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Abstract

It is proved that the Musielak-Orlicz sequence space lϕ(X) of Bochner type is
P-convex if and only if both spaces lϕ(R) and X are P-convex. In particular,
the Lebesgue-Bochner sequence space lp(X) is P-convex iff X is P-convex
and 1 < p < ∞.

I. Introduction

Relationships between various kinds of convexities of Banach spaces and the refle-
xivity were developed by many authors. D. Giesy [5] and R.C. James [10] raised
the question whether B-convex Banach spaces are reflexive. James [11] settled the
question negatively, constructing an example of a nonreflexive B-convex Banach
space. It was natural to ask whether reflexivity is implied by some slightly stronger
geometric property. Such a property was introduced by C.A. Kottman [18] and
it was called P -convexity. Kottman proved that every P -convex Banach space is
reflexive. D. Amir and C. Franchetti [2] showed that in Banach spaces P -convexity
follows from uniform convexity as well as from uniform smoothness. It was natural
to characterize P -convexity in some concrete Banach spaces. Y. Ye, M. He and
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R. P7luciennik [21] proved that every Orlicz space is reflexive iff it is P -convex. The
same result for Musielak-Orlicz function spaces was obtained by P. Kolwicz and R.
P7luciennik [16] and for Musielak-Orlicz sequence spaces by Y. Ye and Y. Huang [22].

In this paper we show that lϕ(X) is P -convex iff both lϕ and X are P -convex.
This result implies immediately the main theorem from [22]. The similar charac-
terization of P -convexity for Orlicz-Bochner function spaces was done in [17]. It
is worth to mention that criteria for B-convexity of Orlicz-Bochner spaces were
obtained in [4], [7] and [15].

Denote by N, R and R+ the sets of natural, real and positive real numbers,
respectively. Let M be the set of all real sequences x = (un)∞n=1. A function ϕ

is called an Orlicz function, if ϕ: R −→ R+ is convex, even, ϕ(u) = 0 iff u = 0,
and limu→0 u−1ϕ(u) = 0. A sequence ϕ = (ϕn) of Orlicz functions ϕn is called a
Musielak-Orlicz function. Define on M a convex modular Iϕ by

Iϕ(x) =
∞∑
n=1

ϕn(un)

for every x ∈ M. By the Musielak-Orlicz space lϕ we mean

lϕ = {x ∈ M : Iϕ(cx) < ∞ for some c > 0}

equipped with the Luxemburg norm

‖x‖ϕ = inf
{
ε > 0 : Iϕ

(x

ε

)
≤ 1

}
.

For every Musielak-Orlicz function ϕ we will denote by ϕ∗ the sequence (ϕ∗
n) of

functions ϕ∗
n that are complementary to ϕn in the sense of Young, i.e.

ϕ∗
n(v) = sup

u≥0

{
u |v| − ϕn(u)

}
for every v ∈ R and n ∈ N.

We say that a Musielak-Orlicz function ϕ satisfies the δ2-condition if there are
constants k0, a0 > 0 and a sequence (c0n) of positive reals with

∑∞
n=1 c

0
n < ∞ such

that
ϕn(2u) ≤ k0ϕn(u) + c0n

for each n ∈ N and every u ∈ R satisfying ϕn(u) ≤ a0. For more details we refer
to [20].
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Moreover, we can assume without loss of generality that ϕn(1) = 1 and ϕn(u) =
u2 for all n ∈ N and every |u| > 1. Otherwise we may define a new Musielak-Orlicz
function ψ = (ψn) by the following formula

ψn(u) =

{
ϕn(bnu) for 0 ≤ |u| ≤ 1

u2 for |u| > 1,

where ϕn(bn) = 1, for every n ∈ N. The spaces lϕ and lψ are equal isometrically
(see [13]). Under this assumption we should remember that every function ϕn (n ∈
N) is non decreasing on R+ and it is convex on the interval [0, 1], but not necessarily
convex on the whole R+. It is easy to prove that this modified function ϕ satisfies
the δ2-condition iff for every ε > 0 there are a constant k > 2 and a sequence (cn)
of positive real numbers such that

∞∑
n=1

ϕn(cn) < ε and ϕn(2u) ≤ kϕn(u) (1)

for each n ∈ N and every u ∈ [cn, 1] (see [13] and [3]).
We say that ϕ satisfies condition (∗) if for every ε ∈ (0, 1) there exists δ > 0

such that ϕn(u) < 1 − ε implies ϕn((1 + δ)u) ≤ 1 for all u ∈ R and every n ∈ N.

Now, let us define the type of spaces to be considered in this paper. For a real
Banach space 〈X, ‖·‖X〉, denote by M(N, X), or just M(X), the sequences x = (xn)
such that xn ∈ X for all n ∈ N. Define on M(X) a modular Ĩϕ(x) by the formula

Ĩϕ(x) =
∞∑
n=1

ϕn (‖xn‖X) .

Let
lϕ(X) =

{
x ∈ M(X) : x0 = (‖xn‖X)∞

n=1
∈ lϕ

}
.

Then lϕ(X) equipped with the norm ‖x‖ = ‖x0‖ϕ becomes a Banach space which
is called a Musielak-Orlicz sequence space of Bochner type.

A linear normed space X is called P -convex if there exist ε > 0 and n ∈ N

such that for all x1, x2, ...xn ∈ S(X)

min
i �=j

‖xi − xj‖X ≤ 2(1 − ε),

where S(X) denotes the unit sphere of X. The notion of P -convexity in Banach
spaces can be characterized by the following lemma.
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Lemma 1

A Banach space X is P -convex iff there exist n0 ∈ N and δ > 0 such that for

any elements x1, x2, ..., xn0 ∈ X \ {0} integers i0, j0 can be found such that∥∥∥∥xi0 − xj0
2

∥∥∥∥
X

≤ ‖xi0‖X + ‖xj0‖X
2

(
1 − 2δmin

{
‖xi0‖X , ‖xj0‖X

}
‖xi0‖X + ‖xj0‖X

)
.

Proof. Suppose that X is P -convex. Then there exist δ > 0 and n ∈ N such that
for all x1, x2, ..., xn0 ∈ X \ {0} natural numbers i0, j0 can be found such that

1
2

∥∥∥∥ xi0
‖xi0‖X

− xj0
‖xj0‖X

∥∥∥∥
X

< 1 − δ.

We may assume without loss of generality that ‖xi0‖ ≥ ‖xj0‖ . We have

1 − δ >
1
2

∥∥∥∥ xi0
‖xi0‖X

− xj0
‖xj0‖X

∥∥∥∥
X

=
∥∥∥∥xi0 − xj0

2 ‖xj0‖X
+

(
1

‖xi0‖X
− 1

‖xj0‖X

)
xi0
2

∥∥∥∥
X

≥ 1
‖xj0‖X

∥∥∥∥xi0 − xj0
2

∥∥∥∥
X

− 1
2
‖xi0‖X

∣∣∣∣ 1
‖xi0‖X

− 1
‖xj0‖X

∣∣∣∣ .
Hence

1
‖xj0‖X

∥∥∥∥xi0 − xj0
2

∥∥∥∥
X

≤ 1 − δ +
1
2
‖xi0‖X

∣∣∣∣ 1
‖xi0‖X

− 1
‖xj0‖X

∣∣∣∣
=

1
2
− δ +

1
2
‖xi0‖X
‖xj0‖X

= −δ +
1
2

(
1 +

‖xi0‖X
‖xj0‖X

)

= −δ +
1
2
‖xi0‖X + ‖xj0‖X

‖xj0‖X
,

and finally∥∥∥∥xi0 − xj0
2

∥∥∥∥
X

≤ ‖xi0‖X + ‖xj0‖X
2

(
1 − 2δ ‖xj0‖X

‖xi0‖X + ‖xj0‖X

)
.

Since the converse implication follows immediately by the definition of P -convexity,
the proof is finished. �

Although the above lemma was proved in [17], we presented it here for the sake
of convenience.
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II. Results

Lemma 2
If ϕ satisfies the δ2-condition, then for every α ∈ (0, 1) there exists a non-

decreasing sequence (Aαm) of finite subsets of N such that
∞⋃
m=1

Aαm = N

and for every m ∈ N a number kαm > 2 can be found such that

ϕn(2u) ≤ kαmϕn(u) (2)

for each n ∈ Aαm and every u ∈ [αcn, 1], where cn are from (1).

Proof. Fix α ∈ (0, 1). Denote Bm = {0, 1, ...,m} and

Cαm =
{
n ∈ N :

1
m

≤ αcn ≤ cn

}
(m = 1, 2, ...) .

Obviously, Cαm ⊂ Cαm+1 for every m ∈ N and
⋃∞
m=1 C

α
m = N. Define Aαm = Bm∩Cαm

for every m ∈ N. Then Aαm ⊂ Aαm+1 and cardAαm < ∞ for every m ∈ N. Moreover⋃∞
m=1 A

α
m = N. Denote

kαm =
k

min
n∈Aα

m

ϕn( 1
m )

(m = 1, 2, ...) ,

where k is from (1). Since ϕn (n = 1, 2, ...) vanishes only at zero, k < kαm < ∞ for
m ∈ N. Suppose that n ∈ Aαm. Then

ϕn(2u) ≤ ϕn (2cn) ≤ kϕn (cn)
ϕn (αcn)
ϕn (αcn)

≤ kϕn (1)
ϕn(u)
ϕn

(
1
m

) ≤ kαmϕn(u)

for u ∈ [αcn, cn] and
ϕn(2u) ≤ kϕn(u) ≤ kαmϕn(u)

for u ∈ [cn, 1]. Hence the proof is finished. �

Lemma 3
If ϕ and ϕ∗ satisfy the δ2-condition, then for every ε ∈ (0, 1) there exist a number

ηε > 1 and a sequence d = (dn) of positive real numbers with
∑∞
n=1 ϕn(dn) < ε such

that

ϕn

(ηε
2
u
)
≤ 1

2ηε
ϕn(u)

for each n ∈ N and every u ∈ [dn, 1].
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Proof. We will apply the methods from [3] and [9]. Take an arbitrary ε > 0. Since
ϕn(1) = 1, ϕn(u) = u2 for each n ∈ N and all |u| > 1, and ϕn is convex on [−1, 1]
for all n ∈ N, using (17) from [3] and applying Lemma 2 from [3] we can find
b0 > 1 such that ϕ∗

n(b0u) ≤ 2ϕ∗
n(u) for each n ∈ N and every |u| ≥ bn, where ϕ∗

n is
complementary to ϕn in the sense of Young and bn is such that

∑∞
n=1 ϕ

∗
n(bn) ≤ ε/2.

The existence of such a sequence (bn) follows by ϕ∗ ∈ δ2. Furthermore a number
b ∈ (1, 2) can be found small enough to satisfy ϕ∗

n(b
2u) ≤ 2bϕ∗

n(u) for each n ∈ N

and every |u| ≥ bn. Hence

ϕ∗
n(b

2v) ≤ 2bϕ∗
n(v) + 2bϕ∗

n(bn)

for each n ∈ N and every v ∈ R. Then

ϕn

(
b

2
u

)
= sup

v≥0

{
b

2
|u| v − ϕ∗

n(v)
}

= sup
v≥0

{
b

2
|u| v − 1

2b
ϕ∗
n(b

2v)
}

+ ϕ∗
n(bn)

= sup
v≥0

{
1
2b

|u| b2v − 1
2b

ϕ∗
n(b

2v)
}

+ ϕ∗
n(bn) =

1
2b

ϕn(u) + ϕ∗
n(bn)

for every u ∈ R and n ∈ N. Now take the sequence (wn) such that ϕn(wn) = ϕ∗
n(bn).

Define
cn =

2b√
b− 1

wn

for every n ∈ N. Put ξ =
√
b. Since ϕn(αu) ≤ αϕn(u) for each n ∈ N, u ∈ R and

α ∈ [0, 1], we get

ϕn

(
ξ

2
u

)
≤ ϕn

(
b

2
u

)
≤ 1

2b
ϕn(u) + ϕn

(√
b− 1
2b

u

)
≤ 1

2ξ
ϕn(u)

for u ≥ cn and n ∈ N.
By ϕ ∈ δ2, we have Iϕ(c) < ∞. Hence we can find a number λ > 0 such that

Iϕ(λc) < ε/2. Denote

Ak =

{
n ∈ N : sup

λdn≤u≤dn

2(1 + 1
k )ϕn

(
1
2 (1 + 1

k )u
)

ϕn(u)
≤ 1

}
.

Since limu→0 u−1ϕn(u) = 0 for every n ∈ N, ϕn (n ∈ N) is linear in no neighborhood
of 0, and consequently

⋃∞
i=1 Ai = N. Then there exists a number l ∈ N such that∑

n∈N\Al

ϕn(cn) <
ε

2
.
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Define

dn =

{
λcn for n ∈ Al

cn for n ∈ N \Al.
We get Iϕ(d) < ε. Taking ηε = min{ξ, 1 + 1/l}, we obtain

ϕn

(ηε
2
u
)
≤ 1

2ηε
ϕn(u)

for each n ∈ N and u ≥ dn which finishes the proof. �

Lemma 4
If ϕ and ϕ∗ satisfy the δ2-condition, then for every ε ∈ (0, 1) there are numbers

a = a(ε) ∈ (0, 1) and γ = γ(a(ε)) ∈ (0, 1) such that

ϕn

(
u + v

2

)
≤ 1 − γ

2
(ϕn (u) + ϕn (v)) (3)

for each n ∈ N, every u ∈ [dn, 1] and
∣∣ v
u

∣∣ < a, where d = (dn) is from Lemma 3.

Proof. In the case of the ∆2-condition for all u ∈ R the thesis of the lemma was
proved for all u, v ∈ R with

∣∣ v
u

∣∣ < a in Example 1.7 from [4]. The same method is
applicable in our situation. Fix ε ∈ (0, 1). Let d = (dn) and ηε be as in Lemma 3.
Then there exists a number a ∈ (0, 1) such that 1 + a ≤ ηε. Taking γ = a/a+ 1, we
get γ ∈ (0, 1) and

ϕn

(
1 + a

2
u

)
≤ 1

2(1 + a)
ϕn(u) ≤ 1

2(1 + a)
(ϕn(u) + ϕn(au))

=
1
2
(1 − γ) (ϕn(u) + ϕn(au))

for each n ∈ N and every u ∈ [dn, 1] . Since for every u > 0 the function

f(a) = 2Φ
(
u + au

2

)
/(Φ(u) + Φ(au))

is nonincreasing, the above inequality holds true for every a0 < a with the same γ.
Hence we obtain the thesis. �

Theorem 1
Let ϕ be the Musielak-Orlicz function satisfying condition (∗) and (X, ‖·‖X) be

the Banach space. Then the following statements are equivalent:

(a) The Musielak-Orlicz sequence space lϕ(X) of Bochner type is P -convex.
(b) Both lϕ and (X, ‖·‖X) are P -convex.
(c) lϕ is reflexive and (X, ‖·‖X) is P -convex.
(d) (X, ‖·‖X) is P -convex, ϕ ∈ δ2 and ϕ∗ ∈ δ2.
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Proof. (a)⇒ (b). Since the spaces lϕ and X are embedded isometrically into lϕ(X)
and P -convexity is inherited by subspaces, LΦ(µ) and X are P -convex.

(b)⇒ (c). Every P -convex Banach space is reflexive (see Theorem 3.2 in [18]).
Hence lϕ is reflexive.

(c)⇒ (d). The reflexivity of Musielak-Orlicz sequence space lϕ is equivalent to
the fact that ϕ ∈ δ2 and ϕ∗ ∈ δ2 (see [8] and [12]).

(d)⇒(a). Suppose that ϕ ∈ δ2, ϕ
∗ ∈ δ2 and (X, ‖·‖X) is P -convex. Let n0 be a

natural number from Lemma 1. Define

zn = max {cn, dn}

for every n ∈ N, where cn, dn are from (1) and Lemma 3, respectively, and they
correspond to ε = 1

4n0
. Hence

∞∑
n=1

ϕ(zn) ≤
∞∑
n=1

ϕ(cn) +
∞∑
n=1

ϕ(dn) <
1

2n0
.

Let a be the number from Lemma 4 with zn in place of dn and let (Aam) be the
ascending sequence of finite sets from Lemma 2 corresponding to α = a and zn in
place of cn. Since ϕ ∈ δ2, Iϕ

(
1
az

)
< ∞. Then there exists a natural number m0 such

that ∑
n∈N\Aa

m0

ϕn

(
1
a
zn

)
<

1
2n0

. (4)

We have
ϕn(2u) ≤ kam0

ϕn(u)

for every n ∈ Aam0
and u ∈ [azn, 1]. Moreover, taking p ∈ N such that 1/a ≤ 2p and

applying p times inequality (2), we obtain

ϕn

(
1
a
u

)
≤ (kam0

)pϕn(u)

for every n ∈ Aam0
and u ∈ [azn, 1]. Setting now 1

au = v and 1
(kam0

)p = βm0 , we get

ϕn(av) ≥ βm0ϕn(v) (5)

for every n ∈ Aam0
and v ∈ [zn, 1]. Furthermore, if zn/a < 1 for some n ∈ N,

repeating a similar argumentation, we obtain

ϕn(2u) ≤ kϕn(u)
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and

ϕn

(
1
a
u

)
≤ kpϕn(u)

for every u ∈ [zn, 1]. Consequently

ϕn(av) ≥ βϕn(v) (6)

for every v ∈ [ zna , 1], where 1/kp = β.
Now, we will show that there exists a number r1 ∈ (0, 1) such that for every

x1, x2, ..., xn0 from the unit ball B(X), we have
n0∑
i=1

n0∑
j=i

ϕn

(∥∥∥∥xi − xj

2

∥∥∥∥
X

)
≤ n0 − 1

2
r1

n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
(7)

for every n ∈ N such that max1≤i≤n0

{∥∥xi∥∥
X

}
≥ zn/a .

Take x1, x2, ..., xn0 ∈ B(X). Let k be an index such that∥∥xk∥∥
X

= max
1≤i≤n0

{∥∥xi∥∥
X

}
.

For the clarity of the proof, we will divide it into two parts.

I. Suppose that there exists i1 ∈ {1, 2, ..., n0} such that
∥∥xi1∥∥

X

/∥∥xk∥∥
X

< a. Since∥∥xk∥∥ ≥ zn/a ≥ zn, by inequality (3), we have

ϕn

(∥∥∥∥xi1 − xk

2

∥∥∥∥
X

)
≤ ϕn

(∥∥xi1∥∥
X

+
∥∥xk∥∥

X

2

)

≤ 1
2
(1 − γ)

(
ϕn

(∥∥xi1∥∥
X

)
+ ϕn

(∥∥xk∥∥
X

))
.

Hence, by the convexity of ϕn (n ∈ N) on the interval [0, 1], we get
n0∑
i=1

n0∑
j=i

ϕn

(∥∥∥∥xi − xj

2

∥∥∥∥
X

)

≤ n0 − 1
2

n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
− γ

2
(
ϕn

(∥∥xi1∥∥
X

)
+ ϕn

(∥∥xk∥∥
X

))
≤ n0 − 1

2

n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
− γ

2n0

(
n0ϕn

(∥∥xk∥∥
X

))
≤ n0 − 1

2

n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
− γ

2n0

n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
=

n0 − 1
2

(
1 − γ

n0(n0 − 1)

) n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
(8)

for every n ∈ N such that the inequality max1≤i≤n0{
∥∥xi∥∥

X
} ≥ zn/a holds true.
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II. Assume that for all i �= k we have∥∥xi∥∥
X

‖xk‖X
≥ a . (9)

Then
∥∥xi∥∥ > 0 for every i �= k. Let i0, j0 be from Lemma 1. We may assume that

a ≤
∥∥xi0∥∥

X

‖xj0‖X
≤ 1

a
. (10)

Really, otherwise we have

a >

∥∥xi0∥∥
X

‖xj0‖X
≥

min
{∥∥xi0∥∥

X
,
∥∥xj0∥∥

X

}
max {‖xi0‖X , ‖xj0‖X} ≥

min
{∥∥xi0∥∥

X
,
∥∥xj0∥∥

X

}
‖xk‖X

,

which contradicts inequality (9). Hence applying Lemma 1 and inequality (10), we
get ∥∥∥∥xi0 − xj0

2

∥∥∥∥
X

≤
∥∥xi0∥∥

X
+

∥∥xj0∥∥
X

2

(
1 −

2δmin
{∥∥xi0∥∥

X
,
∥∥xj0∥∥

X

}
‖xi0‖X + ‖xj0‖X

)

≤
(

1 − 2δa
1 + a

) ∥∥xi0∥∥
X

+
∥∥xj0∥∥

X

2
.

Therefore, by the convexity of each ϕn on [0, 1], we obtain

ϕn

(∥∥∥∥xi0 − xj0

2

∥∥∥∥
X

)
≤ 1

2
(1 − α)

(
ϕn

(∥∥xi0∥∥
X

)
+ ϕn

(∥∥xj0∥∥
X

))
, (11)

where α = 2δa
1+a ∈ (0, 1). Consequently, by inequalities (11) and (6), we have
n0∑
i=1

n0∑
j=i

ϕn

(∥∥∥∥xi − xj

2

∥∥∥∥
X

)

≤ n0 − 1
2

n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
− α

2
(
ϕn

(∥∥xi0∥∥
X

)
+ ϕn

(∥∥xj0∥∥
X

))
≤ n0 − 1

2

n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
− αϕn

(
a

∥∥xk∥∥
X

)
≤ n0 − 1

2

n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
− αβ

n0

(
n0ϕn

(∥∥xk∥∥
X

))
≤ n0 − 1

2

n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
− αβ

n0

n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
=

n0 − 1
2

(
1 − 2αβ

n0(n0 − 1)

) n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
(12)
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for every n ∈ N satisfying max1≤i≤n0{
∥∥xi∥∥

X
} ≥ zn/a. Define

r1 = max
{

1 − γ

n0(n0 − 1)
, 1 − 2αβ

n0(n0 − 1)

}
.

Combining inequalities (8) and (12), we get inequality (7). Repeating the same
argumentation as in the proof of inequality (7), a number r2 ∈ (0, 1) can be found
such that

n0∑
i=1

n0∑
j=i

ϕn

(∥∥∥∥xi − xj

2

∥∥∥∥
X

)
≤ n0 − 1

2
r2

n0∑
i=1

ϕn
(∥∥xi∥∥

X

)
(13)

for every n ∈ Aαm0
satisfying max1≤i≤n0{

∥∥xi∥∥
X
} ≥ zn.

Let x̃1, x̃2, ..., x̃n0 ∈ S(lϕ(X)). Taking x̃i = (xin) for i = 1, 2, ...n0, define

I =

{
n ∈ N :

n0∑
i=1

ϕn
(∥∥xin∥∥X)

≥ n0ϕn(zn)

}
.

Obviously
max

1≤i≤n0

{∥∥xin∥∥X}
≥ zn

for every n ∈ I. Decompose the set I into the following sets

I1 =
{
n ∈ I : max

1≤i≤n0

{∥∥xin∥∥X}
≥ zn

a

}
,

I2 =
{
n ∈ I : zn ≤ max

1≤i≤n0

{∥∥xkn∥∥X}
<

zn
a

}
.

Next divide the set I2 into two subsets I21 and I22 defined by

I21 = I2 ∩Aam0
and I22 = I2 \Aam0

.

By inequalities (7) and (13), we have

n0∑
i=1

n0∑
j=i

ϕn

(∥∥∥∥xin − xjn
2

∥∥∥∥
X

)
≤ 1

n0

(
n0

2

)
r

n0∑
i=1

ϕn
(∥∥xin∥∥X)

(14)

for every n ∈ I1 ∪ I21, where r = {r1, r2}. Moreover, by the definitions of the set I
and the sequence (zn), we have

∑
n∈N\I

n0∑
i=1

ϕn
(∥∥xin∥∥X)

<
1
2
. (15)
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Now, let n ∈ I22. It follows, by inequality (4) that

∑
n∈I22

n0∑
i=1

ϕn
(∥∥xin∥∥X)

=
∑

n∈I2\Aa
m0

n0∑
i=1

ϕn
(∥∥xin∥∥X)

≤
∑

n∈I2\Aa
m0

n0ϕn
(∥∥xkn∥∥X)

<
∑

n∈I2\Aa
m0

n0ϕn

(zn
a

)
≤

∑
n∈N\Aa

m0

n0ϕn

(zn
a

)
<

1
2
. (16)

Hence, by inequalities (15) and (16) we get

∑
n∈N\(I1∪I21)

n0∑
i=1

ϕn
(∥∥xin∥∥X)

=
∑
n∈N\I

n0∑
i=1

ϕn
(∥∥xin∥∥X)

+
∑
n∈I22

n0∑
i=1

ϕn
(∥∥xin∥∥X)

< 1 .

Since
∥∥x̃i∥∥ = 1 for i = 1, 2, ...n0 and ϕ ∈ δ2, Ĩϕ

(
x̃i

)
= 1, for i = 1, 2, ..., n0.

Consequently ∑
n∈I1∪I21

n0∑
i=1

ϕn
(∥∥xin∥∥X)

≥ n0 − 1 . (17)

Therefore, by inequalities (14) and (17), we have

n0∑
i=1

n0∑
j=i

Ĩϕ

(
1
2

(
xi − xj

))

=
n0∑
i=1

n0∑
j=i

∑
n∈I1∪I21

ϕn

(∥∥∥∥xin − xjn
2

∥∥∥∥
X

)
+

n0∑
i=1

n0∑
j=i

∑
n∈N\(I1∪I21)

ϕn

(∥∥∥∥xin − xjn
2

∥∥∥∥
X

)

≤ 1
n0

(
n0

2

)
r

n0∑
i=1

∑
n∈I1∪I21

ϕn
(∥∥xin∥∥X)

+
1
n0

(
n0

2

) n0∑
i=1

∑
n∈N\(I1∪I21)

ϕn
(∥∥xin∥∥X)

=
1
n0

(
n0

2

)
r

n0∑
i=1

∑
n∈I1∪I21

ϕn
(∥∥xin∥∥X)

+
1
n0

(
n0

2

) (
n0∑
i=1

Ĩϕ
(
xi

)
−

n0∑
i=1

∑
n∈I1∪I21

ϕn
(∥∥xin∥∥X))



P-convexity of Musielak-Orlicz sequence spaces of Bochner type 599

=
(
n0

2

) (
1 − 1 − r

n0

n0∑
i=1

∑
n∈I1∪I21

ϕn
(∥∥xin∥∥X))

≤
(
n0

2

) (
1 − (1 − r)(n0 − 1)

n0

)
.

Finally,
n0∑
i=1

n0∑
j=i

Ĩϕ

(
1
2

(
xi − xj

))
≤

(
n0

2

)
(1 − p) ,

where p = (1−r)
2 . So there exist i1, j1 such that

Ĩϕ

(
1
2

(
xi1 − xj1

))
≤ 1 − p.

Hence, by δ2-condition and (∗) (see [13], Lemma 9), we get∥∥∥∥1
2

(
xi1 − xj1

)∥∥∥∥ ≤ 1 − q(p), 0 < q(p) < 1 ,

i.e. lϕ(X) is P−convex. �

Corollary 1
The Lebesgue-Bochner sequence space lp (1 < p < ∞) is P -convex iff X is

P -convex.

Proof. The Lebesgue space lp is a Musielak-Orlicz space generated by the Or-
licz function ϕn (u) = |u|p for every n ∈ N satisfying all the assumptions of
Theorem 1. �

The following characterization of P -convexity, proved directly in [22] in a long
way, is an immediate consequence of Theorem 1.

Corollary 2
The following statements are equivalent:

(a) lϕ is P -convex.
(b) lϕ is reflexive.
(c) ϕ ∈ δ2 and ϕ∗ ∈ δ2.

Proof. It is enough to apply Theorem 1 with X = R. �
The authors wish the thank Professor H. Hudzik for helpful comments.



600 Kolwicz and P�luciennik

References

1. G. Alherk and H. Hudzik, Uniformly non-l1n Musielak-Orlicz spaces of Bochner type, Forum
Math. 1 (1989), 403–410.

2. D. Amir and C. Franchetti, The radius ratio and convexity properties in normed linear spaces,
Trans. Amer. Math. Soc. 282 (1984), 275–291.

3. M. Denker and H. Hudzik, Uniformly non-l1n Musielak-Orlicz sequence spaces, Proc. Indian
Acad. Sci. (Math. Sci.) 101 (1991), 71–86.

4. S. Chen and H. Hudzik, On some convexities of Orlicz and Orlicz-Bochner spaces, Comment.
Math. Univ. Carolin. 29.1 (1988).

5. D.P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125
(1966), 114–146.

6. H. Hudzik, Uniformly non-l
(1)
n Orlicz spaces with Luxemburg norm, Studia Math. 81 (1985),

271–283.
7. H. Hudzik, Some classes of uniformly non-square Orlicz-Bochner spaces, Comment. Math.

Univ. Carolin. 26 (1985), 269–274.
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