Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 48, 4-6 (1997), 571-585

(c) 1997 Universitat de Barcelona

Normal structure of Musielak-Orlicz spaces

Eleni Katirtzoglou

Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, U.S.A.

E-mail address: katirte@mathsci.msci.memphis.edu

Current address: BRIMS, Hewlett-Packard Labs Filton Road, Stoke Gifford Bristol BS12 6QZ, U.K.

E-mail address: ek@hplb.hpl.hp.com

Abstract

We show that a Musielak-Orlicz function space L_ϕ has uniformly normal structure iff it is reflexive. We also give a criterion for normal structure of the Musielak-Orlicz sequence space ℓ_ϕ and under the assumption that ϕ is not linear around zero, a criterion for normal structure of L_ϕ .

Introduction

The concept of normal structure was introduced in 1948 by M.S. Brodskii and D.P. Milman [3] to study fixed points of isometries and it is a property shared by all uniformly convex spaces. In 1965, W.A. Kirk [10] observed that normal structure implies $C \subset X$ has the fixed point property if X is a reflexive Banach space (where C is closed, bounded and convex).

Necessary and sufficient conditions have been given for function and sequence Orlicz spaces to have (uniformly) normal structure (see [12], [5]). Also in [9] a criterion was given for Orlicz-Lorentz spaces to have uniformly normal structure.

DEFINITION 1. Let X be a Banach space. We say that X has normal structure (NS) if each non-empty, bounded, closed, convex subset S of X with positive diameter, contains a point x such that:

$$\sup \{ \|x - y\| : y \in S \} < \text{diam}S := \sup \{ \|z - y\| : z, y \in S \}.$$

In the case where there exists a constant $K \in (0,1)$ such that for all $x \in S$,

$$\sup \{\|x - y\| : y \in S\} \le K \operatorname{diam} S,$$

X is said to have uniformly normal structure (UNS).

DEFINITION 2. Let X be a Banach space and $\{x_n\}$ a sequence in X. If for any $x \in co\{x_n\}$, the convex hull of $\{x_n\}$, the limit $\Lambda(x) = \lim_{n \to \infty} ||x_n - x|| > 0$ exists and $\Lambda(x)$ is affine on $co\{x_n\}$, then $\{x_n\}$ is called a limit affine sequence.

If, in addition, $\Lambda(x)$ is constant on $co\{x_n\}$, then $\{x_n\}$ is called a limit-constant sequence [11].

DEFINITION 3. A Banach space is said to have the sum-property if it contains no non-constant limit-affine sequence $\{x_n\}$ for which $\{\Lambda(x_n)\}$ is non-decreasing [11].

Proposition 4 ([11])

A Banach space X has normal structure if and only if it contains no non-constant limit constant sequence.

It is easy to see that sum-property implies normal structure. In the case of Orlicz sequence spaces, normal structure is equivalent to sum-property [12]. We will see that this is also true for Musielak-Orlicz sequence spaces (see Theorem 12).

Let us now give some background for Musielak-Orlicz spaces. Set (T, Σ, μ) to be a non-atomic σ -finite, measure space. A non-negative, extended real-valued function $\phi: \mathbb{R}^+ \times T \longrightarrow \mathbb{R}^+_e$ is called a Young function (with parameter) if for almost all $t \in T$, $\phi(0,t) = 0$, $\phi(x,t) > 0$ for x > 0, $\phi(x,t)$ is convex with respect to x and for all $x \geq 0$, $\phi(x,t)$ is Σ -measurable with respect to t.

For any measurable function $f: T \longrightarrow \mathbb{R}$, we define the modular

$$\rho_{\phi}(f) = \int_{T} \phi(|f(t)|, t) d\mu.$$

The Musielak-Orlicz space L_{ϕ} is the set of all equivalence classes of measurable functions f such that $\rho_{\phi}(\lambda f) < \infty$, for some $\lambda > 0$.

Endowed with the Luxemburg norm defined by

$$||f||_{\phi} = \inf \{r > 0 : \rho_{\phi}(f/r) \le 1\},$$

 L_{ϕ} is a Banach space.

The conjugate function ϕ^* , of a Young function ϕ is defined by $\phi^*(x,t) = \sup_{y\geq 0} \{yx-\phi(y,t)\}$. It is easy to see that ϕ^* is a convex function and that $(\phi^*)^* = \phi$. We also notice that if ϕ assumes only finite values, then for a.a. $t \in T$, there exists x > 0 such that $\phi^*(x,t) < \infty$.

Recall that a Young function ϕ satisfies Δ_2 -condition (written $\phi \in \Delta_2$) if there exists K > 0 and a non-negative integrable function h such that for almost all $t \in T$

$$\phi(2x,t) \le K\phi(x,t) + h(t)$$

for all $x \geq 0$.

A function $\phi : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is called a Young function if ϕ is convex, $\phi(0) = 0$ and $\phi(x) > 0$ for x > 0. A sequence $\phi = \{\phi_n\}$ of Young functions, is called a Musielak-Orlicz function.

For any real sequence $x = \{x_n\}$, we define the modular

$$I_{\phi}(x) = \sum_{n=1}^{\infty} \phi_n(\mid x_n \mid).$$

The Musielak-Orlicz sequence space ℓ_{ϕ} is the set of all real sequences $x = \{x_n\}$ such that $I_{\phi}(\lambda x) < \infty$, for some $\lambda > 0$.

Under the Luxemburg norm defined by

$$||x||_{\phi} = \inf \{r > 0 : I_{\phi}(x/r) \le 1\},$$

 ℓ_{ϕ} is a Banach space.

We say that a Musielak-Orlicz function $\phi = \{\phi_n\}$ satisfies δ_2 -condition (written $\phi \in \delta_2$) if there are positive constants K and δ and a non-negative sequence $\{c_n\}$ in ℓ_1 such that for all $n \in \mathbb{N}$ and $x \geq 0$

$$\phi_n(2x) \le K\phi_n(x) + c_n$$

whenever $\phi_n(x) \leq \delta$.

The following are useful results connected with $\Delta_2(\delta_2)$ -condition. Let $f \in L_{\phi}, \{f_n\} \subset L_{\phi}$ and $\{x_n\} \subset \ell_{\phi}$.

1. If $\phi \in \Delta_2(\phi \in \delta_2)$ then

$$||f_n||_{\phi} \longrightarrow 0 \Leftrightarrow \rho_{\phi}(f_n) \longrightarrow 0$$
 (1)

(respectively: $||x_n||_{\phi} \longrightarrow 0 \Leftrightarrow I_{\phi}(x_n) \longrightarrow 0$).

2. If $\phi \in \Delta_2$ then for every $\epsilon > 0$ there is $\eta(\epsilon) > 0$ such that

$$||f||_{\phi} \ge 1 - \eta(\epsilon) \Rightarrow \rho_{\phi}(f) \ge 1 - \epsilon.$$
 (2)

3. If $\phi \in \Delta_2$, $(\phi \in \delta_2)$, then

$$||f_n||_{\phi} \longrightarrow 1 \Rightarrow \rho_{\phi}(f_n) \longrightarrow 1$$
 (3)

(respectively: $||x_n||_{\phi} \longrightarrow 1 \Rightarrow I_{\phi}(x_n) \longrightarrow 1$).

The proofs of the above results can be found in [15] or easily derived by imitating the proofs of analogous results in Orlicz spaces.

Preliminary results

Lemma 5

Let ϕ be a Young function with (parameter). The following statements are equivalent:

- 1. ϕ satisfies Δ_2 -condition.
- 2. For every $\epsilon > 0$, there are K > 0 and a non-negative measurable function h with $\int_T h(t) d\mu < \epsilon$ such that for almost all $t \in T$

$$\phi(2x,t) \le K\phi(x,t) + h(t) \tag{4}$$

for all $x \geq 0$.

3. For every $\epsilon > 0$, there are K > 0 and a non-negative measurable function f with $\int_{T} \phi(f(t), t) d\mu < \epsilon$ such that for almost all $t \in T$,

$$\phi(2x,t) \le K\phi(x,t) \tag{5}$$

for all $x \geq f(t)$.

4. For every $\epsilon > 0$, and all a > 1, there are $b \in (1,2)$ and a non-negative measurable function f with $\int_T \phi(f(t),t) d\mu < \epsilon$ such that for almost all $t \in T$,

$$\phi(bx,t) \le a\phi(x,t) \tag{6}$$

for all $x \geq f(t)$.

Proof. $(1) \Leftrightarrow (2)$ see [16].

 $(2)\Rightarrow (3)$. Let $f(t)=\sup\{x\geq 0:\phi(x,t)\leq h(t)\}$. Since $\phi(x,t)<\infty$ for each $x\geq 0$ and $x\longmapsto \phi(x,t)$ is convex, we have that $x\longmapsto \phi(x,t)$ is continuous and so $\phi(f(t),t)=h(t)$. Moreover f(t) is measurable. Indded let $\phi^{-1}(x,t)=\phi_t^{-1}(x)$ where ϕ_t^{-1} is an inverse function of $\phi_t(x)=\phi(x,t)$. For any $a\in\mathbb{R}^+$, $\{t:\phi_t^{-1}(x)\leq a\}=\{t:x\leq \phi_t(a)\}\in \Sigma$, by the measurability of $t\longmapsto \phi(x,t)$, for any $x\geq 0$. Thus $t\longmapsto \phi^{-1}(x,t)$ is measurable and so $f(t)=\phi^{-1}(h(t),t)$ must be measurable, too. Thus, $\int_T \phi(f(t),t)d\mu < \epsilon$ and for almost all $t\in T$ and $x\geq f(t)$,

$$\phi(2x,t) \le K\phi(x,t) + \phi(f(t),t) \le (K+1)\phi(x,t)$$
.

 $(3) \Rightarrow (4)$. Let $\epsilon > 0$ and a > 1 be given. Take $M = \max\{a, K\}$. Let $l = \frac{a-1}{M-1}$, and b = 1 + l. Then, $b \in (1, 2)$ and so for $x \geq f(t)$ we have:

$$\phi(bx,t) \le (1-l)\phi(x,t) + l\phi(2x,t)$$

$$\le (1-l)\phi(x,t) + lM\phi(x,t) = a\phi(x,t)$$

 $(4) \Rightarrow (2)$. Suppose (4) is true. Let $\epsilon > 0$ and a = 2. There are $b \in (1,2)$ and a non-negative measurable function f with $\int_{T} \phi(f(t), t) d\mu < \epsilon$ such that

$$\phi(bx,t) \leq 2\phi(x,t)$$

for all $x \geq f(t)$.

There exists $n \in \mathbb{N}$ such that $b^n \geq 2$. Thus for $x \geq f(t)$ we have

$$\phi(2x,t) \le \phi(b^n x,t) \le 2^n \phi(x,t)$$

and for $x \leq f(t)$,

$$\phi(2x,t) \le \phi(2f(t),t) \le 2^n \phi(f(t),t).$$

Hence for any $x \geq 0$

$$\phi(2x,t) \le 2^n \phi(x,t) + 2^n \phi(f(t),t),$$

which means Δ_2 -condition and so (2). This completes the proof of the lemma. \square

Lemma 6

Let ϕ be a Young function (with parameter). The following statements are equivalent.

- 1. ϕ satisfies Δ_2 -condition.
- 2. For every $\epsilon > 0$ and a > 1, there are $b \in (4,8), m \in \mathbb{N}$ and a nonnegative measurable function f with $\int_T \phi(f(t),t) d\mu < \epsilon$ such that for almost all $t \in T$:

$$\phi(bx,t) \le a^m \phi(x,t) \tag{7}$$

for all $x \ge f(t)$.

Proof. (2) \Rightarrow (1) Obvious.

 $(1)\Rightarrow (2)$ Assume ϕ satisfies Δ_2 -condition. Let $\epsilon>0$ and a>1 be given. Then by Lemma 5, if $x\geq f(t)$ then $\phi(4x,t)\leq K\phi(x,t)$ for some K>0 and a non-negative measurable function f with $\int_T \phi(f(t),t)d\mu<\epsilon$. Set $M=\max\{a,K\}$. There is $m\in\mathbb{N}$ such that $m\geq 2$ and $a^m>M$. Let $l=\frac{a^m-M}{M^m-M}$ and b=4(1+l). Then, $b\in (4,8)$ and if we follow a similar argument as in the proof of $(3)\Rightarrow (4)$ in Lemma 5, we get that $\phi(bx,t)\leq a^m\phi(x,t)$ for $x\geq f(t)$. \square

Lemma 7

Let ϕ be a Young function (with parameter). The following statements are equivalent.

- 1. ϕ satisfies Δ_2 -condition.
- 2. For every $\epsilon > 0$ and $\eta \in (0,1)$, there are $\xi \in (0,1)$ and a non-negative measurable function h with $\int_T \phi^*(h(t),t) d\mu < \epsilon$ such that for almost all $t \in T$

$$\phi^*(\eta x, t) \le \eta \xi \phi^*(x, t) \tag{8}$$

for all $x \ge h(t)$.

Proof. (1) \Rightarrow (2). Since inequality (8) is obvious when $\phi^*(x,t) = \infty$, without loss of generality we assume that $\phi^*(x,t) < \infty$ for all x,t. Let $\epsilon > 0$ and $\eta \in (0,1)$ be given. Then, $a = \frac{1}{\eta} > 1$ and by Lemma 6 there are $b \in (4,8), m \in \mathbb{N}$ and a measurable function $g: T \longrightarrow \mathbb{R}^+$ with $\int_T \phi(g(t),t) d\mu < \epsilon \eta \frac{2-\sqrt{2}}{8\sqrt{2}}$ such that $\phi(bx,t) \leq a^m \phi(x,t)$ for all $x \geq g(t)$. If $0 \leq x \leq g(t)$ then $\phi(bx,t) \leq a^m \phi(g(t),t)$. So for $x \geq 0$, we have $\phi(bx,t) \leq a^m b[\phi(x,t) + \phi(g(t),t)]$, which implies

$$\frac{1}{a^m b} \phi(bx, t) - \phi(g(t), t) \le \phi(x, t) \,,$$

for every $x \geq 0$.

Therefore

$$\begin{split} \phi^*(\eta^m x, t) &= \sup_{y \geq 0} \left\{ \eta^m xy - \phi(y, t) \right\} \\ &\leq \sup_{y \geq 0} \left\{ \eta^m xy - \left[\frac{1}{a^m b} \phi(by, t) - \phi(g(t), t) \right] \right\} \\ &= \sup_{y \geq 0} \left\{ \eta^m xy - \frac{\eta^m}{b} \phi(by, t) \right\} + \phi(g(t), t) \\ &= \frac{\eta}{b} \sup_{y \geq 0} \left\{ \eta^{m-1} bxy - \eta^{m-1} \phi(by, t) \right\} + \phi(g(t), t) \\ &\leq \frac{\eta}{b} \sup_{y \geq 0} \left\{ \eta^{m-1} byx - \phi(\eta^{m-1} by, t) \right\} + \phi(g(t), t) \\ &= \frac{\eta}{b} \phi^*(\eta^{m-1} x, t) + \phi(g(t), t) \,. \end{split}$$

We can find a measurable function $h: T \longrightarrow \mathbb{R}^+$ such that

$$\phi^*(h(t),t) = \frac{b\sqrt{b}}{\eta(b-\sqrt{b})}\phi(g(t),t)$$

We have

$$\int_{T} \phi^{*}(h(t), t) d\mu < \frac{b\sqrt{b}}{\eta(b - \sqrt{b})} \epsilon \eta \frac{2 - \sqrt{2}}{8\sqrt{2}}$$

$$\leq \frac{8\sqrt{2}}{2 - \sqrt{2}} \epsilon \frac{2 - \sqrt{2}}{8\sqrt{2}} = \epsilon.$$

Now let $x \ge \frac{1}{\eta^{m-1}}h(t)$. Then, $\phi^*(\eta^{m-1}x,t) \ge \phi^*(h(t),t)$ and thus

$$\frac{\eta(b-\sqrt{b})}{b\sqrt{b}}\phi^*(\eta^{m-1}x,t) \ge \phi(g(t),t).$$

Consequently, if $y \geq \frac{1}{\eta^{m-1}}h(t)$, we have

$$\phi^*(\eta^m y, t) \le \frac{\eta}{b} \phi^*(\eta^{m-1} y, t) + \frac{\eta(b - \sqrt{b})}{b\sqrt{b}} \phi^*(\eta^{m-1} y, t)$$
$$= \eta \xi \phi^*(\eta^{m-1} y, t)$$

where $\xi = \frac{1}{\sqrt{b}} < 1$.

Take $x \geq h(t)$. Then, $\frac{x}{\eta^{m-1}} \geq \frac{1}{\eta^{m-1}}h(t)$ and hence,

$$\phi^*(\eta x, t) \le \eta \xi \phi^*(x, t).$$

 $(2) \Rightarrow (1)$. This proof is omitted since it is the same as the proof of (ii) implies (i) in Lemma 2 in [1]. \Box

Lemma 8

Suppose that both ϕ and ϕ^* satisfy Δ_2 -condition. Then for every $\epsilon > 0$, there exist a non-negative measurable function f, with $\int_T \phi(f(t),t) d\mu < \epsilon$, and constants $c \in (0,1)$ and $\gamma > 0$ such that if $|x| \ge f(t)$ and either $|x| \ge 1/c |y|$ or $xy \le 0$ then,

$$\phi\left(\left|\frac{x+y}{2}\right|,t\right) \le \frac{1-\gamma}{2}\left[\phi(|x|,t) + \phi(|y|,t)\right] \tag{9}$$

for almost all $t \in T$.

Proof. Let $\epsilon > 0$ be given. Since ϕ^* satisfies Δ_2 -condition, by Lemma 7, there are $\xi \in (0,1)$ and a measurable function h with $\int_T \phi(h(t),t) d\mu < \epsilon/3$ such that

(i)
$$\phi\left(\frac{\mid x\mid}{2}, t\right) \le \frac{1-\delta}{2}\phi(\mid x\mid, t) \quad \text{for all} \quad \mid x\mid \ge h(t),$$

where $0 < \delta = 1 - \xi < 1$.

Since $\phi \in \Delta_2$, by Lemma 5, there are $b \in (1,2)$ and a measurable function g with $\int_T \phi(g(t),t) d\mu < \epsilon/3$ such that

(ii)
$$\phi(b \mid x \mid, t) \leq \frac{2}{2 - \delta} \phi(\mid x \mid, t) \quad \text{for all} \quad \mid x \mid \geq g(t).$$

Define $f: T \longrightarrow \mathbb{R}^+$ by $f = \max\{h, g\}$. Then f is measurable and $\int_T \phi(f(t), t) d\mu < \epsilon$. For all $|x| \ge f(t)$, (i) and (ii) hold. Set c = b - 1 and $\gamma = 1 - \frac{2-2\delta}{2-\delta}$. Let $|x| \ge f(t)$ and $|x| \ge 1/c |y|$ or $xy \le 0$.

Then

$$\begin{split} \phi\Big(\Big|\frac{x+y}{2}\Big|,t\Big) &\leq \phi\Big(\frac{1}{2}(1+c)\mid x\mid,t\Big) \\ &\leq \frac{1-\delta}{2}\phi(b\mid x\mid,t) \\ &\leq \frac{1-\gamma}{2}\Big(\phi(\mid x\mid,t)+\phi(\mid y\mid,t)\Big) \,. \; \Box \end{split}$$

Lemma 9 ([5])

If a Banach space X does not have uniformly normal structure, then for every $\epsilon > 0$ and $n \in \mathbb{N}$ there exists $\{x_i : 1 \le i \le n+1\}$ in X such that

$$||x_j|| \le 1, \quad ||x_i - x_j|| \le 1, \quad 1 \le i \le j \le n+1 \quad \text{and}$$

$$\left| \left| x_{k+1} - \frac{1}{k} \sum_{i=1}^k x_i \right| \right| > 1 - \epsilon, \quad 1 \le k \le n. \tag{10}$$

Main results

Theorem 10

The Musielak-Orlicz space L_{ϕ} has uniformly normal structure if and only if both ϕ and ϕ^* satisfy Δ_2 -condition.

Proof. (\Rightarrow) If L_{ϕ} has UNS then L_{ϕ} is reflexive [14] and thus $\phi, \phi^* \in \Delta_2$ (e.g. [7], [15]).

(\Leftarrow) Suppose both ϕ and ϕ^* satisfy Δ_2 -condition. By Lemma 8, there are a non-negative measurable function h with $\int_T \phi(8h(t),t) d\mu < 1/8$ and constants $\gamma > 0$ and 0 < c < 1 such that if $|x| \ge \max\{h(t), 1/c \mid y \mid\}$ or $xy \le 0$ then

$$\phi\Big(\big|\frac{x+y}{2}\big|,t\Big) \leq \frac{1-\gamma}{2} \Big[\phi(\mid x\mid,t) + \phi(\mid y\mid,t)\Big] \, .$$

We can find $n \in \mathbb{N}$ with $c(1+c)^{n-3} \geq 8$. Let $\epsilon = \frac{\gamma}{8n^2} > 0$. Then, by (2) there is $\eta(\epsilon) > 0$ such that if $||f||_{\phi} \geq 1 - \eta(\epsilon)$ then $\rho_{\phi}(f) \geq 1 - \epsilon$. Suppose that L_{ϕ} does not have UNS. Then by Lemma 9 there exists $\{f_i : 1 \leq i \leq n\}$ such that

$$||f_i||_{\phi} \le 1$$
, $||f_i - f_j||_{\phi} \le 1$, $1 \le i \le j \le n$ and

$$\left\| f_{m+1} - \frac{1}{m} \sum_{i=1}^{m} f_i \right\|_{\phi} \ge 1 - \eta(\epsilon), \quad m < n.$$
 (11)

We may assume that f_i 's are simple functions with compact supports and that $f_1 = 0, f_2 \ge 0$.

Define $A = \{t : f_2(t) \ge 8h(t)\}$. Note that by (11) and since $f_1 = 0, ||f_2|| > 1 - \eta(\epsilon)$ and so $\rho_{\phi}(f_2) > 1 - \frac{\gamma}{8n^2} \ge \frac{3}{4}$.

The rest of the proof is similar to that of Theorem 6 in [9] so we will give only the basic steps.

For $2 < k \le n$ and $t \in A$ consider the inequality

$$\sup \{ |f_k(t) - f_j(t)| : j < k \} > (1+c) \sup \{ |f_{k-1}(t) - f_j(t)| : j < k-1 \}. \quad (12)$$

Define

 $B_i = \{t \in A : \text{inequality (12) is true for } k < i; \text{ but it is not true for } k = i\}$ The B_i 's are disjoint measurable subsets of A. Observe that

$$\int_{A} \phi(f_{2}(t), t) d\mu = \int_{T} \phi(f_{2}(t), t) d\mu - \int_{T-A} \phi(f_{2}(t), t) d\mu$$
$$\geq \frac{3}{4} - \frac{1}{8} = \frac{5}{8}.$$

Let $t \in B_i$ for some $3 \le i \le n$ and suppose that $k \le i - 2$ be such that

$$|f_{i-1}(t) - f_k(t)| = \sup \{ |f_{i-1}(t) - f_j(t)| : j \le i - 2 \}.$$

Applying Lemma 8, we get for $t \in B_i$

$$\phi\left(\left|\frac{2f_{i}(t) - f_{i-1}(t) - f_{k}(t)}{2}\right|, t\right) \\
\leq \frac{1 - \gamma}{2} \left[\phi(|f_{i}(t) - f_{i-1}(t)|, t) + \phi(|f_{i}(t) - f_{k}(t)|, t)\right]. \tag{13}$$

If $t \in A \setminus \bigcup_{j=3}^n B_j$ then $|f_n(t)| \ge 8f_2(t)$. Thus since $||f_n||_{\phi} \ge \rho_{\phi}(f_n)$,

$$||f_n||_{\phi} \ge 8 \left[\frac{5}{8} - \sum_{j=3}^n \int_{B_j} \phi(f_2(t), t) d\mu \right].$$

We have that $||f_n||_{\phi} \leq 1$. So we can find $3 \leq i \leq n$ such that

$$\int_{B_i} \phi(f_2(t), t) d\mu \ge \frac{1}{2n} \,. \tag{14}$$

Let i be as in (14). For $3 \le j \le i$ define

$$C_j = \left\{ t \in B_i : j = \sup \left\{ k < i : \left| f_k(t) - f_{i-1}(t) \right| = \sup_{l < i} \left| f_l(t) - f_{i-1}(t) \right| \right\} \right\}.$$

By (13), if $t \in C_i$, then

$$\phi\left(\left|\frac{2f_{i}(t) - f_{i-1}(t) - f_{j}(t)}{2}\right|, t\right) \le \frac{1 - \gamma}{2} \left[\phi(|f_{i}(t) - f_{i-1}(t)|, t) + \phi(|f_{i}(t) - f_{j}(t)|, t)\right].$$

Thus

$$\phi\left(\left|f_{n}(t) - \frac{1}{n-1}\sum_{k=1}^{n-1}f_{k}(t)\right|, t\right) \leq \frac{1}{n-1}\sum_{k=1}^{n-1}\phi\left(\left|f_{n}(t) - f_{k}(t)\right|, t\right) - \frac{\gamma}{2(n-1)}\phi\left(f_{2}(t), t\right)\chi_{B_{n}}(t)$$

which implies that $\rho_{\phi}(f_n - \frac{1}{n-1}\sum_{k=1}^{n-1}f_k) \leq 1 - \frac{\gamma}{4n^2}$. On the other hand, we have that $1 - \frac{\gamma}{8n^2} \leq \rho_{\phi}(f_n - \frac{1}{n-1}\sum_{k=1}^{n-1}f_k)$. This is a contradiction. Therefore, L_{ϕ} must have UNS. \square

A Young function ϕ is said to be linear around zero if there are u > 0 and $\alpha > 0$ such that $\phi(x) = \alpha x$ for all $x \in [0, u]$.

Theorem 11

Let ϕ be a Young function (with parameter) which is not linear around zero with respect to x for a.a. $t \in T$. Then, the Musielak-Orlicz space L_{ϕ} has normal structure if and only if ϕ satisfies Δ_2 -condition.

Proof. (\Rightarrow) Suppose that L_{ϕ} has NS and that $\phi \notin \Delta_2$. Then L_{ϕ} contains an isometric copy of ℓ_{∞} [5]. Since ℓ_{∞} does not have NS neither does L_{ϕ} .

(\Leftarrow) Assume $\phi \in \Delta_2$ and suppose that L_{ϕ} does not have NS. Then, there is a nonconstant unit limit-constant sequence $\{f_n\}$ in L_{ϕ} , i.e. $\lim_{n\to\infty} \|f_n - f\|_{\phi} = 1$ for every $f \in co\{f_n\}$. Thus by (3) we have that $\lim_{n\to\infty} \rho_{\phi}(f_n - f) = 1$, for every $f \in co\{f_n\}$. For i, j and n in N, define

$$F_n^{ij}(t) = \frac{1}{2}\phi(|f_n(t) - f_i(t)|, t) + \frac{1}{2}\phi(|f_n(t) - f_j(t), t|) - \phi(\frac{1}{2}|2f_n(t) - f_i(t) - f_j(t)|, t).$$

Then, $F_n^{ij}(t) \geq 0$ for a.a. $t \in T$ and F_n^{ij} is integrable for all i, j, n in N. Also, $\lim_{n\to\infty} \int_T F_n^{ij}(t) d\mu = 0$ for all i, j in N. Therefore, for all i, j in N, F_n^{ij} converges to zero in measure, on all sets with finite measure as $n \to \infty$. Hence without loss of generality we may assume that $\lim_{n\to\infty} F_n^{ij}(t) = 0$ μ -a.e., for all $i, j \in \mathbb{N}$.

Let $|u(t)| = \lim_n \inf |f_n(t)|$. For each $t \in T$ choose $\{n_k = n_k(t)\}$ such that $\lim_k f_{n_k}(t) = u(t)$. Since ϕ is convex we have that for all i, j in N and a.a. $t \in T$

$$0 = \lim_{k} F_{n_{k}}^{ij}(t) = \frac{1}{2} \phi \left(|u(t) - f_{i}(t)|, t \right) + \frac{1}{2} \phi \left(|u(t) - f_{j}(t)|, t \right) - \phi \left(\frac{1}{2} |2u(t) - f_{i}(t) - f_{j}(t)|, t \right)$$

$$(15)$$

Replacing j with n_k in (15) and taking $k \longrightarrow \infty$ we have that for all $i \in \mathbb{N}$ and a.a. $t \in T$

$$\frac{1}{2}\phi(\mid u(t) - f_i(t)\mid, t) = \phi(\frac{1}{2}\mid u(t) - f_i(t)\mid, t).$$

Thus, since ϕ is not linear around zero we must have that $u(t) = f_i(t)\mu$ -a.e. for all $i \in \mathbb{N}$. Then $\lim_k \|f_{n_k} - f_i\|_{\phi} = 0$ which contradicts the fact that $\{f_n\}$ is a unit limit-constant sequence. \square

Theorem 12

Let $\phi = \{\phi_i\}$ be a Musielak-Orlicz function such that ϕ_i is not linear around zero for every $i \in \mathbb{N}$. Then the following statements are equivalent

- 1. ϕ satisfies δ_2 -condition.
- 2. ℓ_{ϕ} has normal structure.
- 3. ℓ_{ϕ} has the sum property.

Proof. (3) \Rightarrow (2) Obvious.

- $(2) \Rightarrow (1)$ Suppose ϕ does not satisfy δ_2 -condition. Then ℓ_{ϕ} contains an isometric copy of ℓ_1 [2] and thus ℓ_{ϕ} cannot have NS.
- $(1) \Rightarrow (3)$ The proof that (1) implies (3) is omitted since it can be derived analogously as Theorem 3.8 in [4].

We conclude this paper by giving necessary and sufficient conditions for ℓ_{ϕ} to have normal structure in the case where ϕ_i may be linear around zero. So let $\phi = \{\phi_i\}$ be a Musielak-Orlicz function. We may assume that $\phi_i(1) = 1$ for every $i \in \mathbb{N}$ [8].

For every $i \in \mathbb{N}$, define

$$u_i = \sup \{u \ge 0 : \phi_i \text{ is linear on } [0, u] \}$$

and

$$\lambda_i = \sup \{ u \ge 0 : \phi_i \text{ is linear on } [0, u] \text{ and } \phi_i(u) \le 1 \}.$$

Suppose that $\sum_{i=1}^{\infty} \phi_i(\lambda_i) < \infty$ and consider the set $D = \{i \in \mathbb{N} : u_i > 1\}$. Then, since $\phi_i(\lambda_i) = 1$ for $i \in D$, D must be finite. Therefore,

$$\sum_{i=1}^{\infty} \phi_i(u_i) = \sum_{i \in \mathbb{N} - D} \phi_i(u_i) + \sum_{i \in D} \phi_i(u_i)$$
$$= \sum_{i \in \mathbb{N} - D} \phi_i(\lambda_i) + \sum_{i \in D} \phi_i(u_i) < \infty$$

i.e.

$$\sum_{i=1}^{\infty} \phi_i(\lambda_i) < \infty \Rightarrow \sum_{i=1}^{\infty} \phi_i(u_i) < \infty.$$
 (16)

Theorem 13

The Musielak-Orlicz sequence space ℓ_{ϕ} has normal structure if and only if $\sum_{i=1}^{\infty} \phi_i(\lambda_i) < \infty$ and ϕ satisfies δ_2 -condition.

Proof. The necessity is true since if $\phi \notin \delta_2$ or if $\sum_{i=1}^{\infty} \phi_i(\lambda_i) = \infty$, then ℓ_{ϕ} contains an isometric copy of ℓ_1 ([2]).

To show the sufficiency, assume that ℓ_{ϕ} does not have NS. There is a unit limit-constant sequence $\{x_n\}$ in ℓ_{ϕ} , i.e. $\lim_{n\to\infty} \|x_n - x\| = 1$, for all $x \in co\{x_n\}$, which by (3) implies that $\lim_{n\to\infty} I_{\phi}(x_n - x) = 1$ for all $x \in co\{x_n\}$.

Since $\{x_n\}$ is bounded, by diagonal method we can find a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and y such that $x_{n_k} \to y$ in coordinates. Then, by Fatou's Lemma we have that $y \in \ell_{\phi}$. Observe that $\{x_{n_k} - y\}$ is again a unit limit-constant sequence and thus without loss of generality we may assume that $x_n \longrightarrow 0$ in coordinates.

Since $\phi_i(1) = 1$ for each $i \in \mathbb{N}$ and $\{x_n\}$ is a unit-limit constant sequence, for every $i \in \mathbb{N}$ there is L> 0 such that $|x_n(i) - x_m(i)| < L$ for all $n, m \in \mathbb{N}$.

Claim:

$$|x_n(i) - x_m(i)| \le u_i \quad \text{for all} \quad i, m, n \in \mathbb{N}$$
 (17)

Proof of Claim: Suppose that the claim is not true. Then there are $i_0, m_0, k_0 \in \mathbb{N}$ such that

$$|x_{k_0}(i_0) - x_{m_0}(i_0)| > u_{i_0}$$
.

We can find $\delta, L > 0$ such that

$$u_{i_0} + \delta < |x_{k_0}(i_0) - x_{m_0}(i_0)| \le L$$
.

Since [0, L] is compact and ϕ_{i_0} is continuous, by Lemma 2 in [13] there are $\epsilon > 0$ and $\lambda > 0$, ($\epsilon = 1/3 \min \{u_{i_0}, \delta\}$) with

$$\phi_{i_0}\left(\left|d_2 - \frac{d_1}{2}\right|\right) < \frac{1}{2}\phi_{i_0}\left(\left|d_2 - d_1\right|\right) + \frac{1}{2}\phi_{i_0}\left(\left|d_2\right|\right) - \lambda$$

whenever $u_{i_0} + \delta < d_1 \le L$ and $0 < d_2 < d_1 + \epsilon$.

Without loss of generality we may assume that $x_{m_0}(i_0) < \epsilon, x_{k_0}(i_0) > 0$ and $x_{k_0}(i_0) > x_{m_0}(i_0)$. Since $\lim_{n \to \infty} x_n(i_0) = 0$ the following is true:

There are $n_1, n_2 \in \mathbb{N}$ such that $|x_n(i_0)| < x_{k_0}(i_0)$, for all $n \ge n_1$ and $|x_n(i_0)| < \epsilon - x_{m_0}(i_0)$, for all $n \ge n_2$.

Let $n \ge \max\{n_1, n_2\}$. Define

$$d_2 = x_{k_0}(i_0) - x_n(i_0), d_1 = x_{k_0}(i_0) - x_{m_0}(i_0).$$

Then $u_{i_0} + \delta < d_1 \le L$ and $0 < d_2 < d_1 + \epsilon$. Therefore

$$\phi_{i_0} \left(\left| \frac{1}{2} \left(x_{k_0}(i_0) + x_{m_0}(i_0) \right) - x_n(i_0) \right| \right)$$

$$= \phi_{i_0} \left(\left| x_{k_0}(i_0) - x_n(i_0) - \frac{x_{k_0}(i_0) - x_{m_0}(i_0)}{2} \right| \right)$$

$$< \frac{1}{2} \phi_{i_0} \left(\left| x_{k_0}(i_0) - x_n(i_0) \right| \right)$$

$$+ \frac{1}{2} \phi_{i_0} \left(\left| x_{m_0}(i_0) - x_n(i_0) \right| \right) - \lambda.$$

Thus

$$I_{\phi}\left(\frac{1}{2}(x_{k_0}+x_{m_0})-x_n\right)<\frac{1}{2}I_{\phi}(x_{k_0}-x_n)+\frac{1}{2}I_{\phi}(x_{m_0}-x_n)-\lambda.$$

Taking limits in the above inequality as $n \longrightarrow \infty$ we get a contradiction. Hence the claim holds.

By assumption we have that $\sum_{i=1}^{\infty} \phi_i(u_i) < \infty$. Thus there is $i_0 \in \mathbb{N}$ such that

$$\sum_{i=i_0+1}^{\infty} \phi_i(u_i) < \frac{1}{4} \,.$$

We can find $\epsilon > 0$ such that

$$\sum_{i=1}^{i_0} \phi_i(\epsilon) < \frac{1}{4} \,.$$

Since $\{x_n(i)\}_{n=1}^{\infty}$ is a Cauchy sequence for every $1 \leq i \leq i_0$, there is $k \in \mathbb{N}$ such that

$$|x_n(i) - x_m(i)| < \epsilon$$
 for $n, m > k$ and $1 \le i \le i_0$.

Then for any n, m > k

$$I_{\phi}(x_n - x_m) < \sum_{i=1}^{i_0} \phi_i(\epsilon) + \sum_{i=i_0+1}^{\infty} \phi_i(u_i) < \frac{1}{2}.$$

Hence $\lim_{n\to\infty} I_{\phi}(x_n-x_m) < 1/2$ which is a contradiction. This completes the proof of Theorem 13. \square

Acknowledgment. The author wants to thank Dr. Huiying Sun for introducing me to the subject and especially for her significant contribution to the proof of Theorem 13.

References

- 1. G. Alherk and H. Hudzik, Uniformly non- $\ell_n^{(1)}$ Musielak-Orlicz spaces of Bochner Type, *Forum Math* **1** (1989), 403–410.
- 2. G. Alherk and H. Hudzik, Copies of ℓ_1 and c_0 in Musielak-Orlicz Sequence Spaces, *Comment. Math. Univ. Carolin.* **35**:1 (1994), 9–19.
- 3. M.S. Brodski and D.P. Milman, On the center of a convex set, *Dokl. Akad. Nauk. SSSR* **59** (1948), 837–840 (Russian).
- 4. S. Chen, Geometric properties of Orlicz spaces, Preprint.
- 5. S. Chen and H. Sun, Reflexive Orlicz spaces have uniformly normal structure, *Studia Math.* **109** (1994), 197–208.
- 6. H. Hudzik, On some equivalent conditions in Musielak-Orlicz spaces, *Comment. Math. Univ. Carolin.* **24** (1984), 57–64.
- 7. H. Hudzik and A. Kamińska, On uniformly convexifiable and B-convex Musielak-Orlicz sequence spaces, *Comment. Math. Univ. Carolin.* **25** (1985), 59–75.
- 8. A. Kamińska, Uniform Rotundity of Musielak-Orlicz sequence spaces, *J. Approx. Theory* **47**:4 (1986), 302–322.
- A. Kamińska, P.K. Lin and H. Sun, Uniformly normal structure of Orlicz-Lorentz spaces, Proceedings, Conference in Functional Analysis, Harmonic Analysis and Probability, Columbia, Missouri 1994.

- 10. W.A. Kirk, A fixed point theorem for mappings which do not increase distances, *Amer. Math. Monthly* **72** 1004–1006.
- 11. T. Landes, Permanence properties of Normal Structure, *Pacific J. Math.* **110**:1 (1984), 125–143.
- 12. T. Landes, Normal Structure and Weakly Normal Structure of the Orlicz Sequence Spaces, *Trans. Amer. Math. Soc.* **285**:2 (1984), 523–534.
- 13. P. K. Lin and H. Sun, Normal Structure of Lorentz-Orlicz Spaces, Preprint.
- 14. E. Maluta, Uniformly Normal Structure and related coefficients, *Pacific J. Math.* **111**:2 (1984), 357–369.
- 15. J. Musielak, *Orlicz Spaces and Modular Spaces*, Lecture Notes in Mathematics, **1038**, Springer-Verlag 1983.
- 16. M. Wisla, Convergence in Musielak-Orlicz Spaces, *Bull. Polish Acad. Sci. Math.* **33**:9–10 (1985), 517–529.