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Abstract

We show that a Musielak-Orlicz function space Lφ has uniformly normal struc-
ture iff it is reflexive. We also give a criterion for normal structure of the
Musielak-Orlicz sequence space �φ and under the assumption that φ is not
linear around zero, a criterion for normal structure of Lφ.

Introduction

The concept of normal structure was introduced in 1948 by M.S. Brodskii and D.P.
Milman [3] to study fixed points of isometries and it is a property shared by all
uniformly convex spaces. In 1965, W.A. Kirk [10] observed that normal structure
implies C ⊂ X has the fixed point property if X is a reflexive Banach space (where
C is closed, bounded and convex).

Necessary and sufficient conditions have been given for function and sequence
Orlicz spaces to have (uniformly) normal structure (see [12], [5]). Also in [9] a
criterion was given for Orlicz-Lorentz spaces to have uniformly normal structure.

Definition 1. Let X be a Banach space. We say that X has normal structure (NS)
if each non-empty, bounded, closed, convex subset S of X with positive diameter,
contains a point x such that:

sup
{
‖x− y‖ : y ∈ S

}
< diamS := sup

{
‖z − y‖ : z, y ∈ S

}
.
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In the case where there exists a constant K ∈ (0, 1) such that for all x ∈ S,

sup
{
‖x− y‖ : y ∈ S

}
≤ KdiamS,

X is said to have uniformly normal structure (UNS).

Definition 2. Let X be a Banach space and {xn} a sequence in X. If for any
x ∈ co{xn}, the convex hull of {xn}, the limit Λ(x) = limn→∞ ‖xn − x‖ > 0 exists
and Λ(x) is affine on co{xn}, then {xn} is called a limit affine sequence.

If, in addition, Λ(x) is constant on co{xn}, then {xn} is called a limit-constant
sequence [11].

Definition 3. A Banach space is said to have the sum-property if it contains no
non-constant limit-affine sequence {xn} for which {Λ(xn)} is non-decreasing [11].

Proposition 4 ([11])
A Banach space X has normal structure if and only if it contains no non-

constant limit constant sequence.

It is easy to see that sum-property implies normal structure. In the case of
Orlicz sequence spaces, normal structure is equivalent to sum-property [12]. We will
see that this is also true for Musielak-Orlicz sequence spaces (see Theorem 12).

Let us now give some background for Musielak-Orlicz spaces. Set (T,Σ, µ) to be
a non-atomic σ-finite, measure space. A non-negative, extended real-valued function
φ : R

+ × T −→ R
+
e is called a Young function (with parameter) if for almost all

t ∈ T, φ(0, t) = 0, φ(x, t) > 0 for x > 0, φ(x, t) is convex with respect to x and for
all x ≥ 0, φ(x, t) is Σ-measurable with respect to t.

For any measurable function f : T −→ R, we define the modular

ρφ(f) =
∫
T

φ(| f(t) |, t)dµ .

The Musielak-Orlicz space Lφ is the set of all equivalence classes of measurable
functions f such that ρφ(λf) < ∞, for some λ > 0.

Endowed with the Luxemburg norm defined by

‖f‖φ = inf
{
r > 0 : ρφ(f/r) ≤ 1

}
,

Lφ is a Banach space.
The conjugate function φ∗, of a Young function φ is defined by φ∗(x, t) =

supy≥0{yx−φ(y, t)}. It is easy to see that φ∗ is a convex function and that (φ∗)∗ = φ.
We also notice that if φ assumes only finite values, then for a.a.t ∈ T , there exists
x > 0 such that φ∗(x, t) < ∞.

Recall that a Young function φ satisfies ∆2-condition (written φ ∈ ∆2) if there
exists K > 0 and a non-negative integrable function h such that for almost all t ∈ T

φ(2x, t) ≤ Kφ(x, t) + h(t)

for all x ≥ 0.



Normal structure of Musielak-Orlicz spaces 573

A function φ : R
+ −→ R

+ is called a Young function if φ is convex, φ(0) = 0
and φ(x) > 0 for x > 0. A sequence φ = {φn} of Young functions, is called a
Musielak-Orlicz function.

For any real sequence x = {xn}, we define the modular

Iφ(x) =
∞∑

n=1

φn(| xn |).

The Musielak-Orlicz sequence space �φ is the set of all real sequences x = {xn} such
that Iφ(λx) < ∞ , for some λ > 0.

Under the Luxemburg norm defined by

‖x‖φ = inf
{
r > 0 : Iφ(x/r) ≤ 1

}
,

�φ is a Banach space.
We say that a Musielak-Orlicz function φ = {φn} satisfies δ2-condition (written

φ ∈ δ2) if there are positive constants K and δ and a non-negative sequence {cn} in
�1 such that for all n ∈ N and x ≥ 0

φn(2x) ≤ Kφn(x) + cn

whenever φn(x) ≤ δ.
The following are useful results connected with ∆2(δ2)-condition. Let f ∈

Lφ, {fn} ⊂ Lφ and {xn} ⊂ �φ.

1. If φ ∈ ∆2(φ ∈ δ2) then,

‖fn‖φ −→ 0 ⇔ ρφ(fn) −→ 0 (1)

(respectively: ‖xn‖φ −→ 0 ⇔ Iφ(xn) −→ 0).

2. If φ ∈ ∆2 then for every ε > 0 there is η(ε) > 0 such that

‖f‖φ ≥ 1 − η(ε) ⇒ ρφ(f) ≥ 1 − ε. (2)

3. If φ ∈ ∆2, (φ ∈ δ2), then

‖fn‖φ −→ 1 ⇒ ρφ(fn) −→ 1 (3)

(respectively: ‖xn‖φ −→ 1 ⇒ Iφ(xn) −→ 1).

The proofs of the above results can be found in [15] or easily derived by imitating
the proofs of analogous results in Orlicz spaces.
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Preliminary results

Lemma 5

Let φ be a Young function with (parameter). The following statements are

equivalent:

1. φ satisfies ∆2-condition.

2. For every ε > 0, there are K > 0 and a non-negative measurable function h with∫
T
h(t)dµ < ε such that for almost all t ∈ T

φ(2x, t) ≤ Kφ(x, t) + h(t) (4)

for all x ≥ 0.

3. For every ε > 0, there are K > 0 and a non-negative measurable function f with∫
T
φ(f(t), t)dµ < ε such that for almost all t ∈ T ,

φ(2x, t) ≤ Kφ(x, t) (5)

for all x ≥ f(t).
4. For every ε > 0, and all a > 1, there are b ∈ (1, 2) and a non-negative measurable

function f with
∫
T
φ(f(t), t)dµ < ε such that for almost all t ∈ T ,

φ(bx, t) ≤ aφ(x, t) (6)

for all x ≥ f(t).

Proof. (1) ⇔ (2) see [16].
(2) ⇒ (3). Let f(t) = sup {x ≥ 0 : φ(x, t) ≤ h(t)}. Since φ(x, t) < ∞ for each

x ≥ 0 and x �−→ φ(x, t) is convex, we have that x �−→ φ(x, t) is continuous and
so φ(f(t), t) = h(t). Moreover f(t) is measurable. Indded let φ−1(x, t) = φ−1

t (x)
where φ−1

t is an inverse function of φt(x) = φ(x, t). For any a ∈ R
+, {t:φ−1

t (x) ≤
a} = {t:x ≤ φt(a)} ∈ Σ, by the measurability of t �−→ φ(x, t), for any x ≥ 0. Thus
t �−→ φ−1(x, t) is measurable and so f(t) = φ−1(h(t), t) must be measurable, too.
Thus,

∫
T
φ(f(t), t)dµ < ε and for almost all t ∈ T and x ≥ f(t),

φ(2x, t) ≤ Kφ(x, t) + φ(f(t), t) ≤ (K + 1)φ(x, t) .

(3) ⇒ (4). Let ε > 0 and a > 1 be given. Take M = max {a,K}. Let l = a−1
M−1 ,

and b = 1 + l. Then, b ∈ (1, 2) and so for x ≥ f(t) we have:

φ(bx, t) ≤ (1 − l)φ(x, t) + lφ(2x, t)

≤ (1 − l)φ(x, t) + lMφ(x, t) = aφ(x, t)



Normal structure of Musielak-Orlicz spaces 575

(4) ⇒ (2). Suppose (4) is true. Let ε > 0 and a = 2. There are b ∈ (1, 2) and a
non-negative measurable function f with

∫
T
φ(f(t), t)dµ < ε such that

φ(bx, t) ≤ 2φ(x, t)

for all x ≥ f(t).
There exists n ∈ N such that bn ≥ 2. Thus for x ≥ f(t) we have

φ(2x, t) ≤ φ(bnx, t) ≤ 2nφ(x, t)

and for x ≤ f(t),
φ(2x, t) ≤ φ(2f(t), t) ≤ 2nφ(f(t), t) .

Hence for any x ≥ 0

φ(2x, t) ≤ 2nφ(x, t) + 2nφ(f(t), t) ,

which means ∆2-condition and so (2). This completes the proof of the lemma. �

Lemma 6
Let φ be a Young function (with parameter). The following statements are equi-

valent.

1. φ satisfies ∆2-condition.
2. For every ε > 0 and a > 1, there are b ∈ (4, 8),m ∈ N and a nonnegative mea-
surable function f with

∫
T
φ(f(t), t)dµ < ε such that for almost all t ∈ T :

φ(bx, t) ≤ amφ(x, t) (7)

for all x ≥ f(t).

Proof. (2) ⇒ (1) Obvious.
(1) ⇒ (2) Assume φ satisfies ∆2-condition. Let ε > 0 and a > 1 be given.

Then by Lemma 5, if x ≥ f(t) then φ(4x, t) ≤ Kφ(x, t) for some K > 0 and a
non-negative measurable function f with

∫
T
φ(f(t), t)dµ < ε. Set M = max {a,K}.

There is m ∈ N such that m ≥ 2 and am > M . Let l = am−M
Mm−M and b = 4(1 + l).

Then, b ∈ (4, 8) and if we follow a similar argument as in the proof of (3) ⇒ (4) in
Lemma 5, we get that φ(bx, t) ≤ amφ(x, t) for x ≥ f(t). �

Lemma 7
Let φ be a Young function (with parameter). The following statements are equi-

valent.

1. φ satisfies ∆2-condition.
2. For every ε > 0 and η ∈ (0, 1), there are ξ ∈ (0, 1) and a non-negative measurable
function h with

∫
T
φ∗(h(t), t)dµ < ε such that for almost all t ∈ T

φ∗(ηx, t) ≤ ηξφ∗(x, t) (8)

for all x ≥ h(t).
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Proof. (1) ⇒ (2). Since inequality (8) is obvious when φ∗(x, t) = ∞, without loss of
generality we assume that φ∗(x, t) < ∞ for all x, t. Let ε > 0 and η ∈ (0, 1) be given.
Then, a = 1

η > 1 and by Lemma 6 there are b ∈ (4, 8),m ∈ N and a measurable

function g : T −→ R
+ with

∫
T
φ(g(t), t)dµ < εη 2−

√
2

8
√

2
such that φ(bx, t) ≤ amφ(x, t)

for all x ≥ g(t). If 0 ≤ x ≤ g(t) then φ(bx, t) ≤ amφ(g(t), t). So for x ≥ 0, we have
φ(bx, t) ≤ amb[φ(x, t) + φ(g(t), t)], which implies

1
amb

φ(bx, t) − φ(g(t), t) ≤ φ(x, t) ,

for every x ≥ 0.
Therefore

φ∗(ηmx, t) = sup
y≥0

{
ηmxy − φ(y, t)

}

≤ sup
y≥0

{
ηmxy −

[ 1
amb

φ(by, t) − φ(g(t), t)
]}

= sup
y≥0

{
ηmxy − ηm

b
φ(by, t)

}
+ φ(g(t), t)

=
η

b
sup
y≥0

{
ηm−1bxy − ηm−1φ(by, t)

}
+ φ(g(t), t)

≤ η

b
sup
y≥0

{
ηm−1byx− φ(ηm−1by, t)

}
+ φ(g(t), t)

=
η

b
φ∗(ηm−1x, t) + φ(g(t), t) .

We can find a measurable function h : T −→ R
+ such that

φ∗(h(t), t) =
b
√
b

η(b−
√
b)
φ(g(t), t)

We have ∫
T

φ∗(h(t), t)dµ <
b
√
b

η(b−
√
b)
εη

2 −
√

2
8
√

2

≤ 8
√

2
2 −

√
2
ε
2 −

√
2

8
√

2
= ε .

Now let x ≥ 1
ηm−1h(t). Then, φ∗(ηm−1x, t) ≥ φ∗(h(t), t) and thus

η(b−
√
b)

b
√
b

φ∗(ηm−1x, t
)
≥ φ(g(t), t) .
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Consequently, if y ≥ 1
ηm−1h(t), we have

φ∗(ηmy, t) ≤ η

b
φ∗(ηm−1y, t) +

η(b−
√
b)

b
√
b

φ∗(ηm−1y, t)

= ηξφ∗(ηm−1y, t)

where ξ = 1√
b
< 1.

Take x ≥ h(t). Then, x
ηm−1 ≥ 1

ηm−1h(t) and hence,

φ∗(ηx, t) ≤ ηξφ∗(x, t) .

(2) ⇒ (1). This proof is omitted since it is the same as the proof of (ii) implies
(i) in Lemma 2 in [1]. �

Lemma 8

Suppose that both φ and φ∗ satisfy ∆2-condition. Then for every ε > 0, there

exist a non-negative measurable function f , with
∫
T
φ(f(t), t)dµ < ε, and constants

c ∈ (0, 1) and γ > 0 such that if | x |≥ f(t) and either | x |≥ 1/c | y | or xy ≤ 0
then,

φ

(∣∣x + y

2

∣∣, t
)

≤ 1 − γ

2
[
φ(| x |, t) + φ(| y |, t)

]
(9)

for almost all t ∈ T .

Proof. Let ε > 0 be given. Since φ∗ satisfies ∆2-condition, by Lemma 7, there are
ξ ∈ (0, 1) and a measurable function h with

∫
T
φ(h(t), t)dµ < ε/3 such that

(i) φ

(
| x |
2

, t

)
≤ 1 − δ

2
φ(| x |, t) for all | x |≥ h(t),

where 0 < δ = 1 − ξ < 1.
Since φ ∈ ∆2, by Lemma 5, there are b ∈ (1, 2) and a measurable function g

with
∫
T
φ(g(t), t)dµ < ε/3 such that

(ii) φ(b | x |, t) ≤ 2
2 − δ

φ(| x |, t) for all | x |≥ g(t) .

Define f : T −→ R
+ by f = max {h, g}. Then f is measurable and

∫
T
φ(f(t), t)dµ <

ε. For all | x |≥ f(t), (i) and (ii) hold. Set c = b − 1 and γ = 1 − 2−2δ
2−δ . Let

| x |≥ f(t) and | x |≥ 1/c | y | or xy ≤ 0.
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Then
φ
(∣∣x + y

2

∣∣, t) ≤ φ
(1

2
(1 + c) | x |, t

)
≤ 1 − δ

2
φ(b | x |, t)

≤ 1 − γ

2
(
φ(| x |, t) + φ(| y |, t)

)
. �

Lemma 9 ([5])

If a Banach space X does not have uniformly normal structure, then for every

ε > 0 and n ∈ N there exists {xi : 1 ≤ i ≤ n + 1} in X such that

‖xj‖ ≤ 1, ‖xi − xj‖ ≤ 1, 1 ≤ i ≤ j ≤ n + 1 and

∥∥∥xk+1 −
1
k

k∑
i=1

xi

∥∥∥ > 1 − ε, 1 ≤ k ≤ n . (10)

Main results

Theorem 10

The Musielak-Orlicz space Lφ has uniformly normal structure if and only if

both φ and φ∗ satisfy ∆2-condition.

Proof. (⇒) If Lφ has UNS then Lφ is reflexive [14] and thus φ, φ∗ ∈ ∆2 (e.g. [7],
[15]).

(⇐) Suppose both φ and φ∗ satisfy ∆2-condition. By Lemma 8, there are a
non-negative measurable function h with

∫
T
φ(8h(t), t)dµ < 1/8 and constants γ > 0

and 0 < c < 1 such that if | x |≥ max{h(t), 1/c | y |} or xy ≤ 0 then

φ
(∣∣x + y

2

∣∣, t) ≤ 1 − γ

2
[
φ(| x |, t) + φ(| y |, t)

]
.

We can find n ∈ N with c(1 + c)n−3 ≥ 8. Let ε = γ
8n2 > 0. Then, by (2) there is

η(ε) > 0 such that if ‖f‖φ ≥ 1− η(ε) then ρφ(f) ≥ 1− ε. Suppose that Lφ does not
have UNS. Then by Lemma 9 there exists {fi : 1 ≤ i ≤ n} such that

‖fi‖φ ≤ 1, ‖fi − fj‖φ ≤ 1, 1 ≤ i ≤ j ≤ n and
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∥∥∥fm+1 −
1
m

m∑
i=1

fi

∥∥∥
φ
≥ 1 − η(ε), m < n . (11)

We may assume that fi’s are simple functions with compact supports and that
f1 = 0, f2 ≥ 0.

Define A = {t : f2(t) ≥ 8h(t)}. Note that by (11) and since f1 = 0, ‖f2‖ >

1 − η(ε) and so ρφ(f2) > 1 − γ
8n2 ≥ 3

4 .
The rest of the proof is similar to that of Theorem 6 in [9] so we will give only

the basic steps.
For 2 < k ≤ n and t ∈ A consider the inequality

sup
{
| fk(t) − fj(t) |: j < k

}
> (1 + c) sup

{
| fk−1(t) − fj(t) |: j < k − 1

}
. (12)

Define
Bi = {t ∈ A : inequality (12) is true for k < i; but it is not true for k = i}

The Bi’s are disjoint measurable subsets of A. Observe that∫
A

φ(f2(t), t)dµ =
∫
T

φ(f2(t), t)dµ−
∫
T−A

φ(f2(t), t)dµ

≥ 3
4
− 1

8
=

5
8
.

Let t ∈ Bi for some 3 ≤ i ≤ n and suppose that k ≤ i− 2 be such that

| fi−1(t) − fk(t) |= sup
{
| fi−1(t) − fj(t) |: j ≤ i− 2

}
.

Applying Lemma 8, we get for t ∈ Bi

φ

(∣∣∣2fi(t) − fi−1(t) − fk(t)
2

∣∣∣, t
)

≤ 1 − γ

2
[
φ(| fi(t) − fi−1(t) |, t) + φ(| fi(t) − fk(t) |, t)

]
. (13)

If t ∈ A\ ∪n
j=3 Bj then | fn(t) |≥ 8f2(t). Thus since ‖fn‖φ ≥ ρφ(fn),

‖fn‖φ ≥ 8

[
5
8
−

n∑
j=3

∫
Bj

φ(f2(t), t)dµ

]
.

We have that ‖fn‖φ ≤ 1. So we can find 3 ≤ i ≤ n such that∫
Bi

φ(f2(t), t)dµ ≥ 1
2n

. (14)
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Let i be as in (14). For 3 ≤ j ≤ i define

Cj =
{
t ∈ Bi : j = sup

{
k < i :

∣∣fk(t) − fi−1(t)
∣∣ = sup

l<i

∣∣fl(t) − fi−1(t)
∣∣}}

.

By (13), if t ∈ Cj , then

φ

(∣∣∣2fi(t) − fi−1(t) − fj(t)
2

∣∣∣, t
)

≤ 1 − γ

2
[
φ(| fi(t) − fi−1(t) |, t) + φ(| fi(t) − fj(t) |, t)

]
.

Thus

φ

(∣∣∣fn(t) − 1
n− 1

n−1∑
k=1

fk(t)
∣∣∣, t

)
≤ 1

n− 1

n−1∑
k=1

φ
(
| fn(t) − fk(t) |, t

)
− γ

2(n− 1)
φ
(
f2(t), t

)
χBn(t)

which implies that ρφ(fn − 1
n−1

∑n−1
k=1 fk) ≤ 1 − γ

4n2 . On the other hand, we have
that 1 − γ

8n2 ≤ ρφ(fn − 1
n−1

∑n−1
k=1 fk). This is a contradiction. Therefore, Lφ must

have UNS. �
A Young function φ is said to be linear around zero if there are u > 0 and α > 0

such that φ(x) = αx for all x ∈ [0, u].

Theorem 11

Let φ be a Young function (with parameter) which is not linear around zero

with respect to x for a.a. t ∈ T . Then, the Musielak-Orlicz space Lφ has normal

structure if and only if φ satisfies ∆2-condition.

Proof. (⇒) Suppose that Lφ has NS and that φ �∈ ∆2. Then Lφ contains an
isometric copy of �∞ [5]. Since �∞ does not have NS neither does Lφ.

(⇐) Assume φ ∈ ∆2 and suppose that Lφ does not have NS. Then, there is a
nonconstant unit limit-constant sequence {fn} in Lφ, i.e. limn→∞ ‖fn − f‖φ = 1
for every f ∈ co{fn}. Thus by (3) we have that limn→∞ ρφ(fn − f) = 1, for every
f ∈ co{fn}. For i, j and n in N, define

F ij
n (t) =

1
2
φ
(
| fn(t) − fi(t) |, t

)
+

1
2
φ
(
| fn(t) − fj(t), t |

)
− φ

( 1
2
| 2fn(t) − fi(t) − fj(t) |, t

)
.
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Then, F ij
n (t) ≥ 0 for a.a. t ∈ T and F ij

n is integrable for all i, j, n in N. Also,
limn→∞

∫
T
F ij
n (t)dµ = 0 for all i, j in N. Therefore, for all i, j in N, F ij

n converges
to zero in measure, on all sets with finite measure as n −→ ∞. Hence without loss
of generality we may assume that limn→∞ F ij

n (t) = 0 µ-a.e., for all i, j ∈ N.

Let | u(t) |= limn inf | fn(t) |. For each t ∈ T choose {nk = nk(t)} such that
limk fnk

(t) = u(t). Since φ is convex we have that for all i, j in N and a.a. t ∈ T

0 = lim
k

F ij
nk

(t) =
1
2
φ
(
| u(t) − fi(t) |, t

)
+

1
2
φ
(
| u(t) − fj(t) |, t

)
− φ

(1
2
| 2u(t) − fi(t) − fj(t) |, t

)
(15)

Replacing j with nk in (15) and taking k −→ ∞ we have that for all i ∈ N and
a.a. t ∈ T

1
2
φ
(
| u(t) − fi(t) |, t

)
= φ

(1
2
| u(t) − fi(t) |, t

)
.

Thus, since φ is not linear around zero we must have that u(t) = fi(t)µ-a.e. for all
i ∈ N. Then limk ‖fnk

− fi‖φ = 0 which contradicts the fact that {fn} is a unit
limit-constant sequence. �

Theorem 12

Let φ = {φi} be a Musielak-Orlicz function such that φi is not linear around

zero for every i ∈ N. Then the following statements are equivalent

1. φ satisfies δ2-condition.

2. �φ has normal structure.

3. �φ has the sum property.

Proof. (3) ⇒ (2) Obvious.
(2) ⇒ (1) Suppose φ does not satisfy δ2-condition. Then �φ contains an isometric

copy of �1 [2] and thus �φ cannot have NS.
(1) ⇒ (3) The proof that (1) implies (3) is omitted since it can be derived

analogously as Theorem 3.8 in [4].
We conclude this paper by giving necessary and sufficient conditions for �φ

to have normal structure in the case where φi may be linear around zero. So let
φ = {φi} be a Musielak-Orlicz function. We may assume that φi(1) = 1 for every
i ∈ N [8].

For every i ∈ N, define

ui = sup
{
u ≥ 0 : φi is linear on [0, u]

}
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and
λi = sup

{
u ≥ 0 : φi is linear on [0, u] and φi(u) ≤ 1

}
.

Suppose that
∑∞

i=1 φi(λi) < ∞ and consider the set D = {i ∈ N : ui > 1}. Then,
since φi(λi) = 1 for i ∈ D, D must be finite. Therefore,

∞∑
i=1

φi(ui) =
∑

i∈N−D

φi(ui) +
∑
i∈D

φi(ui)

=
∑

i∈N−D

φi(λi) +
∑
i∈D

φi(ui) < ∞

i.e.
∞∑
i=1

φi(λi) < ∞ ⇒
∞∑
i=1

φi(ui) < ∞ . (16)

Theorem 13

The Musielak-Orlicz sequence space �φ has normal structure if and only if∑∞
i=1 φi(λi) < ∞ and φ satisfies δ2-condition.

Proof. The necessity is true since if φ �∈ δ2 or if
∑∞

i=1 φi(λi) = ∞, then �φ contains
an isometric copy of �1 ([2]).

To show the sufficiency, assume that �φ does not have NS. There is a unit limit-
constant sequence {xn} in �φ, i.e. limn→∞ ‖xn − x‖ = 1, for all x ∈ co{xn}, which
by (3) implies that limn→∞ Iφ(xn − x) = 1for all x ∈ co{xn}.

Since {xn} is bounded, by diagonal method we can find a subsequence {xnk
}

of {xn} and y such that xnk
→ y in coordinates. Then, by Fatou’s Lemma we have

that y ∈ �φ. Observe that {xnk
− y} is again a unit limit-constant sequence and

thus without loss of generality we may assume that xn −→ 0 in coordinates.
Since φi(1) = 1 for each i ∈ N and {xn} is a unit-limit constant sequence, for

every i ∈ N there is L> 0 such that | xn(i) − xm(i) |< L for all n,m ∈ N.

Claim:
| xn(i) − xm(i) |≤ ui for all i,m, n ∈ N (17)

Proof of Claim: Suppose that the claim is not true. Then there are i0,m0, k0 ∈ N

such that
| xk0(i0) − xm0(i0) |> ui0 .
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We can find δ,L > 0 such that

ui0 + δ < | xk0(i0) − xm0(i0) |≤ L .

Since [0,L] is compact and φi0 is continuous, by Lemma 2 in [13] there are ε > 0
and λ > 0, (ε = 1/3 min {ui0 , δ}) with

φi0

(∣∣d2 −
d1

2

∣∣) <
1
2
φi0

(
| d2 − d1 |

)
+

1
2
φi0

(
| d2 |

)
− λ

whenever ui0 + δ < d1 ≤ L and 0 < d2 < d1 + ε.
Without loss of generality we may assume that xm0(i0) < ε, xk0(i0) > 0 and

xk0(i0) > xm0(i0). Since limn→∞ xn(i0) = 0 the following is true:
There are n1, n2 ∈ N such that | xn(i0) |< xk0(i0), for all n ≥ n1 and | xn(i0) |<

ε− xm0(i0), for all n ≥ n2.

Let n ≥ max {n1, n2}. Define

d2 = xk0(i0) − xn(i0), d1 = xk0(i0) − xm0(i0).

Then ui0 + δ < d1 ≤ L and 0 < d2 < d1 + ε. Therefore

φi0

(∣∣∣1
2
(
xk0(i0) + xm0(i0)

)
− xn(i0)

∣∣∣
)

= φi0

(∣∣∣xk0(i0) − xn(i0) −
xk0(i0) − xm0(i0)

2

∣∣∣
)

<
1
2
φi0

(
| xk0(i0) − xn(i0) |

)
+

1
2
φi0

(
| xm0(i0) − xn(i0) |

)
− λ .

Thus

Iφ
(1

2
(
xk0 + xm0

)
− xn

)
<

1
2
Iφ

(
xk0 − xn

)
+

1
2
Iφ

(
xm0 − xn

)
− λ.

Taking limits in the above inequality as n −→ ∞ we get a contradiction. Hence the
claim holds.

By assumption we have that
∑∞

i=1 φi(ui) < ∞. Thus there is i0 ∈ N such that

∞∑
i=i0+1

φi(ui) <
1
4
.
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We can find ε > 0 such that
i0∑
i=1

φi(ε) <
1
4
.

Since {xn(i)}∞n=1 is a Cauchy sequence for every 1 ≤ i ≤ i0, there is k ∈ N such that

| xn(i) − xm(i) |< ε for n,m > k and 1 ≤ i ≤ i0 .

Then for any n,m > k

Iφ(xn − xm) <
i0∑
i=1

φi(ε) +
∞∑

i=i0+1

φi(ui) <
1
2
.

Hence limn→∞ Iφ(xn−xm) < 1/2 which is a contradiction. This completes the
proof of Theorem 13. �
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