Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 48, 4-6 (1997), 679-686
(c) 1997 Universitat de Barcelona

Isometric stability property of Banach spaces

Pei-Kee Lin
Department of Mathematics, University of Memphis, Memphis, TN 38152
E-mail address: linpk@mathsci.msci.memst.edu

Abstract

Let X be a separable L_{1} or a separable $C(K)$-space, and let Y be any Banach space. $I(X, Y)$ denotes the set of all isometries from X to Y. showed that for any finite measure space (Ω, μ) and any $1<p<\infty$, every isometry $T: X \rightarrow L_{p}(\Omega, Y)$ has the form $$
T x(t)=h(t) U(t) x
$$ where $h \in L_{p}$ with $\|h\|_{p}=1$ and U is a strongly measurable function from Ω into $I(X, Y)$. In this article, we extend this result to the Köthe-Bochner function spaces $E(Y)$ when E is strictly convex. We also show that every isometry from ℓ_{∞}^{n} into $E(Y)$ has the above form if $n \geq 3$ and E is a strictly monotone Köthe function space.

Let X be a Banach space and let E be a Köthe function space on a finite measure space (Ω, μ). The Köthe-Bochner function space $E(X)$ is the set of all measurable functions $f: \Omega \rightarrow X$ such that $\|f(\cdot)\|_{X} \in E$. The norm of f is defined by

$$
\|f\|=\| \| f(\cdot)\left\|_{X}\right\|_{E} .
$$

For any two Banach spaces X, Y, let $I(X, Y)$ denote the set of all isometries from X into Y. A mapping $U: \Omega \rightarrow I(X, Y)$ is called strongly measurable if for each x, the function $U(\cdot) x$ is measurable. It is easy to see that if U is a strongly measurable mapping from Ω into $I(X, Y)$ and if $h \in E$ with $\|h\|_{E}=1$, then the mapping $T: X \rightarrow E(Y)$ defined by

$$
\begin{equation*}
T x(t)=h(t) \cdot U(t) x \tag{1}
\end{equation*}
$$

is an isometry. In [2], Koldobsky showed that if X is either a separable L_{1}-space or a separable $C(K)$ space, then every isometry T from X into $L_{p}(Y), 1<p<\infty$, has the form (1). Recall a Banach space is said to be strictly convex if $\|x\|=1=\|y\|=$ $\frac{1}{2}\|x+y\|$ implies $x=y$. A Köthe function space is said to be strictly monotone if $x \geq y \geq 0$ and $\|x\|=\|y\|$ imply $x=y$. In this article, we prove the following two Theorems.

Theorem 1

Let X be a real (respectively, complex) Banach space such that there are two subsets A and B of X which satisfy the following conditions.
(i) A is a subset of the unit sphere of X and for any $a_{1}, a_{2} \in A$ there are a unit vectors x and two scalars α_{1}, α_{2} with $\left|\alpha_{1}\right|=1=\left|\alpha_{2}\right|$ such that

$$
\left\|a_{1}+\alpha_{1} x\right\|=2=\left\|a_{2}+\alpha_{2} x\right\|
$$

(ii) B is countable dense subset of X.
(iii) For any $\alpha \in \mathbb{Q}$ (respectively, $\alpha \in \mathbb{Q}+i \mathbb{Q})$ and any $a_{1}, a_{2} \in B, a_{1}+\alpha a_{2} \in B$.
(iv) For any $b \in B$ there are an $a \in A$, a unit vector x, and a real number α, $0 \leq \alpha \leq 1$ such that

$$
\begin{aligned}
\|a+x\| & =2 \\
b & =\|b\|_{X} \cdot(\alpha a+(1-\alpha) x) .
\end{aligned}
$$

If E is a strictly convex Köthe function space, then every isometry $T: X \rightarrow E(Y)$ has the form

$$
\begin{equation*}
T x(t)=h(t) \cdot(U(t))(x) \tag{2}
\end{equation*}
$$

where $h \in E$ with $\|h\|_{E}=1$ and U is a strongly measurable function from Ω into $I(X, Y)$.

Theorem 2

Let X be a real (respectively, complex) Banach space. Suppose there are subsets A and B of X which satisfy the following conditions.
(v) A is a subset of the unit sphere of X and for any $a_{1}, a_{2} \in A$ there is x in the unit sphere of X such that

$$
\left\|a_{1}+x\right\|=\left\|a_{1}-x\right\|=1=\left\|a_{2}+x\right\|=\left\|a_{2}-x\right\|
$$

(vi) B satisfies the conditions (ii) and (iii) of Theorem 1.
(vii) For $b \in B$, there are $e_{1} \in A$ and two unit vectors e_{2}, e_{3} such that $\left\{e_{1}, e_{2}, e_{3}\right\}$ is an ℓ_{∞}^{3} basis and $b \in \operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$.
If E is a strictly monotone Köthe function space, then every isometry T from X into $E(Y)$ has form (2).

First we need the following two lemmas. We only give a proof of the second lemma and we leave the proof of the first lemma to the readers.

Lemma 3

Let Y be a Banach space and E be a strictly convex Köthe function space. If f, g are two unit vectors in $E(Y)$ such that $\|f+g\|_{E(Y)}=2$, then for any $0 \leq \alpha \leq 1$,

$$
\|f(\cdot)\|_{Y}=\alpha\|f(\cdot)\|_{Y}+(1-\alpha)\|g(\cdot)\|_{Y} .
$$

Particularly, we have $\|f(\cdot)\|_{Y}=\|g(\cdot)\|_{Y}$.

Lemma 4

Let Y be a Banach space and E be a strictly monotone Köthe function space. If f, g are two nonzero elements in $E(X)$ and if $\|f+g\|_{E(Y)}=\|f\|_{E(Y)}+\|g\|_{E(Y)}$, then for any $0 \leq \alpha \leq 1$,

$$
\|(\alpha f+(1-\alpha) g)(\cdot)\|_{Y}=\|\alpha f(\cdot)\|_{Y}+\|(1-\alpha) g(\cdot)\|_{Y} .
$$

Proof. Exchange f and g if necessary. We may assume that $\alpha \leq \frac{1}{2}$. So

$$
\begin{aligned}
\|\alpha f+(1-\alpha) g\|_{E(Y)} & \geq(1-\alpha)\|f+g\|_{E(Y)}-(1-2 \alpha)\|f\|_{E(Y)} \\
& =(1-\alpha)\|g\|_{E(Y)}+\alpha\|f\|_{E(Y)} .
\end{aligned}
$$

Note: $0 \leq \alpha \leq 1,\|(\alpha f+(1-\alpha) g)(\cdot)\|_{Y} \leq(1-\alpha)\|g(\cdot)\|_{Y}+\alpha\|f(\cdot)\|_{Y}$. But E is strictly monotone. We have

$$
\left.\|(\alpha f+(1-\alpha) g)(\cdot)\|_{Y}=\|\alpha f(\cdot)\|_{Y}+\|(1-\alpha) g(\cdot)\|_{Y}\right)
$$

for $0 \leq \alpha \leq 1$.
Proof of Theorem 1. Let a be any vector in A and let $h(\cdot)=\|(T(a))(\cdot)\|_{Y}$. We claim that for any non-zero vector $b \in B, h(\cdot)=\frac{\|(T(b))(\cdot)\|_{Y}}{\|b\|_{X}}$. Note: T is an isometry. Suppose that claim were proved. By (ii), B is a countable set and there exists a measurable set $D \subseteq \Omega$ such that $\mu(\Omega \backslash D)=0$ and for every $t \in D$ and every $b_{1}, b_{2} \in B$ and $\alpha \in \mathbb{Q}$ (respectively, $\alpha \in \mathbb{Q}+i \mathbb{Q}$),

$$
\begin{aligned}
\left\|T\left(b_{1}\right)(t)\right\|_{Y} & =h(t) \cdot\left\|b_{1}\right\|_{X} \\
\left(T\left(b_{1}+\alpha b_{2}\right)\right)(t) & =T\left(b_{1}\right)(t)+T\left(\alpha b_{2}\right)(t) .
\end{aligned}
$$

Let t be any element in D such that $h(t) \neq 0$. Define a mapping $U(t): B \rightarrow Y$ by

$$
U(t)(b)=T(b)(t) / h(t)
$$

Since B is dense in $X, U(t)$ can be uniquely extended to an isometry on X and we still denote it by $U(t)$. Clearly, $U(t)$ is linear. So the set $I(X, Y)$ is non-empty. Let S be any element in $I(X, Y)$. We define $U(t)=S$ if $h(t)=0$. Now we only need to show that for any $x \in X$,

$$
(T x)(\cdot)=h(\cdot) U(\cdot)(x) \quad \text { a.e. }
$$

For any $x \in X$, there is a sequence $\left\{b_{n}\right\} \subseteq B$ such that $\lim _{n \rightarrow \infty} b_{n}=x$. Then

$$
\begin{aligned}
0 & =\lim _{k \rightarrow \infty}\left\|b_{k}-x\right\|_{X} \\
& =\lim _{k \rightarrow \infty}\left\|T\left(b_{k}\right)-T(x)\right\|_{E(Y)} \\
& \geq \lim _{k \rightarrow \infty} \max \left\{\left\|T(x)(\cdot) \cdot 1_{\Omega \backslash \operatorname{supp}(\mathrm{h})}(\cdot)\right\|_{E(Y)},\left\|T(x)(\cdot) \cdot 1_{\operatorname{supp}(\mathrm{h})}(\cdot)-h(\cdot) U(\cdot) b_{k}\right\|_{E(Y)}\right\} \\
& =\max \left\{\left\|T(x)(\cdot) \cdot 1_{\Omega \backslash \operatorname{supp}(h)}(\cdot)\right\|_{E(Y)},\left\|T(x)(\cdot) \cdot 1_{\operatorname{supp}(\mathrm{h})}(\cdot)-h(\cdot) U(\cdot) x\right\|_{E(Y)}\right\}
\end{aligned}
$$

This implies $T x(\cdot)=h(\cdot) U(\cdot)(x)$.
We claim that for any $a, a^{\prime} \in A,\|T(a)(\cdot)\|_{Y}=\left\|T\left(a^{\prime}\right)(\cdot)\right\|_{Y}$. By (i), there are a unit vector x and two numbers α_{1}, α_{2} with $\left|\alpha_{1}\right|=1=\left|\alpha_{2}\right|$ such that

$$
\left\|a+\alpha_{1} x\right\|_{X}=2=\left\|a^{\prime}+\alpha_{2} x\right\|_{X}
$$

Since T is an isometry and E is strictly convex, by Lemma 3 , we have

$$
\|T(a)(\cdot)\|_{Y}=\left\|\alpha_{1} T(x)(\cdot)\right\|_{Y}=\|T(x)(\cdot)\|_{Y}=h(\cdot)=\left\|T\left(a^{\prime}\right)(\cdot)\right\|_{Y}
$$

We proved our claim. By (iii), for any non-zero $b \in B$, there are $a^{\prime} \in A$ and a unit vector $x \in X$ with $\left\|x+a^{\prime}\right\|=2$ such that

$$
\frac{b}{\|b\|_{X}}=\alpha a^{\prime}+(1-\alpha) x
$$

By Lemma 3 again, we have $\frac{\|T(b)(\cdot)\|_{Y}}{\|b\|_{X}}=h(\cdot)$. The proof is complete.
Proof of Theorem 2. Let a be any vector in A, and let

$$
h(\cdot)=\|T(a)(\cdot)\|_{Y}
$$

As the proof of Theorem 1, we only need to show for any non-zero vector $b \in B$,

$$
\left\|T\left(b_{1}\right)(\cdot)\right\|_{Y}=\left\|b_{1}\right\|_{X} \cdot h(\cdot)
$$

For any other vector $a^{\prime} \in A$, there is a unit vector x such that

$$
\|a+x\|_{X}=\|a-x\|_{X}=1=\left\|a^{\prime}+x\right\|_{X}=\left\|a^{\prime}-x\right\|_{X}
$$

So

$$
\begin{aligned}
2 & =\|2 a\|_{X}=\|(a+x)+(a-x)\|_{X} \\
& =2\|x\|_{X}=\|(a+x)+(x-a)\|_{X} \\
& =\left\|\left(a^{\prime}+x\right)-\left(a^{\prime}-x\right)\right\|_{X} \\
& =2\left\|a^{\prime}\right\|_{X}=\left\|\left(a^{\prime}+x\right)+\left(a^{\prime}-x\right)\right\|_{X} .
\end{aligned}
$$

Since T is an isometry and E is strictly monotone, by Lemma 4, we have

$$
\begin{aligned}
2\|T(a)(\cdot)\|_{Y} & =\|T(a+x)(\cdot)\|_{Y}+\|T(a-x)(\cdot)\|_{Y} \\
& =2\|T(x)(\cdot)\|_{Y} \\
& =\left\|T\left(a^{\prime}+x\right)(\cdot)\right\|_{Y}+\left\|T\left(a^{\prime}-x\right)(\cdot)\right\|_{Y} \\
& =\left\|T\left(a^{\prime}\right)(\cdot)\right\|_{Y}
\end{aligned}
$$

For any $b \in B$, there are three unit vectors $\left\{e_{1}, e_{2}, e_{3}\right\}$ of X such that $e_{1} \in A$, $b \in \operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$ and for any $\alpha_{j}, 1 \leq j \leq 3$

$$
\left\|\sum_{j=1}^{3} \alpha_{j} e_{j}\right\|=\max \left\{\left|\alpha_{j}\right|: 1 \leq j \leq 3\right\}
$$

Without loss of generality, we may assume that there are β_{2}, β_{3} such that $\left|\beta_{2}\right| \leq 1$, $\left|\beta_{3}\right| \leq 1$ and

$$
\frac{b}{\|b\|_{X}}=e_{1}+\beta_{2} e_{2}+\beta_{3} e_{3}
$$

The above proof shows that for any $1 \leq j<k \leq 3$,

$$
\left\|T\left(\alpha_{j} e_{j}+\alpha_{k} e_{k}\right)(\cdot)\right\|_{Y}=\max \left\{\left|\alpha_{j}\right|,\left|\alpha_{k}\right|\right\} \cdot h(\cdot)
$$

Hence if $\max \left\{\left|\alpha_{2}\right|,\left|\alpha_{3}\right|\right\} \leq 1$, then

$$
\left\|T\left(e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}\right)(\cdot)\right\|_{Y}+\left\|T\left(e_{1}-\alpha_{2} e_{2}\right)(\cdot)\right\|_{Y}=\left\|T\left(2 e_{1}+\alpha_{3} e_{3}\right)(\cdot)\right\|_{Y}=2 h(\cdot)
$$

Note: $\left\|T\left(e_{1}-\alpha_{2} e_{2}\right)(\cdot)\right\| Y=h(\cdot)$. We have

$$
\left\|T\left(e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}\right)(\cdot)\right\|_{Y}=h(\cdot)
$$

So we proved that for any $b \in B,\|T(b)(\cdot)\|_{Y}=h(t) \cdot\|b\|_{X}$. The proof is complete.

Example 1: Let $X=L_{1}[0,1]$ and

$$
A=\left\{\alpha n 1_{\left(0, \frac{1}{n}\right)}: n \geq 2 \text { and }|\alpha|=1\right\}
$$

Let B be a countable dense subset of the set

$$
\left\{f \in X: f \text { is constant on }\left(0, \frac{1}{n}\right) \text { for some } n \in \mathbb{N}\right\}
$$

such that B satisfies (ii) and (iii) of Theorem 1. For any $a \in A,\left\|a+21_{\left(\frac{1}{2}, 1\right)}\right\|=2$. So A satisfies (i) of Theorem 1. Let b be any element of B. Then there is $n \geq 2$ such that b is constant on $\left(0, \frac{1}{n}\right)$.

Case 1. $1_{\left(\frac{1}{n}, 1\right)} \cdot b=0$. In this case, there is α such that $b=\alpha 1_{\left(0, \frac{1}{n}\right)}$. Let $a=\frac{n \alpha}{|\alpha|} 1_{\left(0, \frac{1}{n}\right)}$ and $x=21_{\left(\frac{1}{2}, 1\right)}$. Then

$$
b=\frac{|\alpha|}{n}(a+0 x) .
$$

Case 2. $1_{\left(\frac{1}{n}, 1\right)} \cdot b \neq 0$. There is α such that $1_{\left(0, \frac{1}{n}\right)} \cdot b=\alpha \cdot 1_{\left(0, \frac{1}{n}\right)}$. Without loss of generality, we assume that $\alpha \geq 0$. Let

$$
x=\frac{1_{\left(\frac{1}{n}, 1\right)} \cdot b}{\left\|1_{\left(\frac{1}{n}, 1\right)} \cdot b\right\|_{X}} \text { and } a=n 1_{\left(0, \frac{1}{n}\right)} .
$$

Then $\|x+a\|=2$ and

$$
b=\|b\|_{X} \cdot\left(\left(1-\alpha_{1}\right) a+\alpha_{1} x\right)
$$

where $\alpha_{1}=\left\|1_{\left(\frac{1}{n}, 1\right)} \cdot b\right\|_{X} /\|b\|_{X}$.
Hence if E is a strictly convex Köthe function space and if T is an isometry from X into the vector valued Köthe function space $E(Y)$, then T has the form (2).

Example 2: Let X be a Banach space. Suppose that there is a unit vector a such that for any $y \in X$ there is $\alpha \neq 0$ such that $\|a+\alpha y\|=\|a\|+|\alpha|\|y\|$. Let Z be any separable subspace of X which contains a. Then there is a countable dense subset B of Z such that B satisfies (ii) and (iii) of Theorem 1. Let $A=\{\alpha a:|\alpha|=1\}$.

Since A is contained in a one dimensional subspace, A satisfies (i). The assumption implies A and B satisfies (iv). So if E is a strictly convex Köthe function space and Y is any Banach space, then every isometry from Z into $E(Y)$ has form (2). Examples of Banach spaces with this property.
(1) Let $X=C(K)$ and let $a=1_{K}$. Then for any $y \in X$ there is $\alpha \neq 0$ such that $\|a+\alpha y\|=\|a\|+\|\alpha y\|$.
(2) A Banach space Y is said to have the (DE)-property if for every weakly compact operator $T: X \rightarrow X,\|T+I\|=\|T\|+1$. It is known that $L_{1}([0,1])$ and $L_{\infty}([0,1])$ have the (DE)-property (see [1] and its references). For any Banach space Y with (DE)-property, let X be the space generated by the weakly compact operators and the identity. Then for any $T \in X$, $T=S+\alpha I$ for some compact operator and α. If $\alpha=0$, then $\|T+I\|=$ $\|T\|+1$. If $\alpha \neq 0$, then $\left\|I+\frac{\bar{\alpha}}{|\alpha|} T\right\|=\|S\|+(|\alpha|+1)=\|T\|+1$.
Example 3: Let $\left(\ell_{1}, \mid\|\cdot\| \|\right)$ be the real ℓ_{1} with the equivalent norm

$$
|\|x\||=\max \left\{\left\|x^{+}\right\|_{1},\left\|x^{-}\right\|_{1}\right\} .
$$

Let $\left\{e_{k}: k \in \mathbb{N}\right\}$ be the natural basis. Let

$$
\begin{aligned}
A & =\left\{ \pm e_{k}: k \in \mathbb{N}\right\} \\
B & =\left\{\sum_{k=1}^{n} a_{k} e_{k}: n \in \mathbb{N} \text { and } a_{k} \in \mathbb{Q} \text { for every } a_{k}\right\} .
\end{aligned}
$$

Clear, B satisfies (ii) and (iii) of Theorem 3. For any k, let i, j be two distinct natural numbers such that $i \neq k \neq j$. Then

$$
\left|\| (e _ { i } - e _ { j }) \pm e _ { k } \| \left\|=2=2\left|\left\|e_{i}-e_{j}\right\|\right|\right.\right.
$$

So A satisfies (i) of Theorem 1.
Let $b=\sum_{k=1}^{n} a_{k} e_{k} \neq 0$ be any element of B. Then

$$
2=\max \left\{\left|\left\|\frac{b}{|\|b\||}+e_{n+1}\right\|\right|,\left|\left\|\frac{b}{|\|b\||}-e_{n+1}\right\|\right|\right\} .
$$

Without loss of generality, we assume that $\left\lvert\,\left\|\frac{b}{\| \| b\| \|}+e_{n+1}\right\|\right. \|$. Then

$$
b=\mid\|b\| \| \cdot\left(\frac{b}{\||\|b\||}+0 \cdot e_{n+1}\right) .
$$

Hence if E is strictly convex, then every isometry from $\left(\ell_{1},|\|\cdot\||\right)$ into $E(Y)$ has form (2).

Example 4: Let $\left\{e_{1}, e_{2}, \cdots\right\}$ be the natural basis of $\ell_{p}, 1 \leq p<\infty$ and

$$
\begin{aligned}
E_{n} & =\operatorname{span}\left\{e_{1}, e_{2}, \cdots, e_{n}\right\} \\
F_{n} & =\operatorname{span}\left\{e_{n+1}, \cdots\right\}
\end{aligned}
$$

Let X be the set of all compact operator from $\ell_{p}, 1 \leq p<\infty$, into itself and let S_{n} denote the operator

$$
S_{n}\left(\sum_{k=1}^{\infty} \alpha_{k} e_{k}\right)=\alpha_{n} e_{n}
$$

Let

$$
A=\left\{S_{n}: n \in \mathbb{N}\right\}
$$

It is known that there is a countable dense subset B of X such that B satisfies (vi) of Theorem 2 and for any $S \in B$ there is $n \in \mathbb{N}$ such that $S\left(E_{n}\right) \subseteq E_{n}$ and $\left.S\right|_{F_{n}}=0$. Note: if $S\left(E_{n}\right) \subseteq E_{n},\left.S\right|_{F_{n}}=0$, and $\|S\|=1$, then

$$
\left\|S \pm S_{n+1} \pm S_{n+2}\right\|=1
$$

Hence if E is strictly monotone, then every isometry from X into $E(Y)$ has the form (2).

References

1. Y. Abramovich, New classes of spaces on which compact operators satisfy the Daugavet equation, J. Operator Theory 25 (1991), 331-345.
2. A. Koldobsky, Isometric stability property of certain Banach spaces, Canad. Math. Bull. $\mathbf{3 8}$ (1995), 93-97.
3. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Function Spaces, Springer Verlag, 1979.
