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ABSTRACT
It is proved that the Musielak-Orlicz sequence space [, (X)) of Bochner type is
P-convex if and only if both spaces I, (R) and X are P-convex. In particular,
the Lebesgue-Bochner sequence space [P (X)) is P-convex iff X is P-convex
and 1 < p < o0.

|. Introduction

Relationships between various kinds of convexities of Banach spaces and the refle-
xivity were developed by many authors. D. Giesy [5] and R.C. James [10] raised
the question whether B-convex Banach spaces are reflexive. James [11] settled the
question negatively, constructing an example of a nonreflexive B-convex Banach
space. It was natural to ask whether reflexivity is implied by some slightly stronger
geometric property. Such a property was introduced by C.A. Kottman [18] and
it was called P-convexity. Kottman proved that every P-convex Banach space is
reflexive. D. Amir and C. Franchetti [2] showed that in Banach spaces P-convexity
follows from uniform convexity as well as from uniform smoothness. It was natural
to characterize P-convexity in some concrete Banach spaces. Y. Ye, M. He and
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R. Pluciennik [21] proved that every Orlicz space is reflexive iff it is P-convex. The
same result for Musielak-Orlicz function spaces was obtained by P. Kolwicz and R.
Pluciennik [16] and for Musielak-Orlicz sequence spaces by Y. Ye and Y. Huang [22].

In this paper we show that [,(X) is P-convex iff both I, and X are P-convex.
This result implies immediately the main theorem from [22]. The similar charac-
terization of P-convexity for Orlicz-Bochner function spaces was done in [17]. It
is worth to mention that criteria for B-convexity of Orlicz-Bochner spaces were
obtained in [4], [7] and [15].

Denote by N, R and R, the sets of natural, real and positive real numbers,
respectively. Let M be the set of all real sequences z = (u,)52 ;. A function ¢
is called an Orlicz function, if ¢: R — Ry is convex, even, ¢(u) = 0 iff u = 0,
and lim, .o v tp(u) = 0. A sequence ¢ = (,,) of Orlicz functions ¢,, is called a
Musielak-Orlicz function. Define on M a convex modular I, by

Lp(x) = Z on(un)

for every x € M. By the Musielak-Orlicz space l, we mean
lo={x e M:I,(cx) <oo for some c¢> 0}

equipped with the Luzemburg norm

lzll,, = inf{e >0:1, (%) < 1}.

For every Musielak-Orlicz function ¢ we will denote by ¢* the sequence (¢}) of
functions ¢, that are complementary to ¢, in the sense of Young, i.e.

o (V) :ig%{u\v! — pn(u)}

for every v € R and n € N.

We say that a Musielak-Orlicz function ¢ satisfies the d2-condition if there are
constants ko, ao > 0 and a sequence (c2) of positive reals with >~ , 2 < oo such
that

on(2u) < kotpn(u) + Cg

for each n € N and every u € R satisfying ¢, (u) < ag. For more details we refer
to [20].
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Moreover, we can assume without loss of generality that ¢, (1) = 1 and ¢, (u) =
u? for all n € N and every |u| > 1. Otherwise we may define a new Musielak-Orlicz
function ¢ = (¢,,) by the following formula

n (u) = 9

on(bpu) for 0<|ul <1
u for |u| > 1,

where ¢, (b,) = 1, for every n € N. The spaces I, and [, are equal isometrically
(see [13]). Under this assumption we should remember that every function ¢,, (n €
N) is non decreasing on R4 and it is convex on the interval [0, 1], but not necessarily
convex on the whole Ry . It is easy to prove that this modified function ¢ satisfies
the 82-condition iff for every e > 0 there are a constant k& > 2 and a sequence (cy,)
of positive real numbers such that

Z onlcn) <€ and on(2u) < kon(u) (1)

for each n € N and every u € [¢,,, 1] (see [13] and [3]).
We say that ¢ satisfies condition (x) if for every € € (0,1) there exists 6 > 0
such that ¢, (u) < 1 — € implies ¢, ((1 4+ 6)u) <1 for all u € R and every n € N.
Now, let us define the type of spaces to be considered in this paper. For a real
Banach space (X, ||-|| ), denote by M(N, X), or just M(X), the sequences x = ()
such that z,, € X for all n € N. Define on M(X) a modular f;(a:) by the formula

f;(x) = Z on ([[zall x) -
n=1

Let
lo(X) = {z € M(X) 20 = (lzn]l )27, €1}

Then [, (X) equipped with the norm |[z|| = [|zo||, becomes a Banach space which
is called a Musielak-Orlicz sequence space of Bochner type.

A linear normed space X is called P-convez if there exist ¢ > 0 and n € N
such that for all z1, zo, ...z, € S(X)

min o — | < 2(1 =)

where S(X) denotes the unit sphere of X. The notion of P-convexity in Banach
spaces can be characterized by the following lemma.
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Lemma 1
A Banach space X is P-convex iff there exist ng € N and 6 > 0 such that for

any elements x1, T, ...,xn, € X \ {0} integers ig, jo can be found such that

(1 ~ 26min {lai, I - ijowx}>

”xiOHX + Hx.jOHX
o ll x + llzjoll x

x 2
Proof. Suppose that X is P-convex. Then there exist 6 > 0 and n € N such that
for all z1,x2,...,x,, € X \ {0} natural numbers g, jo can be found such that

Lig — Tjqy
2

1’ T _ T H <18
2 [llwinllx Nzgollx 1l x
We may assume without loss of generality that ||x;,|| > ||x;,| . We have
1_5>}‘ Tig,  Tjy H _ 5Uio—ﬂfjo+< 11 >9ﬁ
2 lzollx  Nziollx llx  N20z0llx  \lwilx  lzilly /2 15
1 Tiy — Tjq 1 ” H ‘ 1 1 '
= — — || — .
ijOHX 2 X 2 X ”wioHX HbeHX
Hence
1 Tiy — T 1 1 1
' 102 Jo §1—5+5H$10HX . - . '
1250 | X ziollx Mol
1l }Hﬂfz‘on:_5+}(1+||wion>
2 2 ||z ll x 2 1201l x
_ s Lol + Dzl
2 1250 |y
and finally
iy —@jo || Iiollx + 250l x < 26|l lly )
2 lx 2 il x + N0l x

Since the converse implication follows immediately by the definition of P-convexity,
the proof is finished. (I
Although the above lemma was proved in [17], we presented it here for the sake

of convenience.
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1. Results

Lemma 2

If ¢ satisfies the d2-condition, then for every a € (0,1) there exists a non-
decreasing sequence (A%,) of finite subsets of N such that

oo
U 45 =N
m=1
and for every m € N a number ki, > 2 can be found such that

on(2u) < ki on(u) (2)

for each n € AS, and every u € [acy, 1], where ¢, are from (1).
Proof. Fix a € (0,1). Denote B,,, = {0,1,...,m} and

1
C;’,‘L:{nEN:—<acn<cn} (m=1,2,...).

m

Obviously, C% C C% ., for every m € Nand |J;._; C% = N. Define A%, = B,,NCS,
for every m € N. Then A, C A5, and cardAj;, < oo for every m € N. Moreover
U>>_, A% = N. Denote

where k is from (1). Since ¢,, (n = 1,2,...) vanishes only at zero, k < k%, < oo for
m € N. Suppose that n € A% . Then

Pn (acn)

on(2u) < @n (2¢4) < kon (cn) on (aCn)

~—

on(u

en (5)

on(2u) < ko (u) < kg on(u)
for u € [c,, 1]. Hence the proof is finished. OJ

< kpn (1) < ko on(u)

for u € [acy, ¢,] and

Lemma 3

If p and p* satisfy the 63-condition, then for every e € (0,1) there exist a number
ne > 1 and a sequence d = (d,,) of positive real numbers with > | ¢ (d,) < € such
that

B 1
Pn (%U> < (Pn(u)

for each n € N and every u € [d,, 1].



592 KoLwicz AND PLUCIENNIK

Proof. We will apply the methods from [3] and [9]. Take an arbitrary ¢ > 0. Since
on(1) =1, pn(u) = u? for each n € N and all |u| > 1, and ¢, is convex on [—1,1]
for all n € N, using (17) from [3] and applying Lemma 2 from [3] we can find
bp > 1 such that ¢} (bou) < 2¢7 (u) for each n € N and every |u| > b, where ¢} is
complementary to ¢,, in the sense of Young and b, is such that >~ ; ¢ (b,) < €/2.
The existence of such a sequence (b,,) follows by ¢* € 6. Furthermore a number
b € (1,2) can be found small enough to satisfy ¢ (b*u) < 2bp: (u) for each n € N
and every |u| > b,,. Hence

o (b?0) < 2bgy, (v) + 2627, (bn)

for each n € N and every v € R. Then

) = supd 2l — ot (v)
#n | 3 _3213 5 lulv = en(v

1
—sup {5 lulo = et o) | + 01 0)

1 1, . 1 *
= sup {5 W0 = e o)+ 010) = g+ i)
for every u € R and n € N. Now take the sequence (w,,) such that ¢, (w,) = ¢} (by).

Define
2

En— wn
Vb—1

for every n € N. Put £ = v/b. Since ¢, (au) < ap,(u) for each n € N, v € R and
a € [0,1], we get

b b
©n <§u> < ¢n (gu) < %@n(u) + ¥n <\/_2b 1“) < %‘pn(u)

for u > ¢, and n € N.
By ¢ € 62, we have I,(¢) < oo. Hence we can find a number A > 0 such that
I,(X¢) < €/2. Denote

2(1 + L n 11
A =<¢neN: sup (L+3)e (2( +k>u)§1 .
Ay, <u<d, on(u)

Since lim, o u "y, (u) = 0 for every n € N, ¢,, (n € N) is linear in no neighborhood
of 0, and consequently J;=; A; = N. Then there exists a number [ € N such that

Z ‘Pn(En) <

nGN\Al

N
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Define
{ pY for n € 4,
d, =

Cn for n € N\ 4.
We get 1,(d) < e. Taking 7. = min{{, 1+ 1/1}, we obtain

) <
on () < 5-en(w)

for each n € N and u > d,, which finishes the proof. [

Lemma 4

If p and ¢* satisfy the 63-condition, then for every e¢ € (0,1) there are numbers
a=a(e) € (0,1) and v = y(a(e)) € (0,1) such that

e ("50) £ 157 a0+ o0 () 0

for each n € N, every u € [d,,, 1] and ‘ﬂ < a, where d = (d,,) is from Lemma 3.

Proof. In the case of the As-condition for all v € R the thesis of the lemma was
proved for all u,v € R with |%‘ < a in Example 1.7 from [4]. The same method is
applicable in our situation. Fix € € (0,1). Let d = (d,,) and 7. be as in Lemma 3.
Then there exists a number a € (0,1) such that 1+ a < n.. Taking v =a/a + 1, we
get v € (0,1) and

oo (F50) < g ayen®) < g ey (90) + alan)
1

= 5 (1 =7) (¢n(u) + ¢n(av))
for each n € N and every u € [d,,, 1] . Since for every u > 0 the function

@) =20 (5™ (@) + B(a)

is nonincreasing, the above inequality holds true for every ag < a with the same ~.
Hence we obtain the thesis. [J

U+ au

Theorem 1
Let ¢ be the Musielak-Orlicz function satisfying condition (x) and (X, ||-|| ) be
the Banach space. Then the following statements are equivalent:

(a) The Musielak-Orlicz sequence space l,(X) of Bochner type is P-convex.
(b) Both l, and (X,|-||y) are P-convez.

(c) l, is reflexive and (X, ||| ) is P-convex.

(d) (X, |||l x) is P-convex, ¢ € ba and ¢* € 6.
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Proof. (a)= (b). Since the spaces l, and X are embedded isometrically into I, (X)
and P-convexity is inherited by subspaces, Lg(p) and X are P-convex.

(b)= (c). Every P-convex Banach space is reflexive (see Theorem 3.2 in [18]).
Hence [, is reflexive.

(c)= (d). The reflexivity of Musielak-Orlicz sequence space [, is equivalent to
the fact that ¢ € 83 and ¢* € 62 (see [§] and [12]).

(d)=(a). Suppose that ¢ € 62, ¢* € 63 and (X, ||-|| y) is P-convex. Let ng be a
natural number from Lemma 1. Define

zp, = max {cp,dy,}

for every n € N, where ¢, d,, are from (1) and Lemma 3, respectively, and they

correspond to € = %. Hence
o

Z P(zn) < Z o(cn) + Z o(d,) < 2%0 .

Let a be the number from Lemma 4 with z, in place of d,, and let (A% ) be the
ascending sequence of finite sets from Lemma 2 corresponding to @ = a and z, in
place of ¢,,. Since ¢ € 62, I, (%z) < 00. Then there exists a natural number mg such

that ) )
>, ¢ (—) <5 (4)
a 2ng
nEN\A;an

We have
on(2u) < kg, on(u)

for every n € A9, and u € [az,, 1]. Moreover, taking p € N such that 1/a < 2P and
applying p times inequality (2), we obtain

a

on (1u) < (ke Pon(w)

for every n € A%, and u € [azy, 1]. Setting now 2u = v and W = By, We get

P (av) = By en(v) ()

for every n € Ay, and v € [zy,1]. Furthermore, if z,/a < 1 for some n € N,
repeating a similar argumentation, we obtain

‘Pn(QU) < ko (u)
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on (1) < Penta)

for every u € [z, 1]. Consequently

on(av) = Bon(v) (6)
for every v € [22, 1], where 1/kP = 3

Now, we will show that there exists a number r; € (0,1) such that for every

xl 2? ... 2™ from the unit ball B(X), we have

no no no o 1 no )
Y e ([ 557 ) = 25t Sen el )
=1 j=¢1 X i=1

for every n € N such that max;<;<n, {H.’L‘ZHX} > zn/a.

Take x!,22,...,2™ € B(X). Let k be an index such that

¥ = max {[l2"]}-

and

i

For the clarity of the proof, we will divide it into two parts.

I. Suppose that there exists i; € {1,2,...,n0} such that Hac“ HX /kaHX < a. Since
|z*|| > zn/a > 2y, by inequality (3), we have

i1 k
o )< o (12010
x 2

1 i
< 2= ) (on (o ) + n (I*1,0)-
Hence, by the convexity of ¢,, (n € N

no MNo

> e (|55 )

=1 j=1 X

1 "
<= Z% le*llc) = 3 (on (2 [1x0) + 2n (=[] )

it — gk

) on the interval [0, 1], we get

bt —

~ 5L (g ([*]))

g%4g%wmw§§ywww
:n02_1 (1_710 no )Z('O" |x H (8)

for every n € N such that the inequality maxi<i<n,{||2||  } > zn/a holds true.
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I1. Assume that for all i # k we have

lHX Za- (9)

Then HZL‘ZH > 0 for every i # k. Let ig, jo be from Lemma 1. We may assume that

‘inHX 1
< ool Sa (10)

Really, otherwise we have
meHx mln{meHX’Hx]OHX} mm{HxlOHX"‘JjjOHX}
[7o]|x = max {[lz*of| x, [la7o]lx } — 1|

which contradicts inequality (9). Hence applying Lemma 1 and inequality (10), we
get

a >

)

pto _ pio

2

ol el () 2omin el ol
x 2 Iz |l x + [l x

1+a 2

Therefore, by the convexity of each ¢,, on [0, 1], we obtain

o ) =500 e () + o (lPl5) . D

where o = % € (0,1). Consequently, by inequalities (11) and (6), we have

(1o 2 ) Ll

i — o

2

<Ml zson l#7ll0) = 5 (on (l2]L0) + 2 (2] )
< zmuxiug—wn<aumkux>

| /\

an [#]1) = %2 (mon ([s*)
”0‘12% ('] ) Zson ()

ng — 1 20
o (1— S 1)2% (I ) (12)

IN
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for every n € N satisfying maxlgigno{HxiHX} > z,/a. Define

i 1_%},

ry =max{1l— —————
! { no(no — 1) no(ng — 1)

Combining inequalities (8) and (12), we get inequality (7). Repeating the same
argumentation as in the proof of inequality (7), a number ro € (0,1) can be found

such that
no No wi _ x_j nO _ 1 no ;
Y e (|55 ) = 25t S en el (13
i=1 j=i X i=1

for every n € A7, = satisfying maxlgigno{HmiHX} > Zn.
Let 21,22, ...,2™ € S(I,(X)). Taking 2 = (z,) for i = 1,2, ...ng, define

I = {n eN: z():cpn (mex) > nocpn(zn)} .

i=1
Obviously

122};0 {Hx%HX} > Zn

for every n € Z. Decompose the set 7 into the following sets

. z
7= {nets max (ot} >

Zn
Iy = {n eTl:z, < 122&(}{“;32}&} < Z}

Next divide the set Z5 into two subsets Zy; and Zso defined by
1.21 = IQ N A(rlno and IQQ = IQ \A?no.
By inequalities (7) and (13), we have

S5

i=1 j=i

il
Lp — Ty
2

D= (et o

for every n € 73 UZy1, where r = {rq,r2}. Moreover, by the definitions of the set 7
and the sequence (zy,,), we have

S e (il < 5 (15

neN\T i=1



598 KoLwicz AND PLUCIENNIK

Now, let n € Zss. It follows, by inequality (4) that

S el = X e ()

n€lsp i=1 n€Zs\ A“ i=1
< Y el < Y e ()
WGIZ\A‘TZO nEIQ\AgnO
< Z noPn (%) < % (16)
neN\Ag, |

Hence, by inequalities (15) and (16) we get

S S el

neN\(Z1uZ21) =1

= e+ Y Y e () <1

Since HFH =1for i = 1,2,..n9 and ¢ € 09, };(El) =1, for i = 1,2,...,ng

Consequently
> D enlllzmlly) = no—1. (17)

nEIl uIQl =1
Therefore, by inequalities (14) and (17), we have

57 (L)

1=1 j=1

MBI (=

i=1 j=i n€Z1UZ2;

(Y
xn x’l’b

2

SRS 3 SlD S

i=1 j=i neN\(Z1UZ21) X>

(D X ekl (D)X X el

i=1 n€Z1UIa1 i=1 nGN\(IlLJ1'21)

(3% X ey

€Zl1UZs,

ol (Zf Y H%HX>

i=1 i=1 neZ1UZ2
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(5SS a)

=1 ’I’LGIl UIQl

(3)(-2=)

Finally,
ng MNo N 1 ) ) ’]’LO
ZZI“’ (5 (« ﬂc])) = <2> (1-p),
=1 j=1

where p = @ So there exist i1, j1 such that

— /1 . A
I, <§ (:U“ — x]1)> <1l-p.
Hence, by 82-condition and (x) (see [13], Lemma 9), we get
1 . A
H§ (xll _ 1“71)
ie. l,(X)is P—convex. O

<1—q(p), 0<gqlp) <1,

Corollary 1

599

The Lebesgue-Bochner sequence space [P (1 < p < o0) is P-convex iff X is

P-convex.

Proof. The Lebesgue space [P is a Musielak-Orlicz space generated by the Or-
licz function ¢, (u) = |ul’ for every n € N satisfying all the assumptions of

Theorem 1. O

The following characterization of P-convexity, proved directly in [22] in a long

way, is an immediate consequence of Theorem 1.

Corollary 2
The following statements are equivalent:

(a) l, is P-conver.
(b) 1, is reflexive.
(c) ¢ € 62 and @* € ba.

Proof. 1t is enough to apply Theorem 1 with X = R. [J

The authors wish the thank Professor H. Hudzik for helpful comments.
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