
Collect. Math. 48, 4-6 (1997), 635–655

c© 1997 Universitat de Barcelona

Monotonicity, order smoothness and duality for convex functionals

W. Kurc

Faculty of Mathematics and Computer Science, University of Poznań,
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Abstract

In the paper concepts of pointwise and uniform strict monotonicity and order-
smoothness for convex and monotone functionals on locally convex-solid Riesz
spaces are studied.

1. Introduction

This paper presents a number of general results concerning relations between mono-
tonicity properties and its dual counterparts for convex and monotone functionals on
solid Riesz spaces. As a result new concept of (order) subdifferential and concepts
of modules of uniform monotonicity and order smoothness for convex and monotone
functionals are introduced. Our first step was made in [8] in the context of geometry
of the unit sphere in Banach lattices. In the paper under consideration, however, a
general convex functions are considered.

In Section 2 it is proved that the monotonicity of a convex functional f reflects
the same properties for the Young conjugate f∗ and f∗∗. In Section 3 new con-
cepts of order directional derivative f∨(x, y) and of order subderivative are studied.
Theorems 3.6 and 3.7 are main results in this section. It follows that there exists
some analogy between the role of convexity and monotonicity. In Section 4 an or-
der smoothness is proved to be an appropriate dual notion to strict monotonicity
of convex and monotone functionals (Theorem 4.3). Next, in Section 5, we intro-
duce modules of uniform monotonicity δf (ε) and of order smoothness ρf∗(τ). Theo-
rem 5.1 shows that these modules are closely related via duality formulas. Moreover,
as a consequence, in Section 6 we get dual relations between uniform monotonicity
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and uniform order smoothness of convex and monotone functionals. Finally, in Sec-
tion 7 the modules δf (ε), ρf∗(τ) are estimated for the functional f(x) =

∫
T
|x(t)|pdµ

(1 ≤ p < +∞) and in Section 8 an application to an optimization problem is con-
sidered.

We refer to [6], [2], [5] and [4] for background material concerning convex anal-
ysis and to [1] for locally convex-solid Riesz spaces.

2. Definitions

Let X be a locally convex-solid Riesz space ([1]) with the dual X∗. Equivalently,
X is a Riesz space endowed with a locally convex topology on X generated by a
family of lattice seminorms. A seminorm p(·) on X is said to be a lattice (or a
Riesz) seminorm if |y| ≤ |x| implies p(y) ≤ p(x) (cf. [1]). If X is endowed with
a lattice norm ‖ · ‖ then X is called a normed Riesz space. Let X+ denotes the
positive cone in X. The monotonicity of the lattice norm can be splitted into
the the property (a) ‖x‖=‖|x|‖ and the property (b) ‖y‖≤‖x‖ for 0 ≤ y ≤ x. If
f : X → R is any function then let f∗(x∗)= supx∈X{< x, x∗ > −f(x)} ([4]). The
functional f∗ is the conjugate (polar) to f in the Young sense. Similarly f∗∗(x)
= supx∗∈X∗{< x∗, x > −f∗(x)} defines the second conjugate f∗∗ to f . It is well
known that f∗ and f∗∗ are lsc and convex functionals as the pointwise supprema
of affine functionals. If x∗ ≥ 0 then f∗(x∗) = supx≥0{< x, x∗ > −f(x)}. In what
follows we will be concerned with proper functionals. This means that f > −∞ and
dom(f) = {x ∈ X : f(x) < +∞} 
= ∅. In general f∗∗ ≤ f , however, if f is lsc then
f∗∗= f .

Recall, the subdifferential ∂f(x) of f at x ∈dom(f) is defined by ∂f(x) = {x∗ ∈
X∗ : ∀h∈X < h, x

∗ > ≤ f(x + h) − f(x)}. The set ∂f(x) is always convex and
w∗-closed subset in X∗ (perhaps empty). If f is continuous at x than ∂f(x) is
non-empty and w∗-compact set. An element x∗ ∈ ∂f(x) if and only if < x, x∗ >=
f(x)+ f∗(x∗), i.e. the equality in the Young inequality is attained. Hence it follows
that x ∈ ∂f∗(x∗). The inverse implication holds true whenever f is lsc. Next, let
∂f(x, ·) = {x∗ ∈ X∗ : ∀h∈X < h, x

∗ >≤ f(x, h)}. Then ∂f(x) = ∂f(x, ·), where
f(x, y) = inft>0(f(x + ty) − f(x))/t denotes the usual directional derivative (we
will introduce below a different concept of directional derivative f∨(x, y)). Clearly
∂+f(x) = ∂+f(x, ·) where ∂+f(x) = ∂f(x) ∩X∗

+ and ∂+f(x, ·) = ∂f(x, ·) ∩X∗
+. By

X∗
+ we denote the positive cone in X∗.

Let f : X → R be any function. We call f (order) monotone if f(y) ≤ f(x)
whenever |y| ≤ |x|. It is easy to see that if f is a monotone functional then,
equivalently, (a) f(x) = f(|x|) and (b) f(y) ≤ f(x) whenever 0 ≤ y ≤ x.
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Definition 1. Let f be monotone. Then, f is said to be strictly monotone (STM,
for short) if f(y) < f(x) whenever 0 ≤ y < x (i.e. y ≤ x and y 
= x).

From the lemma below it follows that the monotonicity inherits to the Young
conjugates f∗ and f∗∗ of monotone functionals f .

Lemma 2.1

If f : X → R is monotone then f∗ andf∗∗ are also monotone functionals on X∗

and X, respectively.

Proof. Let us consider the case of f∗ only since the proof for f∗∗ runs analogously.
If 0 ≤ y∗ ≤ x∗ then

f∗(y∗) = sup
x∈X

{< x, y∗ > −f(x)}

≤ sup
x∈X

{< |x|, y∗ > −f(x)}

≤ sup
x≥0

{< x, x∗ > −f(x)} = f∗(x∗)

hence the monotonicity for positive elements follows.
To prove that f∗(x∗) = f∗(|x∗|) let us first note that from the definition of f∗

we have f∗(x∗) ≤ f∗(|x∗|). Recall, that for x ≥ 0 we have < x, |x∗| >= sup|z|≤x <

z, x∗ > (e.g.[9], p. 49). Therefore,

f∗(|x∗|) = sup
x≥0

{< x, |x∗| > −f(x)}

= sup
x≥0

sup
|z|≤x

{< z, x∗ > −f(x)}

≤ sup
x≥0

sup
|z|≤x

{< z, x∗ > −f(z)}

≤ sup
z∈X

{< z, x∗ > −f(z)} = f∗(x∗).

Thus f∗(x∗) = f∗(|x∗|) and the proof is finished. �

3. Order directional derivatives and order subdifferentials

In what follows let X be a locally convex Riesz space and let f : X → R be a proper
convex functional which is monotone.
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Definition 2. Let x ∈ dom(f). We define an order directional derivative f∨(x, y)
of f at x ∈ X in the direction y ∈ X by means of the following formula

f∨(x, y) = lim
t↘0

f(|x| ∨ t|y|) − f(x)
t

where y ∈ X.

This formula is well defined since (see below) the difference quotient is a mono-
tone function of t. In our study of f∨(x, y) we will be mainly concerned with the
case x, y ≥ 0, since f∨(x, y) = f∨(|x|, |y|).

Our goal in this section is to relate the order directional derivative f∨(x, y) with
a subdifferential ∂∨(x, f) of special kind ((o)-subdifferential, cf. Definition 3). As
a result the order (non-) smoothness of convex and monotone functionals can be
expressed in terms of this subdifferential.

Let x ∈ dom(f), x ≥ 0 , and let y ≥ 0. Given t > 0 let g(ty)/t = ( f(x ∨ ty) −
f(x) )/t. Applying the identity x ∨ u = (x+ u+ |x− u|)/2 we conclude that g(·) is
a proper convex function satisfying g(0) = 0. Moreover, a standard argumentation
yields that the function t→ g(ty)/t is nondecreasing for t > 0.

Theorem 3.1

Let x ∈ dom(f). The following equality holds true for y ∈ X

f∨(x, y) = inf
t>0

f(|x| ∨ t|y|) − f(x)
t

Moreover, f∨(x, | · |) is positively homogeneous, subadditive and proper functional

which is sublinear whenever dom(f) = X. If f is continuous at x then f∨(x, | · |) is

continuous on X.

Proof. Since f∨(x, y) = f∨(|x|, |y|) and f(x) = f(|x|) we can confine to x, y ∈ X+.
Applying that the function t → g(ty)/t is nondecreasing for t > 0 the first part of
Theorem immediately follows.

From this formula it follows that f∨(x, αy) = α f∨(x, y) for each α ≥ 0. Let
u, v be in X+. Applying that x ∨w = (x+w + |x−w|)/2 and that f is convex, we
obtain
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f∨(x, u+ v) = inf
t>0

f
(
x ∨ t(u+ v)

)
− f(x)

t

≤ inf
t>0

1
t

{
f

(
1
2
x+ 2tu+ |x− 2tu|

2
+

1
2
x+ 2tv + |x− 2tv|

2

)
− f(x)

}

= inf
t>0

1
t

{
f

(
x ∨ 2tu+ x ∨ 2tv

2

)
− f(x)

}

≤ inf
t>0

1
2t

(
f(x ∨ 2tu) − f(x)

)
+ inf

t>0

1
2t

(
f(x ∨ 2tv) − f(x)

)
= f∨(x, u) + f∨(x, v).

Since f∨(x, u+ v) = f∨(x, |u+ v|) ≤ f∨(x, |u|) + f∨(x, |v|) = f∨(x, u) + f∨(x, v), we
conclude finally that f∨(x, ·) is convex and proper. Moreover, if dom(f) = X then
f∨(x, ·) is finite on X and hence sublinear. Let f be continuous at x ∈ int

(
dom(f)

)
.

Recall, a convex (proper) function is continuous at x ∈ int
(
dom(f)

)
if and only if

f is bounded from the above on some neighborhood Vx of x. Let the bounding
constant be K > 0. Since the mapping y → x∨ y is continuous at zero, there exists
a neighborhood of zero U ∈ X such that x∨U ⊂ Vx. Therefore, if y ≥ 0 and y ∈ U
then

0 ≤ f∨(x, y) ≤ f(x ∨ y) − f(x) ≤ K − f(x).

Consequently, f∨(x, ·) is continuous on D = int
(
dom(f∨(x, ·))

)
. On the other hand

U is an absorbing set, whence D = X, i.e. f∨(x, ·) is finite and continuous on X. �

Proposition 3.2

The following inequalities hold true for all x, y ∈ X+

f∨(x, y) ≤ f(x, y) + f(x,−y)
2

≤ f(x, y)

where f(x, y) is the usual directional derivative of f at x in the direction y. Moreover,

f∨(0, y) = f(0, y) = f(0,−y) for y ∈ X+.

Proof. It suffices to apply that x ∨ ty = (x+ty+|x−ty|)
2 . Hence the convexity of f

and the inequality f(x,−y) ≤ f(x, y) yield the desired inequalities. Let us point out
that to get inequality f(x,−y) ≤ f(x, y) we can apply in the definition of f(x,−y)
that f(x− ty) = f(|x− ty|) ≤ f(x+ ty), since f is monotone and x, y ∈ X+. �
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Definition 3. Let x ∈ dom (f). We call a functional u∗ ∈ X∗
+ an order subderiva-

tive of f at the point x, if u∗ is of the form u∗ = x∗ − y∗ with x∗ ≥ y∗ ≥ 0, x∗, y∗

∈ X∗
+ and such that < x, y∗ >= f(x) + f∗(x∗). If ∂∨f(x) denotes a subset of X∗

defined by

∂∨f(x) = {u∗ = x∗ − y∗ : x∗ ≥ y∗ ≥ 0, < x, y∗ >= f(x) + f∗(x∗)}

then we call ∂∨f(x) an order subdifferential ((o)-subdifferential, for short) of f at x.

Remarks. (a) Let u∗ ∈ ∂∨f(x) then the order interval [0, u∗] ⊂ ∂∨f(x). Indeed,
if u∗ = x∗ − y∗, x∗ ≥ y∗ ≥ 0 and < x, y∗ >= f(x) + f∗(x∗) then < x, z∗ >=
f(x) + f∗(x∗) for each z∗ satisfying y∗ ≤ z∗ ≤ x∗.

(b) If x ∈ X then ∂∨f(x) ⊂ ∂∨f(|x|). To prove this it suffices to remark
that < x, y∗ >= f(x) + f∗(x∗) = f(|x|) + f∗(x∗) and apply the Young inequality
< |x|, y∗ >≤ f(|x|) + f∗(x∗).

The following proposition shows that the (o)-subdifferential ∂∨(x, f) can be
expressed in terms of the subdifferential ∂f(x) of f at x.

Proposition 3.3

Let x ∈ dom(f), x ≥ 0 . Then, for ∂∨f(x) we have

(a) ∂∨ f(x) = {u∗ = x∗ − y∗ : x∗ ≥ y∗ ≥ 0, x∗ ∈ ∂+f(x), x∗ − y∗ ⊥ x},
(b) ∂∨ f(x) = {u∗ = x∗ − y∗ : x∗ ≥ y∗ ≥ 0, y∗ ∈ ∂+f(x), f∗(x∗) = f∗(y∗)},
(c) ∂∨ f(x) = (∂+f(x) − ∂+f(x))+ ∩ {x}⊥.

Proof. (a). If u∗ ∈ ∂∨(x, f) then u∗ = x∗ − y∗, x∗ ≥ y∗ ≥ 0 and < x, y∗ >= f(x) +
f∗(x∗). In virtue of the Young inequality < x, y∗ > ≤ < x, x∗ > ≤ f(x)+ f∗(x∗) =
< x, y∗ >. Thus < x, x∗ >= f(x) + f∗(x∗) and this is equivalent to x∗ ∈ ∂f(x).
From these relations it follows that < x, x∗ >=< x, y∗ >. Hence x∗ − y∗ ⊥ x and
this proves the inclusion ”⊂”. To prove the converse, it suffices to observe that
x∗ − y∗ ⊥ x, x∗ ≥ y∗ ≥ 0 and x∗ ∈ ∂f(x), i.e. < x, x∗ >= f(x) + f∗(x∗), yield
< x, y∗ >= f(x) + f∗(x∗). Hence u∗ = x∗ − y∗ ∈ ∂∨f(x) as desired.

(b). The proof proceed by similar arguments. Let us point out only that in
the right hand side of (b) one can put equivalently x∗, y∗ ∈ ∂+f(x) instead of y∗ ∈
∂+f(x).

(c). We apply (a) and that x∗ ≥ y∗ ≥ 0, x∗ − y∗ ⊥ x, x∗ ∈ ∂f(x) imply
y∗ ∈ ∂f(x). Hence the representation (c) easily follows. �
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In virtue of the representation (c) from Proposition 3.3 and some well known
facts concerning subdifferentials [5], Theorems 14B and 14C) as a corollary we get
the following theorem.

Theorem 3.4

Let x ∈ X+. The order subderivative ∂∨f(x) is always convex and w∗-closed

(perhaps empty) subset in X∗
+. If dom(f) = X, then ∂∨f(x) 
= ∅ (equivalently,

0 ∈ ∂∨f(x)) if and only if the usual directional derivative f(x, ·) is bounded from

below on some neighborhood of zero in X. If f is continuous at x ∈ dom(f), x ≥ 0 ,

then ∂∨(x, f) is nonempty, convex and w∗-compact set.

Remarks. (a) Recall, f is continuous at some point if and only if f is continuous on
int

(
dom(f)

)

= ∅. In this case ∂f(y) 
= ∅ for all y ∈ int

(
dom(f)

)
.

(b) Let us notice that if f is smooth at x, i.e. ∂f(x) = {∇f(x)}, then ∂∨f(x)
= {0}.

In order to prove our main theorem in this section, concerning relation between
the order directional derivative f∨(x, y) and the (o)-subdifferential ∂∨f(x), we need
the following result.

Lemma 3.5

Let f be a proper convex and lsc functional which is monotone. Let x ∈ dom(f),

x ≥ 0 . The following formula holds true for all y ∈ X+.

f∨(x, y) = inf
t>0

f(x ∨ ty) − f(x)
t

= inf
t>0

sup
x∗≥y∗≥0

{
< y, x∗ − y∗ > +

< x, y∗ > −f(x) − f∗(x∗)
t

}
.

Proof. Since f is lsc and convex we have f = f∗∗. Therefore,

f(x ∨ ty) = f∗∗(x ∨ ty)
= sup

x∗≥0
(< x ∨ ty, x∗ > −f∗(x∗)).

Applying that < x ∨ ty, x∗ >= supx∗≥y∗≥0(< x, y∗ > +t < x, x∗ − y∗ >) we obtain

f(x ∨ ty) − f(x)
t

= sup
x∗≥y∗≥0

{
< y, x∗ − y∗ > +

< x, y∗ > −f(x) − f∗(x∗)
t

}
.

Hence the lemma follows. �
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Remark. If f is not lsc then in the formula from the lemma we have the inequality
”≥” instead of the equality. This follows from the inequality f∗∗ ≤ f .

Let us consider the positive part of the subdifferential for sublinear functional
f∨(x, ·), i.e. ∂+f∨(x, ·) = {u∗ ≥ 0 : ∀y∈X < y, u

∗ >≤ f∨(x, y)}. Since f∨(x, y) =
f∨(x, |y|) we get

∂+f∨(x, ·) = {u∗ ≥ 0 : ∀y∈X+ < y, u
∗ >≤ f∨(x, y)}.

Indeed, the inclusion ”⊃” is clear. Let u∗ ∈ ∂+f∨(x, ·). Thus < h, u∗ >≤ f∨(x, h) for
all h ∈ X+. For any y ∈ X we obtain< y, u∗ > ≤ < |y|, u∗ > ≤ f∨(x, |y|) = f∨(x, y)
which proves the reverse inclusion.

Theorem 3.6

Let f be a proper, convex and monotone functional on X and let x ∈ dom(f),

x ≥ 0 . Then ∂∨f(x) ⊂ ∂+f∨(x, ·). Moreover, the following equality holds true

∂∨f(x) = ∂+f∨(x, ·),

if, additionally, f(x, ·) is continuous on X.

Remark. The equality in the theorem is still true if any of the following conditions
is satisfied instead of the assumption on f(x, ·) in Theorem:

(a) f is continuous at x,
(b) X is barreled (eg. Banach lattice) and f(x, ·) is finite and lsc on X,
(c) int(X+) 
= ∅ and f(x, ·) is finite-valued.

Recall, f(x, ·) is positively homogeneous, convex. Moreover f(x, ·) is sublinear on
X whenever it is finite-valued ([6]). If any assumption (a) or (b) is satisfied then
f(x, ·) is sublinear and continuous in X. Indeed, in the case (a) we apply that
f(x, y) ≤ f(x + y) − f(x) for y in some neighborhood of zero. In the case (b) we
refer to [4], Corollary 2.5. Finally, in the case (c) we apply in the proof that in the
case under consideration any positive functional on X is automatically continuous
([5], 11D).

Proof. Let u∗ ∈ ∂∨f(x), then u∗ = x∗ − y∗, x∗ ≥ y∗ ≥ 0 and < x, y∗ > −f(x) −
f∗(x∗) = 0. Referring to the remark below the proof of Lemma 3.5 we obtain that
f∨(x, y) ≥ < y, u∗ > for all y ∈ X+ which means that u∗ ∈ ∂+f∨(x, ·).

To prove the converse let f(x, ·) be continuous and let u∗ be in ∂+f∨(x, ·). For
each y ∈ X there holds < y, u∗ >≤ f∨(x, y). Moreover, in view of Proposition 3.2,

< h, u∗ >≤ f∨(x, h) ≤ f(x, h) for all h ∈ X+.
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We apply a lemma (Mazur-Orlicz) concerning an extension of a functional u
′ ∈ X ′

satisfying u
′ ≤ p|K for a cone K ⊂ X to a (linear) functional x

′ ∈ X ′
such that

u
′ ≤ x′

on K and x
′ ≤ p on X. On account of this lemma, setting p(·) = f(x, ·),

K = X+ and u
′
= x∗, we get a linear functional x

′ ∈ X ′
such that

< h, u∗ > ≤ < h, x′
> (∀h ∈ X+) and < y, x

′
> ≤ f(x, y) (∀y ∈ X).

In fact the functional x
′
must be continuous since the majorant f(x, ·) is continuous.

Therefore, let us denote x∗ = x
′
. Now, defining y∗ = x∗ − u∗ we obtain that

u∗ = x∗ − y∗, x∗ ≥ y∗ ≥ 0 and x∗ − y∗ ⊥ x. Indeed, on account of our assumption
we have 0 ≤ < y, x∗ − y∗ > ≤ f(x, y) for all y ∈ X+. In particular, for y = x we
obtain f(x, x) = 0 and the orthogonality follows. Moreover, if < y, x∗ > ≤ f(x, y)
for all y ∈ X then x∗ ∈ ∂f(x). Consequently, in virtue of Lemma 3.3 (a), we have
proved that u∗ ∈ ∂∨f(x) which ends the proof. �

Now, we are ready to prove our main theorem in this section.

Theorem 3.7
Let f be a convex proper and monotone functional on X. Assume moreover

that f(x, ·) is continuous on X. Then the following representation for f∨(x, ·) holds
true for all y ∈ X.

f∨(x, y) = sup
u∗∈∂∨f(x)

< y, u∗ >

If f is continuous at x (and hence f(x, ·) is continuous on X) then “sup” in the
formula can be replaced by “max”.

Proof. Under the assumptions of the theorem, in view of Theorem 3.6, we can
deal equivalently with the usual subdifferential ∂+f∨(x, ·) = {u∗ ∈ X∗

+ : ∀y∈X <
y, u∗ >≤ f∨(x, y)} instead of the (o)-subdifferential ∂∨f(x). Hence, the inequality
“≥” follows immediately. To prove the converse, we proceed in a standard way
(eg. [5], 14D) assuming for a contrary that this inequality is strict. Namely, let
there exists a real number α > 0 such that

f∨(x, y) > α > sup
u∗∈∂∨f(x)

< y, u∗ >

for some y ∈ X. Define a linear functional u ∗ on M = span(y) by < ty, u ∗ >= tα
for t ∈ R. Since f∨(x, ·) is sublinear we have on M that u ∗ ≤ f∨(x, ·). Applying
Hahn-Banach theorem (cf. [5] 11G) it follows that there exists an extension u∗ of u ∗

to all of X, in continuous way, such that for all z ∈ X we have < z, u∗ >≤ f∨(x, z)
with < y, u∗ >= α, a contradiction.

If f is continuous at x ∈ dom(f), x ≥ 0 , then applying Theorem 3.4 we conclude
that the (o)-subdifferential is w∗-compact and therefore the supremum is attained.
Consequently, “sup” can be replaced by “max”. �
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Remark. If X is barreled, then to get the formula in Theorem (with “max”) we
need only that f(x, ·) is finite and lsc. Also, the formula (with “sup”) holds true
whenever (b) int(X+) 
= ∅ and f(x, ·) is finite-valued.

4. Order smoothness and strict monotonicity

Let X be a locally convex-solid Riesz space and let f : X → R be a proper convex
functional which is monotone. Our goal here is to show that an appropriate dual
notion to strict monotonicity (STM) for convex and monotone functional f is an
order smoothness of the Young conjugate f∗.

Definition 4. We say that f : X+ → R is order smooth ((o)-SM for short) at x if
x ∈ dom(f), and

f∨(x, y) = 0 for all y ∈ X.

Moreover, f is said to be (o)-SM if f is (o)-SM at each point x ∈ dom(f).

Remarks. Since f∨(x, y) = f∨(|x|, |y|) it suffices to confine ourselves in the above
definition to x ∈ dom(f), x ≥ 0 and y ∈ X+. Also, recall that f∨(0, y) = f(0, y)
where f(0, y) is the usual directional derivative. Thus the order smoothness at zero
of convex and monotone functionals f coincide with the usual one, since in the case
under consideration f(0, y) = f(0, |y|).

On account of Theorem 3.7, the (o)-SM can be expressed in terms of the (o)-
subdifferential ∂∨(x, f).

Theorem 4.1

Let f be as above and let f be continuous at x ∈ dom(f), x ≥ 0 . The following

statements are equivalent.

(a) f is (o)-SM at x,

(b) ∂∨f(x) = {0},
(c) For each order interval [y∗, x∗] ⊂ ∂+f(x), with f∗(y∗) = f∗(x∗), there holds

y∗ = x∗.

Proof. (a)⇒(b). If for all y ∈ X+ we have f∨(x, y) = 0 then, by 3.7, for each
u∗ ∈ ∂∨f(x), we have u∗ = 0. Hence (b) follows.

(b)⇒(c). Let [y∗, x∗] ⊂ ∂+f(x) with f∗(y∗) = f∗(x∗) and let us assume for a
moment that y∗ < x∗. Hence u∗ = x∗ − y∗ > 0, x∗ ≥ y∗ ≥ 0, x∗, y∗ ∈ ∂+f(x)
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and f∗(y∗) = f∗(x∗). In virtue of Proposition 3.3 (b) it follows that a non-zero
u∗ ∈ ∂∨f(x), a contradiction.

(c)⇒(a). Let for a contrary there exists y > 0 such that f∨(x, y) > 0 i.e. f is not
(o)-smooth at x. Applying Theorem 3.7 we conclude that there exists u∗ = x∗ − y∗
in ∂∨f(x) such that < y, u∗ > > 0 where x∗ ≥ y∗ ≥ 0, f∗(x∗) = f∗(y∗) and x∗, y∗ ∈
∂∨f(x). Hence, the proper interval [y∗, x∗] ⊂ ∂∨(x, f), a contradiction. �

Remark. Let f(x) = ‖x‖ then f∗(x∗) = σB∗(x∗) (the indicator function of the
unit ball B∗ ⊂ X∗). Since ∂f(x) ⊂ B∗, then given [y∗, x∗] ⊂ ∂+f(x) we have
automatically f∗(x∗) = f∗(y∗). Therefore, from the above theorem it follows that
‖ · ‖ is (o)-SM at x ≥ 0 if and only if ∂+‖x‖ contains no proper order interval
[y∗, x∗] ([8]).

Lemma 4.2

Let f be a proper, convex, lsc and monotone functional on X such that ∂f(x) 
=
∅ for all x ∈ dom(f), x ≥ 0 . The following statements hold true.

(a) If f∗ is (o)-SM then f is STM.

(b) If f∗ is STM then f is (o)-SM.

Proof. (a). Assume to the contrary that f is not STM, i.e. there exist x > y ≥ 0 such
that f(x) = f(y). Since y ∈ dom(f), there exists z∗ ∈ ∂+f(y). This is equivalent to
y ∈ ∂f∗(z∗), i.e. < z∗, y >= f∗(z∗) + f∗∗(y). But f∗∗(y) = f∗∗(x) so that

< z∗, y > = f∗(z∗) + f∗∗(y)

= < z∗, y >= f∗(z∗) + f∗∗(x)

≥< z∗, x > ≥ < z∗, y > .

This yields x ∈ ∂f∗(z∗). Hence, [y, x] ⊂ ∂f∗(z∗), where the order interval [y, x] is
nontrivial. Thus we arrived to a contradiction with the (o)-SM of f∗.

(b). Let f be not (o)-SM at some point x ∈ dom(f), x ≥ 0 . Then there exist
x∗ > y∗ ≥ 0 such that y∗ ∈ ∂f(x) and f∗(x∗) = f∗(y∗). However, this last equality
contradicts to the STM of f∗ and (b) follows. �

As a corollary we obtain the following duality relation concerning the STM and
(o)-SM of convex and monotone functionals.

Theorem 4.3

Let f be a proper, convex, lsc and monotone functional onX such that ∂f(x) 
= ∅
for all x ∈ dom(f), x ≥ 0 . Then, (a) f∗ is (o)-SM if and only if f is STM and (b)

f∗ is STM if and only if f is (o)-SM.
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Proof. It suffices to observe that on account of the lsc of f we have f = f∗∗.
Consequently, applying the above lemma, if f∗∗ is (o)-SM (on X) then f∗ is STM
and in turn this implies that f , and hence f∗∗, is (o)-SM. �

Remark. If one extends f∗∗ to X∗∗ by f∗∗(x∗∗) = supx∗∈X∗(< x∗, x∗∗ > −f∗(x∗))
then f∗∗|X = f . In this case we cannot close the above chain of implications,
however, the theorem is still true whenever X is reflexive.

5. Modules of uniform (o)-smoothness and uniform strict monotonicity

In this section we add some uniformity to the definitions of STM and (o)-SM. As
a result two modules are introduced and dual relations are established. Let f :
X → R be convex, proper and monotone functional on a normed lattice X with a
monotone norm ‖·‖. Let us notice that everything below is also valid for locally-solid
Riesz space X with a fixed seminorm p(·) instead of the norm ‖ · ‖.

Definition 5. Let us consider the following functions for ε, τ ≥ 0 with values
in R+:

δf (ε) = inf
x≥y≥0, ‖u‖≥ε

(
f(x) − f(x− u)

)
,

ρf (τ) = sup
x,y≥0, ‖y‖=1

(
f(x ∨ τy) − f(x)

)
.

We call δf (·) a modulus of uniform monotonicity of f and ρf (·) a modulus of uniform
(o)-smoothness (cf. [8]). In the same way one can define the modules δf∗ , ρf∗ and
δf∗∗ , ρf∗∗ . for f∗ and f∗∗, respectively.

The following theorem concerns duality relations between modules under con-
sideration (cf. Theorem 3 in [8]).

Theorem 5.1

Let f be convex, lsc and monotone on X with a point of continuity in dom(f).
The following duality formulas hold true:

(a) ρf (τ) = ρf∗∗(τ),
(b) δf (ε) = δf∗∗(ε) and

(c) ρf∗(τ) = supε≥0

(
ετ − δf (ε)

)
,

(d) δf (ε) = supτ≥0

(
τε− ρf∗(τ)

)
where ε ≥ 0 and τ ≥ 0.
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Proof. (a) and (b). These assertions are evident, since f is lsc and f = f∗∗.
(c). Let x∗, y∗ ≥ 0 with ‖y∗‖ = 1. Let τ ≥ 0 and x ≥ 0. Then

< x, x∗ ∨ τy∗ > −f(x) = sup
x≥u≥0

(
< x− u, x∗ > +τ < u, y∗ > −f(x)

)
.

In virtue of the Young inequality we have < x−u, x∗ >≤ f(x−u)+ f∗(x∗). Taking
the supremum over all x ≥ 0, by the definition of the Young conjugate f∗, we obtain

f∗(x∗ ∨ τy∗) − f∗(x∗) ≤ sup
x≥y≥0

(
τ < u, y∗ > +f(x− u) − f(x)

)
≤ sup

ε≥0
sup

x≥u≥0, ‖u‖=ε

(
τ‖u‖ −

(
f(x) − f(x− u)

))
≤ sup

ε≥0

(
τε− δf (ε)

)
.

Now, passing to “sup” over all x∗ ≥ 0 and y∗ ≥ 0 with ‖y∗‖ = 1 we obtain

ρf∗(τ) ≤ sup
ε≥0

(
ετ − δf (ε)

)
.

To prove the inverse inequality let x ≥ u ≥ 0 be fixed but arbitrary where x ∈
int

(
dom(f)

)
. Let us choose x∗ ≥ 0 such that < x − u, x∗ >= f(x − u) + f∗(x∗).

This is possible since f is continuous on int
(
dom(f)

)
and x ≥ u ≥ 0. Let y∗ ≥ 0 be

arbitrary such that ‖y∗‖ = 1. Then

ρf∗(τ) ≥ f∗(x∗ ∨ τy∗) − f∗(x∗)
= sup

z≥0

(
< z, x∗ ∨ τy∗ > −f(z)

)
− f∗(x∗)

≥ < x, x∗ ∨ τy∗ > −f(x) − f∗(x∗)
= sup

x≥y≥0
(< x− y, x∗ > +τ < y, y∗ >) − f(x) − f∗(x∗)

≥ f(x− u) + f∗(x∗) + τ < u, y∗ > −f(x) − f∗(x∗)
= τ < u, y∗ > −

(
f(x) − f(x− u)

)
.

Passing to the supremum with this y∗ and then with x ≥ u ≥ 0 we get finally that

ρf∗(τ) ≥ sup
x≥u≥0

(
τ‖u‖ −

(
f(x) − f(x− u)

))
≥ sup

ε≥0

(
τε− δf (ε)

)
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which ends the proof of the assertion (c).
To prove the assertion (d) we apply (c). Hence it follows that

δf (ε) ≥ sup
τ≥0

(
τε− ρf∗(τ)

)
.

Let x∗, y∗ ≥ 0 and ‖y∗‖ = 1 and let τ ≥ 0 be arbitrary. Then

f∗(x∗ ∨ τy∗) − f∗(x∗) = sup
x≥0

(
< x, x∗ ∨ τy∗ > −f(x)

)
− f∗(x∗)

= sup
x≥0

(
sup

x≥u≥0
(< x− u, x∗ > −τ < u, y∗ >)

− f(x)
)
− f∗(x∗)

≤ sup
x≥u≥0

(
f(x− u) − f(x) + τ‖u‖

)
,

where it was applied that < x − u, x∗ >≤ f(x − u) + f∗(x∗) and that ‖y∗‖ = 1.
Therefore,

δf (ε) ≥ sup
τ≥0

(
ετ − ρf∗(τ)

)
≥ sup

τ≥0

(
ετ − max

{
sup
Aε

(τ‖u‖)
)
, sup

Bε

(
f(x− u) − f(x) + τ‖u‖

)}
≥ sup

τ≥0
sup
Bε

(
f(x− u) − f(x) + τ‖u‖

)}
≥ δf (ε)

where we have used the definition of ρf∗(τ) and that Aε = {(x, u) : x ≥ u ≥ 0, ‖u‖ <
ε}, Bε = {(x, u) : x ≥ u ≥ 0, ‖u‖ ≥ ε}. Hence the desired equality in (d) follows. �

For the sake of completeness we list some fundamental properties of the modules
under consideration.

Proposition 5.2

The following properties hold true for the modules δf , ρf∗ .

(a) δf (ε) = 0 (resp. +∞) for ε > 0 if and only if ρf∗(τ) = +∞ (resp. 0) for τ > 0.

(b) ε τ ≤ δf (ε) + ρf∗(τ) for all ε, τ ≥ 0.

(c) The modules δf (·), ρf∗(·) are convex, proper and lsc functions from [0,+∞) into

R+ and hence continuous on int (dom
(
δf (·))

)
and int (dom

(
ρf∗(·))

)
, respectively,

with δf (0) = ρf∗(0) = 0.

(d) The following function τ −→ ρf∗(τ)/τ is nondecreasing for τ > 0.
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Proof. Applying (c) and (d) from Theorem 5.1 the first and the second assertion
follow immediately. Since δf (·) and ρf∗(·) are pointwise suppremas of families of
affine functions it follows that the modules δf (·), ρf∗(·) are convex and lsc on R+

and hence continuous on the interiors of their effective domains so the proof of (c)
is clear. Finally, to prove (d) it suffices to note that from Theorem 5.1 (c) it follows
that

ρf∗(τ)
τ

= sup
ε≥0

(
ε− δf (ε)

τ

)

for τ > 0. Hence it follows that ρf∗(τ)/τ is nondecreasing for τ > 0. �

Remark. From Theorem 5.1 it is clear that the modules δf (ε), ρf∗(τ) are mutu-
ally conjugate in the Young sense functions. From this observation some further
properties of these modules can be also derived.

Example: Let µ be a σ−finite positive measure on a set T and let us consider the
space L1(µ) and its dual L∞(µ). Let f(x) =

∫
T
|x(t)|dt. From the definition of δf it

is easy to see that δf (ε) = ε for ε ≥ 0. It is not clear how to determine ρf∗(τ) on the
basis of the definition. However, applying the duality formulas from Theorem 5.1
we immediately obtain that for the functional f under consideration

ρf∗(τ) =

{
+∞ , τ > 1,

0 , τ ∈ [0, 1].

Let us observe, that for τ ∈ [0, 1] there holds δf (ε) + ρf∗(τ) = ε ≥ τε where the
equality is attained for τ = 1. This shows that the inequality in the point (b) of the
proposition cannot be improved in general.

6. Uniform strict monotonicity and uniform (o)-smoothness

As it was observed in the example concerning L1(µ), the modulus δf (ε) = ε, i.e. the
functional f(x) =

∫
T
|x(t)|dt has the modulus δf (·) of STM which is uniformly far

from zero. On the other hand, for the dual modulus ρf∗(·), we see that not only
ρf∗(τ) = 0 for τ small but also ρf∗(τ)/τ = 0 whenever τ ≤ 1. On the other hand
let us observe that according to the definition of ρf (τ)

lim
τ↘0

ρf (τ)
τ

= lim
τ↘0

sup
x,y≥0, ‖y‖=1

f(x ∨ τy) − f(x)
τ
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is the “uniform” version of the order smoothness (f∨(x, y) = 0, for all y ∈ X,
section 4).

Also, it can be observed some similarity between the modulus ρf (τ) and the
modulus of uniform smoothness for Banach spaces [3], [8]). This leads to the concept
of the uniform (o)-smoothness which in turn appears to be a dual property to the
uniform monotonicity of functionals.

In this section let X denotes a normed lattice and let f be a proper, convex
and monotone functional on X.

Definition 6. We say that f is uniformly monotone (UM, for short) if for each
ε > 0 there holds δf (ε) > 0. Also, we say that f is order uniformly smooth ((o)-USM,
for short), if

inf
τ>0

ρf∗(τ)
τ

= 0.

Let us point out that the function τ → ρf (τ)/τ , where

ρf (τ)
τ

= sup
x,y≥0,‖y‖=1

f(x ∨ τy) − f(x)
τ

is nondecreasing, for τ > 0. Therefore, we can replace “limτ↘0” by “infτ>0”.

Theorem 6.1

Let f be convex, proper lsc and monotone functional on a normed lattice X.

The following statements hold.

(a) f is UM if and only if f∗ is (o)-USM.

(b) f∗ is UM if and only if f is (o)-USM.

Proof. (a). Assume to the contrary that f∗ is not (o)-USM. According to the
definition of (o)-SM there exists α > 0 such that

inf
τ>0

ρf∗(τ)
τ

≥ α.

Applying Theorem 5.1 it follows that

δf (ε) = sup
τ>0
τ

(
ε− ρf∗(τ)

τ

)
≤ sup

τ>0
τ(ε− α) = 0

whenever 0 ≤ ε ≤ α, which contradicts to the UM of f .
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Conversely, let f∗ be (o)-SM but f is not UM, i.e. there exists ε0 > 0 such that
δf (ε0) = 0. Then

0 = inf
τ>0

ρf∗(τ)
τ

= inf
τ>0

sup
ε≥0

(
ε− δf (ε)

τ

)
≥ ε0 > 0,

a contradiction.
(b). To prove (b) it suffices to put f∗ instead of f in (a) and apply that f = f∗∗

since f is lsc. �

7. An example

Let us consider a functional f : Lp(µ) −→ R , where 1 ≤ p ≤ +∞ and

fp(x) =

{∫
T
|x(t)|pdt, if 1 ≤ p < +∞,

σB∞(x), if p = +∞,

for Lp(µ) over a σ-finite positive measure space (T,Σ, µ) (σB∞(x) denotes the indi-
cator function for the unit ball B∞ in L∞(µ)). Let 1

p + 1
q = 1 where 1 ≤ p, q ≤ +∞.

We have (fp)∗(x∗) = fq(v) for v ∈ Lq(µ).

Proposition 7.1

The following estimations hold for the modulus of the uniform monotonicity

δfp(·) and the modulus of the uniform (o)-smoothness ρfq (·) of the functionals fp(x)
and fq(x), respectively, where ε, τ ≥ 0 and 1 ≤ p, q < +∞ with 1

p + 1
q = 1.

(a) εp ≤ δfp(ε) ≤ p ε p,
(b)

(
1 − 1

p

)
( τ
p2 )1/p−1 ≤ ρfq (τ)

τ ≤
(
1 − 1

p

)
( τp )1/p−1.

Moreover, δf1(ε) = ε, δf∞(ε) = 0 if ε ∈ [0, 1] and, by the definition, δf∞(ε) = +∞,

otherwise. Hence ρf∞(τ) = σ[0,1](τ) (the indicator function of the interval [0, 1])
and ρf1(τ) = τ (on account of this definition).

Remark. One can also define δf∞(ε) = 0 for ε > 1. In this case δf∞(ε) = 0 for all
ε ≥ 0 and consequently ρf1(τ) = +∞ for all τ > 0 and ρf1(0) = 0.



652 Kurc

Proof. (a). To get the first part let us notice that fp(x) − fp(x − u) = fp(x − u +
u) − fp(x − u) ≥ fp(u) whenever x ≥ u ≥ 0. Now, if ‖u‖p ≥ ε then for such x and
u we obtain that fp(x) − fp(x− u) ≥ εP which yields the first inequality.

To get the second one, let 1 < p < +∞ and x ≥ u ≥ 0. Since on supp (x(·)) we
have 0 ≤ u(t)/x(t) ≤ 1, then

(
x(t) − u(t)

)p = x(t)p
(

1 − u(t)
x(t)

)p
)

≥ x(t)p − p u(t)x(t)p−1

for t ∈ supp(x(·)). Consequently, with 1
p + 1

q = 1 (q ≥ 1), we obtain

f(x) − f(x− u) ≤ p
∫
T

u(t)x(t)p−1dµ

≤ p
(∫

T

u(t)pdµ
)1/p (∫

T

x(t)(p−1)qdµ

)1/q

= ‖u‖p‖x‖p/qp .

Taking the infimum over all x ≥ u ≥ 0, with ‖u‖p ≥ ε, we obtain that δLp(ε) ≤ pε p.
If p = 1, we already know that δL1(ε) = ε.

(b). To get the second inequality in (b) we apply that ρfq (τ) = supε≥0

(
τε −

δfp(ε)
)
. Hence, ρfq (τ) ≤ supε≥0(τε − εp). An easy computation leads the desired

inequality.
Again, in virtue of Theorem 6.1 (b), we get that for for 1 < p < +∞ with

1
p + 1

q = 1 we have
ρfq (τ) = sup

ε≥0

(
ετ − δfp(ε)

)
≥ sup

ε≥0
(ετ − p ε p) ,

where the supremum is attained for ε =
(

τ
p2

)1/(p−1). Hence (b) follows.
We left the boundary cases for p and q since they easily follow from the definition

of the module δ∞(·) and the duality formulas in Theorem 6.1. The same estimations
for the modules δfp(ε), ρfq (τ), where 1/p + 1/q = 1 and 1 ≤ p < +∞, hold for the
counting measure µ. �
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8. An application to optimization

Let us consider a convex proper and monotone functional f : X −→ R over a locally
convex-solid Riesz space X. Let x ≥ 0 be fixed and let us consider the following
optimization problem

(P)
{
g(y) −→ min

y ≥ 0

where g(y) = f(x ∨ y). Let us consider a solution set Pg defined as follows

Pg =
{
y0 ≥ 0 : g(y0) = min

y≥0
g(y)

}
.

Clearly, Pg 
= ∅. In fact the order interval [0, x] ⊂ Pg. Moreover, miny≥0 g(y) = f(x),
i.e. y ∈ Pg if and only if f(x ∨ y)− f(x) = 0. Therefore, applying Theorem 3.7 and
the representations for ∂∨f(x) from Theorem 3.3 we obtain a necessary condition
for y being a solution of the problem (P).

Theorem 8.1

Let f be additionally continuous at x and x ≥ 0 and let us consider the following

statements.

(a) An element y ≥ 0 is a solution of the minimization problem (P), i.e. y ∈ Pg.
(b) ∂∨f(x) ⊥ y, i.e. for each x∗, y∗ ∈ ∂f(x) such that x∗ ≥ y∗ ≥ 0 and x∗ − y∗ ⊥ x
there holds x∗ − y∗ ⊥ y. Then (a) implies (b).

Proof. Indeed, if y ∈ Pg then in virtue of the definition of f∨(x, y)

0 ≤ f∨(x, y) ≤ f(x ∨ y) − f(x).

Hence f∨(x, y) = 0 and applying Theorem 3.7 we get that for all u∗ ∈ ∂∨f(x) we
have < y, u∗ >= 0 which proves (b). �

Remark. This theorem can be applied to determine a constructive algorithm for
finding candidates for (nontrivial) solutions of the problem (P).

Finally, we give a characterization theorem concerning solutions of the problem
(P) (cf. [8], Theorem 8).
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Theorem 8.2
Let x ∈ X+ be fixed and let y ≥ 0. Assume that f is continuous at x. The

following statements are equivalent.
(a) y ∈ Pg.
(b) There exists x∗ ∈ X+

∗ such that
(i) x∗ ∈ ∂+f(x) ∩ ∂+f(x ∨ y),
(ii) < y − x, y∗ > ≤ 0 for all 0 ≤ y∗ ≤ x∗.

Proof. (a) ⇒ (b). Since f is continuous, there exists x∗ ∈ X+
∗ such that < x, x∗ >=

f(x) + f∗(x∗). Applying (a), since f(x ∨ y) = f(x), we obtain

< x, x∗ > ≤ < x ∨ y, x∗ > ≤ f(x ∨ y) + f∗(x∗)

= f(x) + f∗(x∗) =< x, x∗ > .

Hence < x ∨ y, x∗ >= f(x ∨ y) + f∗(x∗), i.e. x∗ ∈ ∂+f(x ∨ y). Thus (b) (i) follows.
Next,

f(x ∨ y) + f∗(x∗) = < x ∨ y, x∗ >
= sup

0≤y∗≤x∗
(< x, x∗ − y∗ > + < y, y∗ >

= < x, x∗ > + sup
0≤y∗≤x∗

< y − x, y∗ >

= f(x) + f∗(x∗) + sup
0≤y∗≤x∗

< y − x, y∗ > .

Thus, sup0≤y∗≤x∗ < y − x, y∗ > ≤ 0 and (b)(ii) follows.
(b) ⇒ (a). Assume that (b) is satisfied. Then the same equalities hold. Since,

by (b)(ii), sup0≤y∗≤x∗ < y − x, y∗ > ≤ 0 we conclude that f(x ∨ y) = f(x), i.e.
y ∈ Pg which finishes the proof. �

Example: Let T be a compact Hausdorf space and let X = C(T ) be the space
of all continuous real-valued functions on T with the maximum norm. The dual
X∗ consists of all functionals x∗ such that < x(·), x∗ >=

∫
T
x(t)dµ with the norm

‖x∗‖ = |µ|(T ). More precisely, these functionals can be identified with the Radon
measures µ on T .

Let us consider the functional f(x) = maxt∈T |x(t)| and let x ∈ C(T ) be fixed
such that x(t) ≥ 0 for all t ∈ T . Following [6], section 4.5, the subdifferential of f
at x consists of all nonnegative Radon measures µ such that

(a) |µ|(T ) = 1,
(b)

∫
T
x(t)dµ = f(x),

(c) µ is concentrated on the set Tx = {t ∈ T : x(t) = f(x)}.
Applying Theorem 8.2 we obtain the following characterization of the solutions

of the optimization problem (P).
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Corollary 8.3

Let f and X be as above and let g(y) = f(x∨ y). The following statements are

equivalent.

(a) y ∈ Pg.
(b) There exists a nonnegative Radon measure µ on T such that

(i) |µ|(T ) = 1,

(ii) µ is concentrated on Tx,

(iii) Tx = Tx∨y,

(iv)
∫
T
(y(t) − x(t))dη ≤ 0 for all Radon measures η satisfying 0 ≤ η ≤ µ.

Something more concrete characterization of the solutions y can be derived
from this corollary in the case T = [0, 1], however we do not rise this question in the
paper.
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