Collect. Math. 48, 4-6 (1997), 543-561

(c) 1997 Universitat de Barcelona

Smoothness in Musielak-Orlicz spaces equipped with the Orlicz norm

HENRYK HUDZIK*

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland

ZENON ZBĄSZYNIAK

Institute of Mathematics, Poznań University of Technology, Poznań, Poland

Abstract

A formula for the distance of an arbitrary element x in Musielak-Orlicz space L^Φ from the subspace E^Φ of order continuous elements is given for both (the Luxemburg and the Orlicz) norms. A formula for the norm in the dual space of L^Φ is given for any of these two norms. Criteria for smooth points and smoothness in L^Φ and E^Φ equipped with the Orlicz norm are presented.

Introduction

Throughout this paper $\mathbb N$ denotes the set of natural numbers, $\mathbb R$ and $\mathbb R_+$ denote the sets of reals and nonnegative reals, respectively. The triple (T,Σ,μ) stands for a positive, nonatomic, σ -finite and complete measure space. By $L^0 = L^0(\mu)$ we denote the space of all (equivalence classes of) Σ -measurable real functions x defined on T. A mapping $\Phi: T \times \mathbb R \to \mathbb R_+$ is said to be a Musielak-Orlicz function if it satisfies the Caratheodory conditions, i.e. for any $u \in \mathbb R$, the function $\Phi(\cdot,u)$ is Σ -measurable and there is a set $T_0 \in \Sigma$ with $\mu(T_0) = 0$ such that for any $t \in T \setminus T_0$ the function $\Phi(t, \cdot)$ is an Orlicz function i.e. it is even, convex, vanishing at zero and satisfying $\Phi(t,u) \to +\infty$ as $u \to +\infty$. We assume in the whole paper (if it will be not excluded explicitly) that Φ satisfies the following condition

$$(\infty_1)$$
 $(\Phi(t,u)/u) \to +\infty$ as $u \to +\infty$ for μ -a.e. $t \in T$.

^{*} Supported by KBN grant 2PO3A 031 10.

The complementary function of Φ in the sense of Young is defined by

$$\Phi^*(t, u) = \sup_{v>0} \left\{ |u|v - \Phi(t, v) \right\} \quad (\forall \ t \in T, \ u \in \mathbb{R}).$$

It is easy to see that Φ^* is also a Musielak-Orlicz function.

Given a Musielak-Orlicz function Φ we define on L^0 the functional I_{Φ} by

$$I_{\Phi}(x) = \int_{T} \Phi(t, x(t)) d\mu.$$

It is obvious that this functional is nonnegative, even and convex as well as that $I_{\Phi}(0) = 0$ and if $x \in L^0$ and $I_{\Phi}(\lambda x) = 0$ for all $\lambda > 0$, then x = 0. So, I_{Φ} is a convex modular (see [18]).

Every Musielak-Orlicz function Φ generates the Musielak-Orlicz space L^{Φ} defined as the set of these $x \in L^0$ that $I_{\Phi}(\lambda x) < +\infty$ for some $\lambda > 0$ depending on x. We can define in L^{Φ} the following three norms (see [4], [16], [17] and [20]):

$$||x||_{\Phi} = \inf \left\{ \lambda > 0 : I_{\Phi}(x/\lambda) \le 1 \right\} \quad \text{(the Luxemburg norm)},$$

$$||x||_{\Phi}^{0} = \sup \left\{ \left| \int_{T} x(t)y(t) \, d\mu \right| : I_{\Phi^{*}}(y) \le 1 \right\} \quad \text{(the Orlicz norm)},$$

$$||x||_{\Phi}^{A} = \inf_{k>0} \frac{1}{k} \left(1 + I_{\Phi}(kx) \right) \quad \text{(the Amemiya norm)}.$$

It is known that $||x||_{\Phi} \leq ||x||_{\Phi}^{0} \leq 2||x||_{\Phi}$ for any $x \in L^{\Phi}$ (see [18]). It can also be proved in an analogous way as for Orlicz spaces in [4], [16] and [20] that $||x||_{\Phi}^{0} = ||x||_{\Phi}^{A}$ for any $x \in L^{\Phi}$ (see [8]).

We denote by $\Phi'_-(t,u)$ and $\Phi'_+(t,u)$ the left and the right derivatives of $\Phi(t,\cdot)$ at any fixed point $u \in \mathbb{R}$, respectively. We define $\partial \Phi(t,u) = [\Phi'_-(t,u), \Phi'_+(t,u)]$ for any $t \in T$ and $u \in \mathbb{R}$. It is easy to see that for μ -a.e. $t \in T$ and any $u \in \mathbb{R}$, $\partial \Phi(t,u) = \{v \in \mathbb{R} : uv = \Phi(t,u) + \Phi^*(t,v)\}$. We say for a given $t \in T$ that $\Phi(t,\cdot)$ is smooth at $u \in \mathbb{R}$ if $\Phi'_-(t,u) = \Phi'_+(t,u)$.

We can show in the same way as for Orlicz spaces in [4] and [20] that if we define for $x \in L^{\Phi}$ the following two constants:

$$k^* = k^*(x) = \inf \{k > 0 : I_{\Phi^*}(\Phi'_+ \circ k|x|) \ge 1\},$$

 $k^{**} = k^{**}(x) = \sup \{k > 0 : I_{\Phi^*}(\Phi'_+ \circ k|x|) \le 1\},$

then $||x||_{\Phi}^{A} = \frac{1}{k}(1 + I_{\Phi}(kx))$ for any $k \in [k^*, k^{**}]$.

We define a closed subspace E^{Φ} of L^{Φ} by

$$E^{\Phi} = \left\{ x \in L^0 : I_{\Phi}(\lambda x) < +\infty \text{ for any } \lambda > 0 \right\}.$$

It is easy to see that E^{Φ} is the subspace of order continuous elements in L^{Φ} , i.e. $x \in L^{\Phi}$ belongs to E^{Φ} if and only if for any sequence (x_n) in L^0 such that $|x_n| \leq |x|$ for all $n \in \mathbb{N}$ and $|x_n| \to 0$ μ -a.e. in T there holds $||x_n||_{\Phi} \to 0$. For the definition of order continuous elements in Banach lattices see [1] and [15]. Since Φ is finitely valued, we have $E^{\Phi} \neq \{0\}$.

Kamińska [14] has constructed for any Musielak-Orlicz function Φ an ascending sequence $(T_n)_{n=1}^{\infty}$ of measurable sets with $0 < \mu(T_n) < +\infty$ for any $n \in \mathbb{N}$ such that $\sup_{t \in T_n} \Phi(t, \lambda) < +\infty$ for every $\lambda > 0$ and $n \in \mathbb{N}$ and $\bigcup_{n=1}^{\infty} T_n = T$. This yields that χ_{T_n} (the characteristic function of T_n) belongs to E^{Φ} for any $n \in \mathbb{N}$.

In the whole paper T_n denotes a set of this sequence of sets.

The spaces L^{Φ} and E^{Φ} equipped with everyone of these three norms are Banach spaces (see [18]). The spaces L^{Φ} and E^{Φ} coincide if and only if Φ satisfies the so-called Δ_2 -condition. Recall that Φ satisfies the Δ_2 -condition ($\Phi \in \Delta_2$ for short), if there are a set T_0 of measure zero, a constant K > 0 and a Σ -measurable nonnegative function h defined on T such that $\int_T h(t) d\mu < +\infty$ and

$$\Phi(t, 2u) \le K\Phi(t, u) + h(t)$$

for every $t \in T \setminus T_0$ and $u \in \mathbb{R}$. For the consequences of $\Phi \in \Delta_2$ or $\Phi \notin \Delta_2$ we refer to [8], [11] and [14].

The dual space of L^{Φ} is represented in the following way (see [18] and for Banach function lattices also [15]):

$$(L^{\Phi})^* = L^{\Phi^*} \oplus S,$$

i.e. every $x^* \in (L^{\Phi})^*$ is uniquely represented in the form $x^* = \xi_v + \varphi$, where φ is a singular functional, i.e. $\varphi(x) = 0$ for any $x \in E^{\Phi}$ and ξ_v is the regular functional defined by a function $v \in L^{\Phi^*}$ by the formula

$$\xi_v(x) = \langle x, v \rangle = \int_T v(t) x(t) d\mu \quad (\forall \ x \in L^{\Phi}).$$

For any $x^* \in (L^{\Phi})^*$ we define

$$\begin{split} \|x^*\| &= \sup \, \left\{ x^*(x) : x \in L^\Phi \quad \text{and} \quad \|x\|_\Phi^0 \leq 1 \right\}, \\ \|x^*\|^0 &= \sup \, \left\{ x^*(x) : x \in L^\Phi \quad \text{and} \quad \|x\|_\Phi \leq 1 \right\}. \end{split}$$

Let us define for any $x \in L^{\Phi}$:

$$d(x) = \inf \{ ||x - y||_{\Phi} : y \in E^{\Phi} \},$$

$$d_0(x) = \inf \{ ||x - y||_{\Phi}^0 : y \in E^{\Phi} \},$$

$$\theta(x) = \inf \{ \lambda > 0 : I_{\Phi}(x/\lambda) < +\infty \},$$

$$x_n(t) = \begin{cases} x(t) & \text{if } |x(t)| \le n \text{ and } t \in T_n, \\ 0 & \text{otherwise,} \end{cases}$$

for any $n \in \mathbb{N}$. It is obvious that $|x_n| \swarrow |x|$ and $0 \swarrow |x - x_n| \leq |x|$ μ -a.e. in T, and $x_n \in E^{\Phi}$ for any $n \in \mathbb{N}$.

For any Banach space X denote by B(X) and S(X) its unit ball and unit sphere and by $B(X^*)$ and $S(X^*)$ the unit ball and the unit sphere of the dual space X^* of X, respectively. By L^{Φ} and L_0^{Φ} we denote the Orlicz space L^{Φ} equipped with the Luxemburg and the Orlicz norm, respectively. Their unit spheres we denote by $S(L^{\Phi})$ and $S(L_0^{\Phi})$, respectively.

A functional $x^* \in X^*$ is said to be a support functional at $x \in X \setminus \{0\}$ if $||x^*|| = 1$ and $x^*(x) = ||x||$. The set of all support functionals at x is denoted by $\operatorname{Grad}(x)$ and $\operatorname{R}\operatorname{Grad}(x)$ denotes the set of all regular functionals from $\operatorname{Grad}(x)$. We say that $x \in X \setminus \{0\}$ is a smooth point if $\operatorname{Grad}(x)$ contains exactly one element. We say a Banach space X is smooth if any $x \in S(X)$ (equivalently any $x \in X \setminus \{0\}$) is a smooth point (see [7] and [19]).

Criteria for smoothness of Orlicz function spaces equipped with the Orlicz norm were given in [3]. Smooth points in these spaces were characterized in [5]. Criteria for smooth points and smoothness of Orlicz function (and sequence) spaces endowed with the Luxemburg norm were presented in [9]. Smooth points and smoothness in Orlicz sequence spaces equipped with the Orlicz norm were characterized in [6]. Smoothness of Musielak-Orlicz spaces equipped with the Luxemburg norm was characterized under some restrictions in [21] and the problem was solved completely in [12]. Criteria for smooth points in Musielak-Orlicz sequence and function spaces endowed with the Luxemburg norm were given respectively in [13] and [22]. In this paper we describe smooth points and smoothness in Musielak-Orlicz spaces L^{Φ} and their subspaces E^{Φ} equipped with the Orlicz norm.

Introductory results

We start with the following lemma.

Lemma 1.1

If Φ is a Musielak-Orlicz function such that $\Phi(t,\cdot)$ vanishes only at zero for μ -a.e. $t \in T$, then $\|x\|_{\Phi} < \|x\|_{\Phi}^0$ for any $x \in L^{\Phi} \setminus \{0\}$.

Proof. We may assume without loss of generality that $||x||_{\Phi} = 1$. We need to show that $||x||_{\Phi}^{0} > 1$. It is obvious that $I_{\Phi}(x) \leq 1$. Let us consider two cases.

 1^0 . $I_{\Phi}(x) = 1$. Then using the Amemiya formula for $||x||_{\Phi}^0$ (see [8]), we have

$$||x||_{\Phi}^{0} = \inf_{k>0} \frac{1}{k} (1 + I_{\Phi}(kx)) = \inf_{k\geq 1} \frac{1}{k} (1 + I_{\Phi}(kx)) = \frac{1}{k_{0}} (1 + I_{\Phi}(k_{0}x))$$

for some $k_0 \geq 1$. The last equality follows by the assumption that $(\Phi(t,u)/u) \to +\infty$ as $u \to +\infty$ for μ -a.e. $t \in T$ in an analogous way as for Orlicz spaces (see [9]). This yields $||x||_{\Phi}^0 > 1$.

 2^0 . $I_{\Phi}(x) < 1$. Then it must be $I_{\Phi}(kx) = +\infty$ for any k > 1. Assume for the contrary that $I_{\Phi}(k_0x) = +\infty$ for some $k_0 > 1$ and define the function $f(k) = I_{\Phi}(kx)$ for k > 0. Clearly, f is convex, f(1) < 1 and f is finite (so also continuous) on the interval $[0, k_0]$. Thus, there is $k_1 > 1$ such that $I_{\Phi}(k_1x) \le 1$, whence $||x||_{\Phi} \le 1/k_1 < 1$, a contradiction which proves that $I_{\Phi}(kx) = +\infty$ for any k > 1. So, $||x||_{\Phi}^0 = \frac{1}{k_0}(1 + I_{\Phi}(k_0x))$ for some $0 < k_0 \le 1$. This yields again $||x||_{\Phi}^0 > 1$. \square

Lemma 1.2

For any $x \in L^{\Phi}$ there holds the equalities

$$\lim_{n \to +\infty} ||x - x_n||_{\Phi}^0 = \lim_{n \to +\infty} ||x - x_n||_{\Phi} = \theta(x) = d_0(x) = d(x).$$

Proof. If $x \in E^{\Phi}$, then all the values are equal to 0, so the equalities hold true. Assume now that $x \in L^{\Phi} \setminus E^{\Phi}$, i.e. $\theta(x) > 0$. Since the sequences $(\|x - x_n\|_{\Phi}^0)$ and $(\|x - x_n\|_{\Phi})$ are nonincreasing, so the limits from the equalities exist. For any $\varepsilon \in (0, \theta(x))$, we have $I_{\Phi}(x/(\theta(x) - \varepsilon)) = +\infty$, so also $I_{\Phi}((x - x_n)/(\theta(x) - \varepsilon)) = +\infty$, whence $\|x - x_n\|_{\Phi} \ge \theta(x) - \varepsilon$ for any $n \in \mathbb{N}$. Consequently,

$$\lim_{n \to +\infty} \|x - x_n\|_{\Phi}^0 \ge \lim_{n \to +\infty} \|x - x_n\|_{\Phi} \ge \theta(x).$$

Now, we will show the inequality $\lim_{n\to+\infty} \|x-x_n\|_{\Phi}^0 \leq \theta(x)$. Let $\varepsilon > 0$ be arbitrary and denote for short $\theta(x) = \theta$. Then $I_{\Phi}(x/(\theta+\varepsilon)) < +\infty$, whence $\lim_{n\to+\infty} I_{\Phi}((x-x_n)/(\theta+\varepsilon)) = 0$. By the Amemiya formula for the Orlicz norm, we get

$$||x - x_n||_{\Phi}^0 \le (\theta + \varepsilon) [1 + I_{\Phi}((x - x_n)/(\theta + \varepsilon))] \to \theta + \varepsilon$$

as $n \to +\infty$, whence the desired inequality follows. So,

$$\theta(x) = \lim_{n \to +\infty} ||x - x_n||_{\Phi}^0 \ge d_0(x) \ge d(x).$$

To finish the proof we need only to show that $d(x) \ge \theta(x)$.

Let $\varepsilon \in (0,\theta)$ be arbitrary. Take any function $w \in E^{\Phi}$ and define the sequence of measurable sets:

$$F_n = \{t \in T : |w(t)| \le n\} \cap G_n,$$

where

$$G_n = G_n(x) = \{t \in T_n : |x(t)| \le n\}.$$

The sequence (F_n) is increasing and $\mu(T \setminus \bigcup_{n=1}^{\infty} F_n) = 0$. By $I_{\Phi}(w/(\varepsilon/2)) < +\infty$ and the Lebesgue dominated convergence theorem, we get for $w_n = w\chi_{F_n}$,

$$I_{\Phi}((w-w_n)/(\varepsilon/2)) = I_{\Phi}(w\chi_{T\backslash F_n}/(\varepsilon/2)) \to 0$$

as $n \to +\infty$. Thus, there is $n_0 \in \mathbb{N}$ such that

(1)
$$I_{\Phi}((w-w_n)/(\varepsilon/2)) \leq 1$$
, i.e. $||w-w_n|| \leq \varepsilon/2$

for any $n \ge n_0$. From the definition of $\theta(x)$, we have $I_{\Phi}(x/(\theta - \varepsilon/2)) = +\infty$. Since $F_{n_0} \subset G_{n_0}$, we have

$$I_{\Phi}(x\chi_{F_{n_0}}/(\theta-\varepsilon/2)) \le I_{\Phi}(x\chi_{G_{n_0}}/(\theta-(\varepsilon/2)) < +\infty,$$

whence

$$I_{\Phi}(x\chi_{T\backslash F_{n_0}}/(\theta-\varepsilon/2))=+\infty$$
.

By supp $w_{n_0} = F_{n_0}$, we get

$$\begin{split} I_{\Phi}\big((x-w_{n_0})/(\theta-\varepsilon/2)\big) &= I_{\Phi}\big((x-w_{n_0})\chi_{F_{n_0}}/(\theta-\varepsilon/2)\big) \\ &+ I_{\Phi}\big(x\chi_{T\backslash F_{n_0}}/(\theta-\varepsilon/2)\big) \geq I_{\Phi}\big(x\chi_{T\backslash F_{n_0}}/(\theta-(\varepsilon/2)\big) = +\infty\,, \end{split}$$

whence $||x-w_{n_0}||_{\Phi} \geq \theta - \varepsilon/2$. Combining this with (1), we get

$$||x - w||_{\Phi} \ge ||x - w_{n_0}||_{\Phi} - ||w_{n_0} - w||_{\Phi} \ge \theta - \varepsilon/2 - \varepsilon/2 = \theta - \varepsilon.$$

By the arbitrariness of $w \in E^{\Phi}$ and $\varepsilon > 0$, we get $d(x) \ge \theta(x)$, which finishes the proof. \square

Lemma 1.3

For any singular functional φ there hold the equalities

$$\|\varphi\| = \|\varphi\|^0 = \sup \left\{ \varphi(x) : I_{\Phi}(x) < +\infty \right\} = \sup_{x \in L^{\Phi}} \varphi(x) / \theta(x).$$

Proof. We have for any $x \in L^{\Phi}$ and $n \in \mathbb{N}$, $\varphi(x) = \varphi(x - x_n) \leq \|\varphi\| \|x - x_n\|_{\Phi}$, whence in virtue of Lemma 1.2, we get $\varphi(x) \leq \theta(x) \|\varphi\|$. Moreover, if $I_{\Phi}(x) < +\infty$, then $I_{\Phi}(x - x_n) \to 0$ as $n \to +\infty$ and so $\theta(x) = \lim_{n \to +\infty} \|x - x_n\|_{\Phi} \leq 1$. Therefore,

$$\begin{split} \|\varphi\| &= \sup_{x \in L^{\Phi}} \varphi(x) / \|x\|_{\Phi}^{0} \leq \sup_{x \in L^{\Phi}} \varphi(x) / \|x\|_{\Phi} = \|\varphi\|^{0} \\ &\leq \sup \left\{ \varphi(x) : I_{\Phi}(x) < +\infty \right\} \leq \sup \left\{ \varphi(x) / \theta(x) : I_{\Phi}(x) < +\infty \right\} \\ &\leq \sup_{x \in L^{\Phi}} \varphi(x) / \theta(x) \leq \|\varphi\| \,, \end{split}$$

whence it follows that all non-sharp inequalities are equalities in fact, which finishes the proof. \Box

Lemma 1.4

For any functional $x^* = \xi_v + \varphi \in (L^{\Phi})^*$, we have

$$||x^*||^0 = ||v||_{\Phi^*}^0 + ||\varphi||^0,$$

$$||x^*|| = \inf \{ \lambda > 0 : I_{\Phi^*}(v/\lambda) + ||\psi||/\lambda \le 1 \}.$$

Proof. To prove the first formula, it is enough to show that $||x^*||^0 \ge ||v||_{\Phi^*}^0 + ||\varphi||^0$. For any $\varepsilon > 0$ we can find $x_1, x_2 \in S(L^{\Phi})$ such that

$$||v||_{\Phi^*}^0 - \varepsilon < \xi_v(x_1)$$
 and $||\varphi||^0 - \varepsilon < \varphi(x_2)$.

We may assume that $x_1 \in E^{\Phi}$. Let (G_n) be the sequence of measurable sets defined as in the proof of Lemma 1.2, but corresponding to x_2 in place of x. By the Lebesgue dominated convergence theorem, we have

$$\int_{T\backslash G_n} |v(t)x_1(t)| d\mu \to 0 \quad \text{as} \quad n \to +\infty,$$

$$\int_{T\backslash G_n} |v(t)x_2(t)| d\mu \to 0 \quad \text{as} \quad n \to +\infty,$$

$$\int_{T\backslash G_n} \Phi(t, x_2(t)) d\mu \to 0 \quad \text{as} \quad n \to +\infty.$$

Moreover, $x_2\chi_{G_n} \in E^{\Phi}$ for any $n \in \mathbb{N}$. Take $m \in \mathbb{N}$ large enough such that

(2)
$$\int_{T\backslash G_m} |v(t)x_1(t)| \, d\mu < \varepsilon,$$

(3)
$$\int_{T \setminus G_m} |v(t)x_2(t)| \, d\mu < \varepsilon,$$

$$(4) I_{\Phi}(x_2\chi_{T\backslash G_m}) < \varepsilon.$$

Define

$$x(t) = \begin{cases} x_1(t) & \text{if } t \in G_m \\ x_2(t) & \text{if } t \in T \setminus G_m. \end{cases}$$

In view of (4), we have

$$I_{\Phi}(x) \leq I_{\Phi}(x_1) + I_{\Phi}(x_2 \chi_{T \setminus G_m}) \leq 1 + \varepsilon$$
.

Hence $I_{\Phi}(x/(1+\varepsilon)) \leq 1$ and consequently $||x||_{\Phi} \leq 1+\varepsilon$. Since φ is singular, we have $\varphi(x_1) = 0$ and $\varphi(x_2) = \varphi(x_2\chi_{T\backslash G_m})$. So, by (2) and (3), we get

$$(1+\varepsilon)\|x^*\|^0 \ge x^*(x) = x^*(x_1\chi_{G_m}) + x^*(x_2\chi_{T\backslash G_m})$$

$$= \xi_v(x_1\chi_{G_m}) + \xi_v(x_2\chi_{T\backslash G_m}) + \varphi(x_2)$$

$$\ge \xi_v(x_1) - \varepsilon - \varepsilon + \varphi(x_2) > \|v\|_{\Phi^*}^0 + \|\varphi\|^0 - 4\varepsilon,$$

which finishes the proof of the first formula.

To prove the second formula we can assume without loss of generality that $||x^*|| = 1$. Take $\gamma > 0$ satisfying $I_{\Phi^*}(v/\gamma) + ||\varphi||/\gamma \le 1$ and $x \in S(L_0^{\Phi})$. Let k > 0 be such that

$$||x||_{\Phi}^{0} = \frac{1}{k} (1 + I_{\Phi}(kx)).$$

Since $I_{\Phi}(kx) < +\infty$, applying Lemma 1.3, we get

$$\frac{1}{\gamma} x^*(kx) = \frac{1}{\gamma} \xi_v(kx) + \frac{1}{\gamma} \varphi(kx) \le I_{\Phi}(kx) + I_{\Phi^*}(v/\gamma) + \|\varphi\|/\gamma$$

$$\le I_{\Phi}(kx) + 1 = k\|x\|_{\Phi}^0 = k,$$

whence $x^*(x) \leq \gamma$. By the arbitrariness of x from $S(L_0^{\Phi})$ and $\gamma > 0$ satisfying $I_{\Phi^*}(v/\gamma) + \|\varphi\|/\gamma \leq 1$, we get

(5)
$$||x^*|| \le \inf \{ \lambda > 0 : I_{\Phi^*}(v/\lambda) + ||\varphi||/\lambda \le 1 \}.$$

If the inequality (5) is sharp, there exists $\delta > 0$ such that

(6)
$$I_{\Phi^*}(v) + \|\varphi\| > 1 + \delta.$$

In fact, if such a number $\delta > 0$ does not exist, then $I_{\Phi^*}(v) + \|\varphi\| \leq 1$, which yields

$$\inf \{ \lambda > 0 : I_{\Phi^*}(v/\lambda) + \|\varphi\|/\lambda \le 1 \} \le 1 = \|x^*\|,$$

so we have then equality in (5). In virtue of (6), there is $x_1 \in L^{\Phi}$ such that

$$I_{\Phi}(x_1) \le 1$$
 and $I_{\Phi^*}(v) + \varphi(x_1) > 1 + \delta$.

From the equalities

$$||x^*|_{E^{\Phi}}|| = ||\xi_v|_{E^{\Phi}}|| = ||\xi_v|| = ||v||_{\Phi^*},$$

we get $||v||_{\Phi^*} \leq ||x^*|| = 1$, which yields $I_{\Phi^*}(v) \leq 1$. Using the left derivative $(\Phi^*)'_-(t,\cdot)$ of $\Phi^*(t,\cdot)$, we have the following Young equality

$$I_{\Phi^*}(v) = \int_{\mathcal{T}} \left[(\Phi^*)'_{-}(t, |v(t)|)|v(t)| - \Phi(t, (\Phi^*)'_{-}(t, |v(t)|)) \right] d\mu.$$

Define the sets

$$F_n = \{ t \in T_n : |x_1(t)| \le n \},$$

$$H_n = \{ t \in F_n : (\Phi^*)'_-(t, |v(t)|) \le n \}, \ n = 1, 2, \dots.$$

The sequence (H_n) is increasing and in virtue of the assumption (∞_1) , we have that $\Phi^*(t,\cdot)$ is finitely valued for μ -a.e. $t \in T$ and consequently $(\Phi^*)'_-(t,\cdot)$ is also finitely valued for μ -a.e. $t \in T$. Therefore, $\mu(T \setminus \bigcup_{n=1}^{\infty} H_n) = 0$. Moreover,

$$(\Phi^*)'_-(t,|v(t)|)\chi_{H_n} \in E^{\Phi}$$
 and $x_1\chi_{H_n} \in E^{\Phi}$,

for each $n \in \mathbb{N}$. By the Beppo-Levi theorem we have

$$\int_{H_n} \left[(\Phi^*)'_-(t, |v(t)|) |v(t)| - \Phi(t, (\Phi^*)'_-(t, |v(t)|)) \right] d\mu \to
\int_{T} \left[(\Phi^*)'_-(t, |v(t)|) |v(t)| - \Phi(t, (\Phi^*)'_-(t, |v(t)|)) \right] d\mu,
\int_{T \setminus H_n} |x_1(t)v(t)| d\mu \to 0 \text{ and } \int_{T \setminus H_n} \Phi(t, x_1(t)) d\mu \to 0.$$

So, we can find n large enough such that the function

$$x_2(t) = (\Phi^*)'_{-}(t, |v(t)|)\chi_{H_n}(t)$$

satisfies

(7)
$$I_{\Phi^*}(v) - \delta/6 < \int_T \left[x_2(t)|v(t)| - \Phi(t, x_2(t)) \right] d\mu,$$

(8)
$$\int_{T \setminus H_n} |x_1(t)v(t)| d\mu < \delta/6 \quad \text{and} \quad \int_{T \setminus H_n} \Phi(t, x_1(t)) d\mu < \delta/6.$$

Clearly, $x_2 \in E^{\Phi}$. Define

$$x(t) = \begin{cases} x_1(t) \operatorname{sgn}(v(t)) & \text{if } t \in T \setminus H_n \\ x_2(t) \operatorname{sgn}(v(t)) & \text{if } t \in H_n. \end{cases}$$

In virtue of (6), (7) and (8), we get

$$\xi_{v}(x) + \varphi(x) - I_{\varphi}(x)$$

$$= \xi_{v}(x_{1}\chi_{T\backslash H_{n}}) + \xi_{v}(x_{2}\chi_{H_{n}}) + \varphi(x_{1}\chi_{T\backslash H_{n}}) - I_{\Phi}(x_{1}\chi_{T\backslash H_{n}}) - I_{\Phi}(x_{2}\chi_{H_{n}})$$

$$> -\delta/6 + \xi_{v}(x_{2}) + \varphi(x_{1}) - \delta/6 - I_{\Phi}(x_{2})$$

$$= \xi_{v}(x_{2}) - I_{\Phi}(x_{2}) + \varphi(x_{1}) - \delta/3 > I_{\Phi^{*}}(v) + \varphi(x_{1}) - \delta/2$$

$$> 1 + \delta - \delta/2 = 1 + \delta/2 > 1,$$

whence

$$\xi_v(x) + \varphi(x) > 1 + I_{\Phi}(x).$$

By this inequality and the inequality $||x||_{\Phi}^{0} \leq 1 + I_{\Phi}(x)$, we get

$$1 = ||x^*|| \ge x^*(x/||x||_{\Phi}^0) = \xi_v(x/||x||_{\Phi}^0) + \varphi(x/||x||_{\Phi}^0)$$
$$= (\xi_v(x) + \varphi(x))/||x||_{\Phi}^0 > \frac{1 + I_{\Phi}(x)}{||x||_{\Phi}^0} \ge 1,$$

a contradiction, which finishes the proof that the non-sharp inequality in (5) is equality in fact. So, the theorem is proved. \Box

Remark 1.5. Note that the first formula from Lemma 1.4 holds also true without the assumption that the Musielak-Orlicz function Φ satisfies condition (∞_1) , which is not used in the proof.

The second formula from Lemma 1.4 holds also true without condition (∞_1) if we assume that the set $A = \{t \in T : \alpha(t) := \sup[u > 0 : \Phi(t, u) < +\infty] < +\infty\}$ is measurable and $(\Phi^*)'_-(t, \alpha(t)) < +\infty$ for μ -a.e. $t \in A$. The proof can be proceeded without any change because $I_{\Phi^*}(v) \leq 1$ implies that $\Phi^*(t, v(t)) < +\infty$ for μ -a.e. $t \in T$ and so, in virtue of our assumption, we have $(\Phi^*)'_-(t, v(t)) < +\infty$ for μ -a.e. $t \in T$. Note that condition (∞_1) is equivalent to the fact that $\Phi^*(t, \cdot)$ is finitely valued for μ -a.e. $t \in T$.

Lemma 1.6

A functional $x^* \in (L^{\Phi})^*$ is singular if and only if $||x^*||^0 = ||x^*||$.

Proof. The necessity follows by Lemma 1.3. To prove the sufficiency, assume that $||x^*||^0 = ||x^*||$ for $x^* = \xi_v + \varphi$, where $v \in L^{\Phi^*}$, $v \neq 0$, and φ is a singular functional. Applying Lemma 1.1, Lemma 1.3 and the first formula from Lemma 1.4, we get

$$||x^*||^0 = ||x^*|| = ||\xi_v + \varphi|| \le ||\xi_v|| + ||\varphi|| = ||v||_{\Phi^*} + ||\varphi||^0$$
$$< ||v||_{\Phi^*}^0 + ||\varphi||^0 = ||x^*||^0,$$

a contradiction, which finishes the proof. \square

Lemma 1.7

There is no nonzero singular functional $\varphi \in (L^{\Phi})^*$ attaining its norm on $S(L_0^{\Phi})$.

Proof. Let $\varphi \in (L^{\Phi})^*$ be singular and let $\varphi \neq 0$. Assume that there is $x \in S(L_0^{\Phi})$ such that $\varphi(x) = \|\varphi\| \neq 0$. In virtue of Lemmas 1.1 and 1.3, we get

$$\|\varphi\|^0 = \|\varphi\| = \varphi(x) \le \|\varphi\|^0 \|x\|_{\Phi} < \|\varphi\|^0 \|x\|_{\Phi}^0 = \|\varphi\|^0,$$

a contradiction that proves the lemma. \square

Lemma 1.8

Let $x^* = \xi_v + \varphi$ be a linear continuous functional over L_0^{Φ} such that $||x^*|| = 1$, where $v \in L^{\Phi^*}$ and φ is a singular functional. Then x^* attains its norm at $x \in S(L_0^{\Phi})$ (or equivalently $x^* \in Grad(x)$) if and only if for some (equivalently for any) $k \in [k^*, k^{**}]$ there hold:

- I^0 . $I_{\Phi^*}(v) + \|\varphi\| = 1$;
- 2^0 . $\|\varphi\| = \varphi(kx)$;
- 3^0 . $\langle kx,v\rangle=I_{\Phi}(kx)+I_{\Phi^*}(v), \text{ i.e. } v(t)\in\partial\Phi(t,kx(t)) \text{ for }\mu\text{-a.e. } t\in T.$

Proof. It can be proceeded in the same way as for Orlicz spaces in [5]. \square

Let us denote supp $x = \{t \in T : x(t) \neq 0\}$, for any $x \in L^0$.

Lemma 1.9

If $x \in L^{\Phi}$ and $\theta(x) > 0$, then there exist $h_1, h_2 \in L^{\Phi}$ with $\mu(\operatorname{supp} h_1 \cap \operatorname{supp} h_2) = 0$, $h_1 + h_2 = x$ and two singular functionals φ_1 and φ_2 in $S((L^{\Phi})^*)$ such that $\varphi_1(x) = \varphi_2(x) = \theta(x)$, $\|\varphi_1\| = \|\varphi_2\| = 1$, $\varphi_1 \neq \varphi_2$ and $\varphi_1(h_2) = \varphi_2(h_1) = 0$.

Proof. Let (T_n) be the sequence of sets defined in the Introduction. We have $I_{\Phi}(k\chi_{T_n}) < +\infty$ for every k > 0 and $n \in \mathbb{N}$. Take a sequence $(\lambda_i)_{i=1}^{\infty}$ of positive numbers such that $\lambda_1 < \lambda_2 < \ldots, \ \lambda_i < \theta(x)$ and $\lambda_i \to \theta(x)$ as $i \to +\infty$. Since $I_{\Phi}(x/\lambda_1) = +\infty$, we can find $n_1 \in \mathbb{N}$ such that for the set

$$A_1 = \{ t \in T_{n_1} : |x(t)| \le n_1 \}$$

the inequality $I_{\Phi}(x\chi_{A_1}/\lambda_1) \geq 2$ is satisfied. We have $I_{\Phi}(x\chi_{T\setminus A_1}/\lambda_2) = +\infty$ because $I_{\Phi}(x\chi_{A_1}/\lambda_2) < +\infty$. We can find $n_2 \in \mathbb{N}$ such that the set

$$A_2 = \{ t \in (T \setminus A_1) \cap T_{n_2} : |x(t)| \le n_2 \}$$

satisfies $A_1 \cap A_2 = \emptyset$ and $I_{\Phi}(x\chi_{A_2}/\lambda_2) \geq 2$. Clearly, $I_{\Phi}(x\chi_{T\setminus (A_1\cup A_2)}/\lambda_3) = +\infty$. Repeating this inductional procedure, we can find a sequence $(A_n)_{n=1}^{\infty}$ of pairwise disjoint sets such that

$$I_{\Phi}(x\chi_{A_n}/\lambda_n) \geq 2$$
 $(n=1,2,\ldots)$.

Divide any set A_n into two measurable disjoint sets A'_n and A''_n in such a way that

$$I_{\Phi}(x\chi_{A'_n}/\lambda_n) = I_{\Phi}(x\chi_{A''_n}/\lambda_n) = \frac{1}{2}I_{\Phi}(x\chi_{A_n}/\lambda_n) \ge 1.$$

Define

$$A = \bigcup_{n=1}^{\infty} A'_n, \quad B = T \setminus A, \quad h_1 = x\chi_A, \quad h_2 = x\chi_B.$$

Take any $\lambda \in (0, \theta(x))$. Let $m \in \mathbb{N}$ be such that $\lambda \leq \lambda_m$. Then

$$I_{\Phi}(h_1/\lambda) \ge I_{\Phi}(h_1/\lambda_m) = I_{\Phi}(x\chi_A/\lambda_m)$$

$$\ge I_{\Phi}\left(x\chi \underset{\longrightarrow}{\circ}_{A'_n}/\lambda_m\right) \ge \sum_{n=m}^{\infty} I_{\Phi}\left(x\chi_{A'_n}/\lambda_n\right) = +\infty.$$

So, by the arbitrariness of $\lambda \in (0, \theta(x))$, we have $\theta(x) = \theta(h_1)$. By Lemma 1.2, we obtain $d_0(h_1) = \theta(x)$. In an analogous way, we get $I_{\Phi}(h_2/\lambda) = +\infty$ for any $\lambda \in (0, \theta(x))$, whence $d_0(h_2) = \theta(x)$. Define

$$E^{\Phi}(h_i) = \text{span}\{h_i, E^{\Phi}\} \quad (i = 1, 2).$$

Every element $u \in E^{\Phi}(h_i)$ is uniquely represented in the form $u = ah_i + w$, where $a \in \mathbb{R}$ and $w \in E^{\Phi}$. In fact, if we also have $u = bh_i + z$ with $b \in \mathbb{R}$ and $z \in E^{\Phi}$, then in

the case when $a \neq b$, we get $0 = (a-b)h_i + (w-z)$, whence $h_i = (z-w)/(a-b) \in E^{\Phi}$, a contradiction. So, a = b and consequently w = z. For any $u \in E^{\Phi}(h_1)$ of the form $u = ah_1 + w\chi_B$, we have $|(h_2 - u)(t)| \geq |(h_2 - w)(t)|$ for μ -a.e. $t \in T$, whence

$$||h_2 - u||_{\Phi}^0 \ge ||h_2 - w\chi_B||_{\Phi}^0 \ge d_0(h_2) = \theta(x).$$

So,

$$d_0(h_2, E^{\Phi}(h_1)) = \inf \{ ||h_2 - u||_{\Phi}^0 : u \in E^{\Phi}(h_1) \} \ge \theta(x).$$

Moreover, by $E^{\Phi} \subset E^{\Phi}(h_1)$, we have $d_0(h_2, E^{\Phi}(h_1)) \leq d_0(h_2) = \theta(x)$, whence $d_0(h_2, E^{\Phi}(h_1)) = \theta(x)$. In an analogous way we can get

$$d_0(h_1, E^{\Phi}(h_2)) = \inf\{\|h_1 - u\|_{\Phi}^0 : u \in E^{\Phi}(h_2)\} = \theta(x).$$

By the Hahn-Banach theorem there exist singular functionals $\varphi_i \in (L^{\Phi})^*$ (i = 1, 2) such that $\|\varphi_i\| = 1$ and

$$\varphi_1(u_2) = 0 \text{ for any } u_2 \in E^{\Phi}(h_2),$$
 $\varphi_2(u_1) = 0 \text{ for any } u_1 \in E^{\Phi}(h_1),$
 $\varphi_1(h_1) = d_0(h_1, E^{\Phi}(h_2)) = \theta(x),$
 $\varphi_2(h_2) = d_0(h_2, E^{\Phi}(h_1)) = \theta(x).$

Therefore,

$$\varphi_1(x) = \varphi_1(h_1 + h_2) = \varphi_1(h_1) + \varphi_1(h_2) = \varphi_1(h_1) = \theta(x),$$

$$\varphi_2(x) = \varphi_2(h_1 + h_2) = \varphi_2(h_1) + \varphi_2(h_2) = \varphi_2(h_2) = \theta(x).$$

The proof is complete. \square

2. Main results

We start with the following result.

Theorem 2.1

If $\Phi(t,\cdot)$ is smooth for μ -a.e. $t\in T$, then $x\in S(L_0^{\Phi})$ is a smooth point if and only if $\operatorname{Grad}(x)$ contains a regular functional.

Proof. Sufficiency. By the assumption there is $v_0 \in S(L^{\Phi^*})$ such that $||x||_{\Phi}^0 = \xi_{v_0}(x) = \int_T x(t)v_0(t)d\mu$. In virtue of Lemma 1.8, we get $I_{\Phi^*}(v_0) = 1$. We will show that ξ_{v_0} is the only support functional at x. Assume that a functional $x^* = \xi_v + \varphi$, where $v \in L^{\Phi^*}$ and φ is a singular functional on L^{Φ} , is a support functional at x. Then $(x^* + \xi_{v_0})/2$ is also a support functional at x, i.e. $||(x^* + \xi_{v_0})/2|| = 1$ and

$$\frac{1}{2}(x^* + \xi_{v_0})(x) = \frac{1}{2}x^*(x) + \frac{1}{2}\xi_{v_0}(x) = ||x||_{\Phi}^0 = 1.$$

By Lemma 1.8 and the convexity of Φ^* , we have

(9)
$$1 = I_{\Phi^*} \left(\frac{v_0 + v}{2} \right) + \left\| \frac{1}{2} \varphi \right\| \le \frac{1}{2} I_{\Phi^*}(v_0) + \frac{1}{2} I_{\Phi^*}(v) + \left\| \frac{1}{2} \varphi \right\| = 1,$$

whence

(10)
$$I_{\Phi^*}\left(\frac{v_0+v}{2}\right) = \frac{1}{2}I_{\Phi^*}(v_0) + \frac{1}{2}I_{\Phi^*}(v).$$

By smoothness of $\Phi(t,\cdot)$ for μ -a.e. $t \in T$ we have strict convexity of $\Phi^*(t,\cdot)$, for μ -a.e. $t \in T$. Therefore, equality (10) yields $v_0 = v$, whence $I_{\Phi^*}(v) = 1$ and, in view of (9), it follows that $\varphi = 0$. So, $x^* = \xi_{v_0}$, which means that x is a smooth point.

Necessity. Assume that there is no regular support functional at x. Then it must be $x \notin E^{\Phi}$, i.e. $\theta(x) > 0$. In view of Lemma 1.9 there are two orthogonal elements $h_1, h_2 \in L^{\Phi}$ such that $h_1 + h_2 = x$ and two different singular functionals φ_1 and φ_2 such that $\|\varphi_1\| = \|\varphi_2\| = 1$, $\varphi_1(h_2) = \varphi_2(h_1) = 0$ and $\varphi_1(x) = \varphi_2(x) = \theta(x)$. Let $x^* = \xi_v + \varphi \in \operatorname{Grad}(x)$, where $v \in L^{\Phi^*}$ and φ is the singular part of x^* . Define two new functionals by

$$x_i^* = \xi_v + \|\varphi\|\varphi_i$$
 $(i = 1, 2).$

Then $x_i^* \in (L^{\Phi})^*$, $x_1^* \neq x_2^*$ and in view of Lemma 1.8

$$I_{\Phi^*}(v) + || ||\varphi|| \varphi_i || = I_{\Phi^*}(v) + ||\varphi|| = 1,$$

whence $||x_i^*|| = 1$ for i = 1, 2. Moreover, by Lemma 1.3.

$$\varphi_i(x) = \varphi_i(h_i) = \theta(x) \ge \varphi(x)/\|\varphi\| \quad (i = 1, 2).$$

Therefore,

$$x_i^*(x) = \xi_v(x) + \|\varphi\|\varphi_i(x) \ge \xi_v(x) + \varphi(x)$$

= $x^*(x) = \|x\|_{\Phi}^0$ (i = 1, 2),

whence by the obvious inequality $x_i^*(x) \leq ||x||_{\Phi}^0$, we get $x_i^*(x) = ||x||_{\Phi}^0$ for i = 1, 2. This means that x is not a smooth point and the proof is complete. \square

Denote by E_0^{Φ} the space E^{Φ} equipped with the Orlicz norm.

Theorem 2.2

The space E_0^{Φ} is smooth if and only if $\Phi(t,\cdot)$ is smooth for μ -a.e. $t \in T$.

Proof. Sufficiency. Since $(E_0^{\Phi})^* = L^{\Phi^*}$, for any $x \in S(E_0^{\Phi})$, by the Hahn-Banach theorem, we have $R \operatorname{Grad}(x) \neq \emptyset$. By Theorem 2.1 and smoothness of $\Phi(t,\cdot)$ for μ -a.e. $t \in T$, every point $x \in S(E_0^{\Phi})$ is smooth, i.e. E_0^{Φ} is smooth.

Necessity. If $\Phi(t,\cdot)$ is not smooth for μ -a.e. $t \in T$, then the set

$$H = \big\{ t \in T : \Phi'_-(t, u) < \Phi'_+(t, u) \quad \text{for some } u \in \mathbb{R}_+ \big\},\,$$

which is measurable by the measurability of the derivatives $\Phi'_{-}(t,\cdot)$ and $\Phi'_{+}(t,\cdot)$, has a positive measure. Define on H the following multifunction

$$\Gamma(t) = \{ u \in \mathbb{R}_+ : \Phi'_-(t, u) < \Phi'_+(t, u) \}.$$

It follows by the definition of the Musielak-Orlicz function Φ (the Carathéodory conditions!) that Φ is $\Sigma \times \mathcal{B}$ -measurable, where \mathcal{B} is the Σ -algebra of Borel sets in \mathbb{R} . This easily yields the $\Sigma \times \mathcal{B}$ -measurability of Φ'_- and Φ'_+ . Therefore, Φ'_- and Φ'_+ are also $\Sigma_H \times \mathcal{B}$ -measurable, where $\Sigma_H = \{A \cap H : A \in \Sigma\}$, whence

Graph
$$\Gamma = \{(t, u) \in H \times \mathbb{R}_+ : u \in \Gamma(t)\}$$

= $\{(t, u) \in H \times \mathbb{R}_+ : \Phi'_-(t, u) < \Phi'_+(t, u)\} \in \Sigma_H \times \mathcal{B}.$

By Theorem 2.5 from [10] there is a measurable selector $f: H \to \mathbb{R}_+$ such that $f(t) \in \Gamma(t)$ for μ -a.e. $t \in H$. Define

$$\Psi_{+}(t) = \Phi^{*}(t, \Phi'_{+}(t, f(t))), \quad \Psi_{-}(t) = \Phi^{*}(t, \Phi'_{-}(t, f(t))),$$

and $g(t) = \Psi_+(t) - \Psi_-(t)$. Let A' be a measurable subset of H such that

$$0 < \int_{A'} \Psi_+(t) \, d\mu \le 1.$$

There is $m \in \mathbb{N}$ such that

$$0 < \int_{A' \cap T_m} \Psi_+(t) \, d\mu \le 1,$$

where T_m is a set from the sequence of sets defined in the Introduction but for Φ^* in place of Φ . Define

$$A_n = \{ t \in A' \cap T_m : f(t) \le n \}.$$

The sequence $(A_n)_{n=1}^{\infty}$ is ascending and $\mu((A'\cap T_m)\setminus\bigcup_{n=1}^{\infty}A_n)=0$. So, it is possible to choose $n_0\in\mathbb{N}$ in such a way that for $A:=A_{n_0}$, we have

$$0 < \int_A \Psi_+(t) \, d\mu \le 1,$$

which implies

$$0 < \int_{\Lambda} g(t) d\mu \le 1.$$

Define on $\Sigma \cap A$ a new measure ν by

$$\nu(E) = \int_{E} g(t) d\mu \quad (\forall E \in \Sigma \cap A).$$

The measure ν is nonatomic, so there is $B \in \Sigma \cap A$ such that $\nu(B) = \nu(A \setminus B)$, i.e.

$$\int_{B} \left(\Psi_{+}(t) - \Psi_{-}(t) \right) d\mu = \int_{A \setminus B} \left(\Psi_{+}(t) - \Psi_{-}(t) \right) d\mu,$$

which is equivalent to the equality

$$\int_{B} \Psi_{+}(t) d\mu + \int_{A \setminus B} \Psi_{-}(t) d\mu = \int_{A \setminus B} \Psi_{+}(t) d\mu + \int_{B} \Psi_{-}(t) d\mu.$$

Denote this common value by κ . Clearly, $\kappa \leq 1$. The assumption (∞_1) implies that $\Phi^*(t, \Phi'_+(t, u)) \to +\infty$ as $u \to +\infty$ and $\Phi^*(t, \cdot)$ is finitely valued for μ -a.e. $t \in T$. So, we can find c > 0 such that

$$\int_{T \setminus A} \Phi^* \left(t, \Phi'_+(t, c) \right) d\mu \ge 2.$$

Next, there is $n_0 \in \mathbb{N}$ satisfying

$$\int_{(T\setminus A)\cap T_{n_0}} \Phi^* (t, \Phi'_+(t, c)) d\mu \ge 3/2.$$

Define

$$D_n = \{t \in (T \setminus A) \cap T_{n_0} : \Phi'_+(t,c) \le n\}; \quad n = 1, 2, \dots$$

Clearly, $D_n \subset D_{n+1}$ for any $n \in \mathbb{N}$ and $\bigcup_{n=1}^{\infty} D_n = (T \setminus A) \cap T_{n_0}$ up to a set of measure zero. So, the Lebesgue dominated convergence theorem yields

$$\int_{D_n} \Phi^* \big(t, \Phi'_+(t,c) \big) d\mu \to \int_{(T \setminus A) \cap T_{n_0}} \Phi^* \big(t, \Phi'_+(t,c) \big) d\mu.$$

Moreover, the integrals on the left side are finite. Hence, there is $k \in \mathbb{N}$ such that $1 \leq \int_{D_k} \Phi^*(t, \Phi'_+(t, c)) d\mu < +\infty$. Define on $\Sigma \cap D_k$ a new measure ν_1 by

$$\nu_1(E) = \int_E \Phi^* (t, \Phi'_+(t, c)) d\mu \qquad (\forall E \in \Sigma \cap D_k).$$

Since the measure ν_1 is nonatomic and $\nu_1(D_k) \geq 1$, there is $C \in \Sigma \cap D_k$ such that $\nu_1(C) = 1 - \kappa$. Define

$$v_1(t) = c(t)\chi_{A\backslash B}(t) + d(t)\chi_B(t) + e(t)\chi_C(t),$$

$$v_2(t) = d(t)\chi_{A\backslash B}(t) + c(t)\chi_B(t) + e(t)\chi_C(t),$$

where

$$c(t) = \Phi'_{-}(t, f(t)) \quad \text{for } t \in A,$$

$$d(t) = \Phi'_{+}(t, f(t)) \quad \text{for } t \in A,$$

$$e(t) = \Phi'_{+}(t, c) \quad \text{for } t \in C.$$

We have $I_{\Phi^*}(v_1) = I_{\Phi^*}(v_2) = 1$, whence $\|\xi_{v_1}\| = \|v_1\|_{\Phi^*} = 1$ and $\|\xi_{v_2}\| = \|v_2\|_{\Phi^*} = 1$. Take $x \in E_0^{\Phi}$ defined by

$$x(t) = f(t)\chi_A(t) + c\chi_C(t).$$

Since $v_i(t) \in \partial \Phi(t, x(t))$ for μ -a.e. $t \in T$ (i = 1, 2), we get

$$||x||_{\Phi}^{0} \leq I_{\Phi}(x) + 1 = I_{\Phi}(x) + I_{\Phi^{*}}(v_{i}) = \int_{T} x(t)v_{i}(t)d\mu = \xi_{v_{i}}(x)$$

for i = 1, 2. On the other hand

$$\xi_{v_i}(x) \le \|\xi_{v_i}\| \|x\|_{\Phi}^0 = \|x\|_{\Phi}^0,$$

so $\xi_{v_i}(x) = ||x||_{\Phi}^0$ for i = 1, 2. Since $v_1 \neq v_2$, we have $\xi_{v_1} \neq \xi_{v_2}$, which means that x is not a smooth point. Consequently, the space E_0^{Φ} is not smooth, which completes the proof. \square

Theorem 2.3

The space L_0^{Φ} is smooth if and only if $\Phi(t,\cdot)$ is smooth for μ -a.e. $t \in T$ and Φ satisfies the Δ_2 -condition.

Proof. Sufficiency. Since $\Phi \in \Delta_2$ implies that $L_0^{\Phi} = E_0^{\Phi}$, by Theorem 2.2, smoothness of Φ yields smoothness of L_0^{Φ} .

Necessity. Smoothness of L_0^{Φ} implies smoothness of E_0^{Φ} , so by Theorem 2.2 also smoothness of Φ . To finish the proof, we only need to show that smoothness of L_0^{Φ} implies that $\Phi \in \Delta_2$. Since the necessity of smoothness of $\Phi(t,\cdot)$ for μ -a.e. $t \in T$ has been already proved we have to show that if $\Phi(t,\cdot)$ is smooth for μ -a.e. $t \in T$ and $\Phi \not\in \Delta_2$, then L_0^{Φ} is not smooth. If $\Phi \not\in \Delta_2$, then $(L_0^{\Phi})^* \not\supseteq L^{\Phi^*}$. The Bishop-Phelps theorem says that the closure of the linear span of the set of these $x^* \in (L_0^{\Phi})^*$ which attain their norms on $S(L_0^{\Phi})$ is equal to the whole $(L_0^{\Phi})^*$. Since L^{Φ^*} is a closed subspace of $(L_0^{\Phi})^*$ (by identifying functions $v \in L^{\Phi^*}$ with functionals ξ_v), there is a functional $x^* = \xi_v + \varphi \in (L_0^{\Phi})^*$, where $v \in L^{\Phi^*}$ and φ is a nonzero singular functional, such that $||x^*|| = 1$ and x^* attains its norm at some point $x \in S(L_0^{\Phi})$. This implies that L_0^{Φ} is not smooth. In fact, if L_0^{Φ} is smooth then by Theorem 2.1 there is $v_0 \in L^{\Phi^*}$ such that $\xi_{v_0} \in \operatorname{Grad}(x)$. But this means that both x^* and ξ_{v_0} belong to $\operatorname{Grad}(x)$. Since $x^* \neq \xi_{v_0}$, x is not a smooth point, whence L_0^{Φ} is not a smooth space, a contradiction which finishes the proof. \square

Note also that after proving the necessity of smoothness of $\Phi(t,\cdot)$ for μ -a.e. $t \in T$, the necessity of $\Phi \in \Delta_2$ in order that L_0^{Φ} be smooth can be proved in a different way. Namely, $\Phi \not\in \Delta_2$ implies that there is $x \in S(L_0^{\Phi})$ with $\theta(x) > 0$. Now, it is enough to apply Theorem 2.1.

Theorem 2.4

Let $x \in S(L_0^{\Phi})$. Then x is a smooth point if and only if one of the following conditions is satisfied:

(i) $I_{\Phi^*}(\Phi'_- \circ k^*|x|) = 1$, (ii) $\theta(k^*x) < 1$ and $I_{\Phi^*}(\Phi'_- \circ k^*|x|) = 1$.

Proof. This theorem can be proved in the same way as Theorem 2.1 in [5]. \square

References

- 1. C.D. Aliprantis and O. Burkinshow, *Positive operators*, Pure and Applied Math., Academic Press, Inc., 1985.
- 2. T. Ando, Linear functionals on Orlicz spaces, Nieuw Arch. Wisk. 3, 8 (1960), 1-16.
- 3. S. Chen, Smoothness of Orlicz spaces, Comment. Math. (Prace Mat.) 27, 1 (1987), 49-58.
- 4. S. Chen, Geometry of Orlicz spaces (a monograph), Dissertationes Math. 356 (1996).

- 5. S. Chen, H. Hudzik and A. Kamińska, Support functionals and smooth points in Orlicz function spaces equipped with the Orlicz norm, *Math. Japon.* **39**, 2 (1994), 271–279.
- 6. S. Chen, H. Hudzik and M. Wisla, Smooth points in Orlicz sequence spaces and geometry of the dual and the bidual of Orlicz spaces, *Math. Japon.* **44**, 2 (1996), 367–375.
- 7. J. Diestel, *Geometry of Banach spaces Selected topics*, Lecture Notes in Math. **481**, Springer-Verlag, 1975.
- 8. M. Doman, Weak uniform rotundity of Orlicz and Musielak-Orlicz spaces, Ph.D. Dissertation, Poznań 1993.
- 9. R. Grząślewicz and H. Hudzik, Smooth points of Orlicz spaces equipped with Luxemburg norm, *Math. Nachr.* **155** (1992), 31–45.
- 10. C.J. Himmelberg, Measurable relations, Fund. Math. 87, 1 (1975), 53–72.
- 11. H. Hudzik, On some equivalent conditions in Musielak-Orlicz spaces, *Comment. Math. (Prace Mat.)* **24**, 1 (1984), 57–64.
- 12. H. Hudzik and Y.I. Ye, Support functionals and smoothness in Musielak-Orlicz sequence spaces, *Comment. Math. Univ. Carolinae* **31**, 4 (1990), 661–684.
- 13. H. Hudzik and Z. Zbąszyniak, Smooth points of Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, *Colloq. Math.* **65** (2) (1993), 157–164.
- 14. A. Kamińska, Some convexity properties of Musielak-Orlicz spaces of Bochner type, *Rend. Circ. Mat. Palermo* (2) *Suppl.* **10** (1985), 63–73.
- 15. L.V. Kantorovič and G.P. Akilov, Functional analysis, Moscow 1977 (in Russian).
- 16. M.A. Krasnoselski*i* and Ya. B. Ruticki*i*, *Convex functions and Orlicz spaces*, Nordhoff Ltd., Groningen, 1961 (translation).
- 17. W.A.J. Luxemburg, Banach function spaces, Thesis, Delft 1955.
- 18. J. Musielak, *Orlicz spaces and modular spaces*, Lecture Notes in Math. **1034**, Springer-Verlag, 1983.
- 19. R. Phelps, *Convex functions, monotone operators and differentiability*, Lecture Notes in Math. **1364**, Springer-Verlag, 1989.
- 20. M.M. Rao and Z.D. Ren, *Theory of Orlicz spaces*, Marcel Dekker Inc., New York-Basel-Hong Kong, 1991.
- 21. Y.I. Ye and R. Płuciennik, Differetiability of Musielak-Orlicz sequence spaces, *Comment. Math. Univ. Carolinae* **30** (1989), 699–711.
- 22. Z. Zbąszyniak, Smooth points of the unit sphere in Musielak-Orlicz function spaces equipped with the Luxemburg norm, *Comment. Math. Univ. Carolinae* **35**, 1 (1994), 95–102.