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ABSTRACT

In this note we present an affirmative answer to the problem posed by M. Baronti
and C. Franchetti (oral communication) concerning a characterization of L,-
spaces among Orlicz sequence spaces. In fact, we show a more general charac-
terization of Orlicz spaces isometric to L,-spaces.

0. Introduction

Let (Q,%, 1) be a measure space. Let f : Rt — RT be an Orlicz function, i.e. f
is continuous and nondecreasing in R, f(0) = 0 and lim;_,;  f(t) = +00. Denote
by M the set of all measurable, real or complex valued functions defined on 2. For
g € M set

(0.1) pilg) = / 701 9t) Du(t).

Let us define an Orlicz space Ly by
(0.2) Ly ={g € M:lim py(tg) = 0}.

If fis an s-convex function for some s € (0,1] we can equip Ly with a functional
|- 1l given by

(0.3) ngf:mf{wo:pf(cgs) 31} for g€ Ly,
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664 LEWICKI

called the Luxemburg s-norm (norm if s = 1). Recall that a function f: RT — R
is s-convex for some s € (0, 1] if and only if

fltw+ry) <t°f(z) +7°f(y)

forany z,y e RT,0<¢t, r<1,7r5+t5=1.

If Q = N,¥ =2 and p is a counting measure, we call L 7 a sequence Orlicz
space and we will denote it by [;. For more information about Orlicz spaces the
reader is referred to [4].

The aim of this note is to present an affirmative answer (Corollary 1.11) to the
following problem posed by M. Baronti and C. Franchetti (oral communication).

Problem 0.1
Suppose that f : Rt — R™ is a convex function such that f(0) = 0 and f(x) > 0
for some x > 0. Assume that || - || (see (0.3)) satisfies the following:

Property (P): For every a,b,c,d € R if ||(a,b,0,...)||f = ||(c,d,0,...)||  then
l(a,b,2)| s = ||(c,d,x)| s for every x = (23,24, ...) € lf.
Is it true that [y is linearly isometric to l,-space for some p > 17

In fact, we present a more general characterization of L y-spaces isometric to L,-

spaces (Theorem 1.10). For other results concerning this topic the reader is referred
to [1_3]7 [5]7 [6]

1. The results
We start with the following proposition.

Proposition 1.1

Let f: RY — R be a continuous, strictly increasing in f~1((0,+00)) function
such that

(1.1) f(0)=0,f(z)=1 for some x> 0.

Let s € (0,1], 11 = 1, ro > 1 and r3 > 0. Assume additionally that f(y) = 1/r
for some positive y, where r = min {1,r3}. For every x = (x1,x2,73) € R? define a
functional || - || by

3

||| = inf{c >0 raf(l @ | feV5) < 1}.

n=1
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Then the following conditions are equivalent:
Property (A). For every nonnegative real numbers a, b, ¢, d such that

1@, b, 0)[[5 = [I(e, d, )|

we have:
(@, b, 2) ||y = ll(c,d, z)| 4
for any z € R;

Property (B). For every nonnegative real numbers a, b, ¢, d such that f(a) +
rof(b) = f(c) + rof(d) = 1 we have: f(aa)+ raf(ab) = f(ac) + raf(ad) for any
€ (0,1).

Proof. Suppose that (B) does not hold. This means that there exist real nonnegative
numbers a, b, ¢, d such that

(1.2) fla) +ra2f(b) = fle) +r2f(d) =

and a € (0,1) such that f(aa) + rof(ab) < f(ac) + raf(ad) < 1. Hence we can
choose a positive number x such that f(aa) + rof(ab) + r3f(z) = 1. This means
that ||(aa, ab, z)||f = 1. Note that f(ac)+ rof(ad) + r3f(z) > 1. This implies that
|(ae, ad, x)|| > 1. Consequently ||(a,b,z/a)||y < ||(¢,d,z/c)||s which contradicts

(A) (by (1.2) [[(a,b,0)[[s = [I(c, d, 0)[|f = 1).
To prove the converse, assume ||(a,b,0)|s = ||(c,d,0)| s = A. This means that

F(us) +rof () = Fes) +raf (G ) = 1

For x € R, denote E = ||(a, b, x)| ¢. Note that E > A. Put F' = ||(¢,d, z)|| . We show
that F' = E. By the definition of ||-|| ¢, f(a/EY*)+rof(b/EY*)+r3f(| x| /EY®) = 1.
Take a = (A/F)'/*. Applying (B) to the numbers a/A'Y/*,b/AY ¢/AY$ d/AY* and
a=(A/E)Y* we get

d |z |
£ (i) +red (i) + o (i) =
By the definition of || - ||, F' = E, which completes the proof. J

Theorem 1.2

Let f : RT — R™ be a continuous, nondecreasing function satisfying (1.1) and
(B). Then f( ) = C - t? for some C,p > 0 and t € [0, x], where x is so chosen that

fz) =
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First we prove some preliminary results in which we assume additionally that
FO) =1,
Lemma 1.3

Let f be as in Theorem 1.2. Assume additionally that f is strictly increasing
n [0,1]. If f(a) + r2f(b) = f(d) then f(a/d) + rof(b/d) = 1 for any a,b € [0,1],
d e (0,1].

Proof. If d=1, the statement is obvious. Suppose d < 1. If f(a/d) + r2f(b/d) # 1
then we can choose dy # d with f(a/dy) + r2f(b/d1) = 1. By (B)

d-a d-b
1@ =5 (757) +ref ()
Since f(d) > 0, this gives immediately d = d;, a contradiction. [J

Lemma 1.4
Let f be as in Lemma 1.3. Then for every n € N, a,b;,d € [0,1] fori =1, ...,n,
if
f(a) +7"2Zf(bi) = f(d)

i=1

then N
flaa) +r2) " flab) = f(ad)
i=1

for every a € [0, 1].

Proof. First we consider the case n = 1. If d = 0, the statement is obvious. Suppose
f(a) 4+ raf (b) = f(d) # 0. By Lemma 1.3,

1(5) i (3) =1
Taking = « - d, by (B), we get

_ 4 Ba pby _ _
flaa) +raf(ab) = F(=) +72(Z) = #(8) = flad)
as required. The case n > 1 follows from the previous one by the induction argu-
ment. [J

DEFINITION 1.5. Let f : R™ — RT be a continuous, nondecreasing function satis-
fying (1.1) and (B). Put

(1.3) A={(a,0);0<a,b<1,f(a)+r2f(b) =1}
For (a,b) € A define by g(a,b) the unique p > 0 such that a? + rob? = 1.
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Lemma 1.6

Suppose that f : Rt — RT is a continuous, nondecreasing function satisfying
(1.1) and (B). Let p > 0 be so chosen that there is t, > 0 such that f(t) < t? (or
f(t) > tP) for every t € (0,t,). Then g(a,b) # p for every (a,b) € A.

Proof. Suppose, on the contrary, that g(a,b) = p for some (a,b) € A. Then
1= f(a) +raf(b) = aP + rabP.

This gives that there is ¢ € [a,b] (we can assume without loss of generality that
a < b) with f(c) = ¢P. Put ¢, = inf{c > t, : f(c) = ¢P}. By assumptions on f,
¢o > 0 and f(c,) = cb. Note that by (B)

(1.4) f(coa) +12f(cob) = flco) = cf = (con)” 4 12(cob)".
Since a,b < 1,
fleoa) < (> resp. )(coa)”

and
feob) < (> resp. )(cob)”

which leads to a contradiction with (1.4). O

Lemma 1.7

Let f : Rt — RT be a continuous, nondecreasing, strictly increasing [0, 1]
function satisfying (1.1) and (B). If f(a) = 1/(r2q) = a? for some ¢ € N\ {0}, p >0
then f(a™) = (a™)? for n=2,3,. ..

Proof. Suppose that f(a) = 1/(r2q) = aP. Then, by Lemma 1.4, r2q - f(a?) = f(a)
and consequently,

To finish the proof it is necessary to apply the induction argument. [
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Proof of Theorem 1.2. Take a € (0,1) with f(a) = 1/ryifro > 1 or f(a) =1/2
if ro = 1. Then f(a) = a' for some [ > 0. Applying (B) and the induction argument
one can easily get that f(a™) = (f(a))" = a™ forn =1,2... Now take any ¢ € (0,a).
Then there is n € N with a"*! < ¢ < a™. Consequently, since f is nondecreasing,

fa™h) < f(e) < f(a™)

and
1 < 1 < 1
(am)! = d (ant1)l
This gives
f(e)
(15) (ll < 7 < 4l

for every ¢ € (0,a). Now we show that ¢(i,j) = [ (see Def. 1.5) for every (i,j) € A
(see (1.3)). Note that, by (1.5), for any g #

lim m = lim )

SN gl—q
lm =2 lim =5 t 0 or +o0.

Hence there is ¢, > 0 such that f(t) <t? or f(t) > t9 for t € (0,t,). By Lemma 1.6,
g(i,7) # q for any q # | and consequently ¢(i,j) = [ for any (i,7) € A.

Now we show that f is a strictly increasing function in [0,1]. By (1.5), f(¢) >0
for t > 0. By the continuity of f and (B), f(t) < 1 for 0 <t < 1. Note that for every
(1,5) € A

1= f(i) +raf () = i' +ra2j".

Hence, since the function ¢ — ¢! is strictly increasing, f(t1) = f(t2) implies t; = to
for any t1,t3 € (0,1).

To finish the proof (in the case f(1) = 1), by the continuity and monotonicity
of f, it is sufficient to show that f(t) = t' for every t € f~((0,1) N Q). To do
this, suppose that f(a,) = 1/(r2q) = ag® for ¢ = 1,2,... Then by Lemma 1.7
fla?) =ag" forn=1,2,... By (1.5), pg =1 for ¢ =1,2,...

Now fix ¢ € N, ¢ > 1. Take any rational number p/q € (0,1) and suppose
that f(t,) = p/q. We show by the induction argument that f(t,) = té. Note that
f(t1) = raf(aq). By Lemma 1.3, rof(aq,/t1) = 1. Since f is strictly increasing in
[0,1] and f(1) =1, a4/t1 = a;. Consequently,

f(aq) _ afl

l
L=

flar) — df

ft) =

as required.
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Now suppose that f(t,_1) =t/ _;. Note that

p—1-

f(tp—1) +r2f(aqg) = f(tp)-

r(5t) +mar (i) =

Hence (t,—1/tp,aq/tp) € A (see Def. 1.5). Since g(tp—1/tp,aq/tp) =1,

l £
) ()
tp tp

Consequently, by the induction argument

By Lemma 1.3,

th =roal +th_y =raf(ag) + fltp—1) = g = f(tp)

as required. This completes the proof in the case f(1) = 1. If this assumption is not
satisfied, take a positive z such that f(z) = 1. Consider a function g(t) = f(tz). It
is easy to see that g(1) = 1 and g satisfies the assumptions of Theorem 1.2. By the
proof given above

f(t) = g(t/z) = (t/2)' =" - ¢,
where [ is the index corresponding to g. The proof of Theorem 1.2 is fully complete. [J

DEFINITION 1.8. Let (£2, X, 1) be a measure space such that 3 contains at least three
pairwise disjoint sets of positive and finite measure. Let f be as in Proposition 1.1
and let > 0 will be given. We say that f satisfies property (A,) if and only if

(1.6) f(z) = 1/r for some positive z;

there exist X7, X5, X3 € ¥ of positive and finite measure, 0 < p(X7), u(Xs2) < r,
such that for every a,b,c,d € R if

llax1 +bxally = llexa + dxz| ¢
then
lax1 +bxz + xxsllr = llex1 + dxz + zxsl

(see (0.3) ) for any x € R. (By (1.6) || - || can be properly defined). Here x; denotes
the characteristic function of X;, i =1,2,3.
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Theorem 1.9

Let (2,%, u) and f be as in Definition 1.8. If f satisfies property (A,) for some
r > 0 then there exist ¢,p > 0 such that f(z) = c-aP for x € [0, f~1(1/r)].

Proof. We can assume without loss of generality that pu(X;) < p(Xs). Put f; =
w(Xy1) - fy ro = w(Xo)/u(X1), rs = u(Xs)/u(X1). Note that if f satisfies (A,)
then f1, 79,73 satisfy (A). By Proposition 1.1 and Theorem 1.2, there exist ¢,p > 0
such that fi(z) = c-aP for x € [0, f; *(1)]. Consequently, f(x) = ¢ - 2P for x €
[0, f=(1/r)]. O

Theorem 1.10

Let (Q,%, 1) be as in Theorem 1.9. Suppose that f is an s-convex, continuous
function, f(0) =0 and f(z) > 0 for some positive x. Put

ro = inf {r > 0; (A,) is satisfied },
2o = inf {2z > 0; there exists X € 3,0 < u(X) < z}

(ro = 400 if (A,) is not satisfied for any r > 0). If r, = z, then the space L¢(Q, X, j1)
is linearly isometric to L,(, 2,3, u) for some p > 0.

Proof. By Theorem 1.9, there exist ¢,p > 0 such that f(x) = c - aP for
z € [0, f~1(1/r,)]. Note that by the definition of z, the function || - || is uniquely
determined by the values of f in [0,1/z,]. Since 7, = z, the space L;(Q, %, ) is
linearly isometric to L,(, 2,3, i), as required. O

Corollary 1.11

Let f be a convex, nonnegative function, f(0) = 0 and f(x) > 0 for some
positive x. If the function f satisfies (P) (see Problem 0.1) then the space l; is
linearly isometric to l,, for some p > 1.

Proof. By Proposition 1.1 and Theorem 1.2, there exist ¢,p > 0 such that f(x) =
c-aP for z € [0, f~1(1)]. Note that in our case r, = 2, = 1. By Theorem 1.10, I; is
linearly isometric to the space [,,. By the proof of Theorem 1.2 and the convexity of
f, p>1, as required. [J

Corollary 1.11 gives an affirmative answer to Problem 0.1.

Remark 1.12. During a preparation of this note the author has received a preprint
of H. Cuenya and M. Marano [2] in which a similar characterization of L,-spaces
has been proved.
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