorems.

Theorem 1

Let X be a real (respectively, complex) Banach space such that there are two
subsets A and B of X which satisfy the following conditions.

(i) A is a subset of the unit sphere of X and for any a;,as € A there are a unit
vectors x and two scalars oy, ag with |aq| =1 = |as| such that
Hal + Oéle =2= HCLQ + ang .

(ii) B is countable dense subset of X.
(iii) For any a € Q (respectively, a € Q +iQ) and any a1,a2 € B, a1 + aas € B.
(iv) For any b € B there are an a € A, a unit vector x, and a real number «,
0 < a <1 such that
|la+ x| =2
b=bllx - (ea+ (1-a)z).

If E is a strictly convex Kéthe function space, then every isometry T : X — E(Y')
has the form

(2) Ta(t) = h(t) - (U1))(2)

where h € E with |h||g = 1 and U is a strongly measurable function from ) into
I(X,Y).

Theorem 2

Let X be a real (respectively, complex) Banach space. Suppose there are subsets
A and B of X which satisfy the following conditions.

(v) A is a subset of the unit sphere of X and for any ai,as € A there is x in the
unit sphere of X such that

Jax-+ 2] = flx — 2] = 1 = Jaz + 2] = [} — .

(vi) B satisfies the conditions (ii) and (iii) of Theorem 1.

(vii) For b € B, there are e; € A and two unit vectors es, es such that {ey,es,e3} is
an (3 basis and b € span {e1, ez, e3}.

If E is a strictly monotone Ko6the function space, then every isometry T' from X

into E(Y') has form (2).
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First we need the following two lemmas. We only give a proof of the second
lemma and we leave the proof of the first lemma to the readers.

Lemma 3

Let Y be a Banach space and E be a strictly convex Kothe function space. If
[, g are two unit vectors in E(Y') such that | f + g||gy) = 2, then for any 0 < a < 1,

IFOlly = allfFOlly + @ =a)llgC)lly -
Particularly, we have || f(*)|ly = |lg()|ly-

Lemma 4

Let Y be a Banach space and E be a strictly monotone Kéthe function space.
If f, g are two nonzero elements in E(X) and if || f + gllery) = | flleev) + l9llEev),
then for any 0 < a < 1,

l(ef + (1 =a)g)O)lly = llef Oy + 11 = a)g()ly -

Proof. Exchange f and g if necessary. We may assume that o < % So

laf + (1 —-a)glley) = (1 —=a)|lf +gllzy) — (1 =20)|fller)
=1 =a)llgllery) +allflleyy -

Note: 0 < a <1, [[(af + (1 = a)g)()ly < (L= a)llgC)lly + allf()]y. But Eis
strictly monotone. We have

[(af + (1 =a)g)O)]ly = lafOlly + |1 = )gO)]ly)

for0<a<1 0O

Proof of Theorem 1. Let a be any vector in A and let h(-) = ||[(T'(a))(-)||y. We
= %. Note: T is an isometry.
Suppose that claim were proved. By (ii), B is a countable set and there exists a
measurable set D C € such that u(Q2\ D) = 0 and for every ¢ € D and every

b1,be € B and « € Q (respectively, a € Q +iQ),

claim that for any non-zero vector b € B, h(-)

1T @]y = h(#) - [[ba]|
(T(by + ab2)) (t) = T(b1)(t) + T(aba)(t) -
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Let ¢ be any element in D such that h(t) # 0. Define a mapping U(t) : B — Y by

U(t)(b) = T(b)(t)/R(t)-

Since B is dense in X, U(t) can be uniquely extended to an isometry on X and we
still denote it by U(t). Clearly, U(t) is linear. So the set I(X,Y") is non-empty. Let
S be any element in I(X,Y). We define U(t) = S if h(t) = 0. Now we only need to
show that for any x € X,

(Tz)(-) =h()U()(z)  ae.
For any x € X, there is a sequence {b,} C B such that lim,_, b, = x. Then
0= lim o — x]1x
= lim T (b) = T(2) ey
2 lim max{[|T'(2)() - Lovsupp () ()l B0y IT(2) () * Lsupp ) () =) UC) bkl v}
= max{||[T(z)(-) - Lavsupp (w) (M B, IT() () - Lsupp ) (1) = () U ) 2l mv) } -

This implies T z(-) = h(-) U(-)(x).
We claim that for any a,a’ € A, ||T(a)(")|ly = |[T(a')(+)||y. By (i), there are a
unit vector z and two numbers oy, as with |a;| = 1 = |as| such that

la+anz]|y =2 =la" +azz] -
Since T is an isometry and FE is strictly convex, by Lemma 3, we have
[T(@O)ly = [eaT@) Oy, = IT@)Olly = h() = [[T(@)()], -

We proved our claim. By (iii), for any non-zero b € B, there are a’ € A and a unit
vector x € X with ||z + a’|| = 2 such that

b

—— =ad + (1 —a)x.
16]lx
By Lemma 3 again, we have HTT?%”” = h(-). The proof is complete. [J

Proof of Theorem 2. Let a be any vector in A, and let

h() = [T(a)(), -
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As the proof of Theorem 1, we only need to show for any non-zero vector b € B,

17Oy = [orfl - 2C)-
For any other vector a’ € A, there is a unit vector = such that
la+aly =lla—a]y =1=]la'+[ x = [l’ =[x
So

2= [2a]x = ll(a+2) + (a —2)|x
= 2[lzllx = [[(a +z) + (z — a)||x
= [[(@"+ ) = (a' —2)|x
=2lla’|x =[(a" + ) + (' —2)||x .

Since T is an isometry and F is strictly monotone, by Lemma 4, we have

2|T(@)O)lly = IT(a+2))lly + [T(a = z)()lly
= 2| T(x)()lly
= T(a" +2)()lly + I T(a" = 2)()lly
= 1@y -

For any b € B, there are three unit vectors {e1, ea,e3} of X such that e; € A,
b € span{ey, ez, e3} and for any o, 1 <j <3

3
§ :ajej

j=1

=max {|oy|:1<j <3},

Without loss of generality, we may assume that there are (2, f3 such that |G2| <1,
|Bs| <1 and

b
T = e1 + Paes + fses3.
16]1x
The above proof shows that for any 1 < j < k < 3,
|T(aje; + arer) ()|, = max {|a;|, lax|} - A(:).

Hence if max {|as/|, |as|} < 1, then

HT(el + (6D} + Oég@;g)(')HY + HT(61 — Oéz@z)(')HY = HT(2€1 + Oég@g)(')HY = 2h() .



684 LiN
Note: ||T'(ex — age2)(+)||Y = h(-). We have
|T(e1 + czez + ageg)(~)HY =h(").
So we proved that for any b € B, [|[T(b)(-)|ly = h(t) - ||b]|x. The proof is com-

plete. OJ
EXAMPLE 1: Let X = [41]0,1] and

n

A:{anl(ol) :n > 2 and |of :1}.
Let B be a countable dense subset of the set

1
{f € X : f is constant on (O, —) for some n € N}

n

such that B satisfies (i) and (iii) of Theorem 1. For any a € A, [la + 211 1| = 2.
So A satisfies (i) of Theorem 1. Let b be any element of B. Then there is n > 2

such that b is constant on (0, 1).

Case 1. 1(1 ;)b = 0. In this case, there is asuch that b = aly 1). Let a = %O“l(o’i)
and z = 21(1 ;). Then
|
b=— 0x).
o+ o)
Case 2. 1(1)-b# 0. There is a such that 15 1) b= a1y 1. Without loss of
generality, we assume that o > 0. Let

1(&71) b
r=-———n andaznl(oi)-
1z 1y - bllx "
Then ||z + al| = 2 and
b=[b]lx - (1 — ar)a+ az)
where a; = ||1(%71) 'b||X/”b||X'

Hence if F is a strictly convex Kothe function space and if T' is an isometry
from X into the vector valued Kéthe function space E(Y'), then T has the form (2).

ExaMPLE 2: Let X be a Banach space. Suppose that there is a unit vector a such
that for any y € X there is « # 0 such that ||a + ay|| = ||a|| + |a]|y||. Let Z be any
separable subspace of X which contains a. Then there is a countable dense subset
B of Z such that B satisfies (ii) and (iii) of Theorem 1. Let A = {aa : |a| = 1}.
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Since A is contained in a one dimensional subspace, A satisfies (i). The assumption
implies A and B satisfies (iv). So if E is a strictly convex Kothe function space
and Y is any Banach space, then every isometry from Z into E(Y) has form (2).
Examples of Banach spaces with this property.
(1) Let X = C(K) and let a = 1x. Then for any y € X there is a # 0 such
that [la + ay]l = [lall + llay]l
(2) A Banach space Y is said to have the (DE)-property if for every weakly
compact operator T' : X — X, | T+ I| = ||T|| + 1. It is known that
L1([0,1]) and L+ ([0, 1]) have the (DE)-property (see [1] and its references).
For any Banach space Y with (DE)-property, let X be the space generated
by the weakly compact operators and the identity. Then for any 7" € X,
T = S + al for some compact operator and a. If & = 0, then |7+ I|| =
IT| + 1. If a # 0, then ||I + |%TH =S|+ (Ja| +1) = ||T|| + 1.

EXAMPLE 3: Let (44, ]| - |||) be the real ¢; with the equivalent norm
[l = max {Jl* I, Il }
Let {ex : k € N} be the natural basis. Let
A={+ep:keN}

B = {Zakek:nEN and a € Q for every ak}.
k=1

Clear, B satisfies (ii) and (iii) of Theorem 3. For any k, let 7,5 be two distinct
natural numbers such that ¢ # k # j. Then

|l(es — €;) £ ex|| =2 =2|lle; — || -

So A satisfies (i) of Theorem 1.
Let b= ,_, axer # 0 be any element of B. Then

b
i = ensall }-

Without loss of generality, we assume that |HW2”| + ep+1|[|- Then

b
b=1]o]|] - <—’Hb|H —I—O-en+1> .

b
2—max{‘HW—i—en+1|



686 LIN

Hence if E is strictly convex, then every isometry from (¢, || - |||) into E(Y") has
form (2).

EXAMPLE 4: Let {e1, ez, -} be the natural basis of £,, 1 <p < oo and

E, = Span{617€27 T "en}

F, =span{eny1,---}.

Let X be the set of all compact operator from ¢, 1 < p < oo, into itself and let S,

0
Sy, Eakek = apén, .
k=1

denote the operator

Let
A:{Sn:nEN}.

It is known that there is a countable dense subset B of X such that B satisfies (vi)
of Theorem 2 and for any S € B there is n € N such that S(E,,) C E,, and S|g, = 0.
Note: if S(E,) C E,, S|p, =0, and ||S|| = 1, then

|5 + Sns1 £ Snpaf| =1.

Hence if E is strictly monotone, then every isometry from X into E(Y) has the
form (2).
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