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Abstract

A formula for the distance of an arbitrary element x in Musielak-Orlicz space
LΦ from the subspace EΦ of order continuous elements is given for both (the
Luxemburg and the Orlicz) norms. A formula for the norm in the dual space
of LΦ is given for any of these two norms. Criteria for smooth points and
smoothness in LΦ and EΦ equipped with the Orlicz norm are presented.

0. Introduction

Throughout this paper N denotes the set of natural numbers, R and R+ denote
the sets of reals and nonnegative reals, respectively. The triple (T,Σ, µ) stands for a
positive, nonatomic, σ-finite and complete measure space. By L0 = L0(µ) we denote
the space of all (equivalence classes of) Σ-measurable real functions x defined on T .
A mapping Φ : T ×R → R+ is said to be a Musielak-Orlicz function if it satisfies the
Caratheodory conditions, i.e. for any u ∈ R, the function Φ(·, u) is Σ-measurable
and there is a set T0 ∈ Σ with µ(T0) = 0 such that for any t ∈ T \ T0 the function
Φ(t, ·) is an Orlicz function i.e. it is even, convex, vanishing at zero and satisfying
Φ(t, u) → +∞ as u → +∞. We assume in the whole paper (if it will be not excluded
explicitly) that Φ satisfies the following condition

(∞1)
(
Φ(t, u)/u

)
→ +∞ as u → +∞ for µ-a.e. t ∈ T.
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The complementary function of Φ in the sense of Young is defined by

Φ∗(t, u) = sup
v>0

{
|u|v − Φ(t, v)

} (
∀ t ∈ T, u ∈ R

)
.

It is easy to see that Φ∗ is also a Musielak-Orlicz function.
Given a Musielak-Orlicz function Φ we define on L0 the functional IΦ by

IΦ(x) =
∫
T

Φ
(
t, x(t)

)
dµ.

It is obvious that this functional is nonnegative, even and convex as well as that
IΦ(0) = 0 and if x ∈ L0 and IΦ(λx) = 0 for all λ > 0, then x = 0. So, IΦ is a convex
modular (see [18]).

Every Musielak-Orlicz function Φ generates the Musielak-Orlicz space LΦ de-
fined as the set of these x ∈ L0 that IΦ(λx) < +∞ for some λ > 0 depending on x.
We can define in LΦ the following three norms (see [4], [16], [17] and [20]):

‖x‖Φ = inf
{
λ > 0 : IΦ(x/λ) ≤ 1

}
(the Luxemburg norm),

‖x‖0
Φ = sup

{∣∣∣ ∫
T

x(t)y(t) dµ
∣∣∣ : IΦ∗(y) ≤ 1

}
(the Orlicz norm),

‖x‖AΦ = inf
k>0

1
k

(
1 + IΦ(kx)

)
(the Amemiya norm).

It is known that ‖x‖Φ ≤ ‖x‖0
Φ ≤ 2‖x‖Φ for any x ∈ LΦ (see [18]). It can also be

proved in an analogous way as for Orlicz spaces in [4], [16] and [20] that ‖x‖0
Φ = ‖x‖AΦ

for any x ∈ LΦ (see [8]).
We denote by Φ′

−(t, u) and Φ′
+(t, u) the left and the right derivatives of Φ(t, ·)

at any fixed point u ∈ R, respectively. We define ∂Φ(t, u) = [Φ′
−(t, u),Φ′

+(t, u)] for
any t ∈ T and u ∈ R. It is easy to see that for µ-a.e. t ∈ T and any u ∈ R, ∂Φ(t, u) =
{v ∈ R : uv = Φ(t, u) + Φ∗(t, v)}. We say for a given t ∈ T that Φ(t, ·) is smooth at
u ∈ R if Φ′

−(t, u) = Φ′
+(t, u).

We can show in the same way as for Orlicz spaces in [4] and [20] that if we
define for x ∈ LΦ the following two constants:

k∗ = k∗(x) = inf
{
k > 0 : IΦ∗(Φ′

+ ◦ k|x|) ≥ 1
}
,

k∗∗ = k∗∗(x) = sup
{
k > 0 : IΦ∗(Φ′

+ ◦ k|x|) ≤ 1
}
,

then ‖x‖AΦ = 1
k (1 + IΦ(kx)) for any k ∈ [k∗, k∗∗].
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We define a closed subspace EΦ of LΦ by

EΦ =
{
x ∈ L0 : IΦ(λx) < +∞ for any λ > 0

}
.

It is easy to see that EΦ is the subspace of order continuous elements in LΦ, i.e.
x ∈ LΦ belongs to EΦ if and only if for any sequence (xn) in L0 such that |xn| ≤ |x|
for all n ∈ N and |xn| → 0 µ-a.e. in T there holds ‖xn‖Φ → 0. For the definition
of order continuous elements in Banach lattices see [1] and [15]. Since Φ is finitely
valued, we have EΦ �= {0}.

Kamińska [14] has constructed for any Musielak-Orlicz function Φ an ascending
sequence (Tn)∞n=1 of measurable sets with 0 < µ(Tn) < +∞ for any n ∈ N such that
supt∈Tn

Φ(t, λ) < +∞ for every λ > 0 and n ∈ N and
⋃∞

n=1 Tn = T . This yields
that χTn (the characteristic function of Tn) belongs to EΦ for any n ∈ N.

In the whole paper Tn denotes a set of this sequence of sets.
The spaces LΦ and EΦ equipped with everyone of these three norms are Banach

spaces (see [18]). The spaces LΦ and EΦ coincide if and only if Φ satisfies the so-
called ∆2-condition. Recall that Φ satisfies the ∆2-condition (Φ ∈ ∆2 for short), if
there are a set T0 of measure zero, a constant K > 0 and a Σ-measurable nonnegative
function h defined on T such that

∫
T
h(t) dµ < +∞ and

Φ(t, 2u) ≤ KΦ(t, u) + h(t)

for every t ∈ T \ T0 and u ∈ R. For the consequences of Φ ∈ ∆2 or Φ �∈ ∆2 we refer
to [8], [11] and [14].

The dual space of LΦ is represented in the following way (see [18] and for Banach
function lattices also [15]):

(LΦ)∗ = LΦ∗ ⊕ S,

i.e. every x∗ ∈ (LΦ)∗ is uniquely represented in the form x∗ = ξv + ϕ, where ϕ is
a singular functional, i.e. ϕ(x) = 0 for any x ∈ EΦ and ξv is the regular functional
defined by a function v ∈ LΦ∗

by the formula

ξv(x) = 〈x, v〉 =
∫
T

v(t)x(t) dµ (∀ x ∈ LΦ).

For any x∗ ∈ (LΦ)∗ we define

‖x∗‖ = sup
{
x∗(x) : x ∈ LΦ and ‖x‖0

Φ ≤ 1
}
,

‖x∗‖0 = sup
{
x∗(x) : x ∈ LΦ and ‖x‖Φ ≤ 1

}
.

Let us define for any x ∈ LΦ:
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d(x) = inf {‖x− y‖Φ : y ∈ EΦ},
d0(x) = inf {‖x− y‖0

Φ : y ∈ EΦ},
θ(x) = inf {λ > 0 : IΦ(x/λ) < +∞},

xn(t) =

{
x(t) if |x(t)| ≤ n and t ∈ Tn,

0 otherwise,

for any n ∈ N. It is obvious that |xn| ↙ |x| and 0 ↙ |x−xn| ≤ |x| µ-a.e. in T , and
xn ∈ EΦ for any n ∈ N.

For any Banach space X denote by B(X) and S(X) its unit ball and unit sphere
and by B(X∗) and S(X∗) the unit ball and the unit sphere of the dual space X∗

of X, respectively. By LΦ and LΦ
0 we denote the Orlicz space LΦ equipped with

the Luxemburg and the Orlicz norm, respectively. Their unit spheres we denote by
S(LΦ) and S(LΦ

0 ), respectively.
A functional x∗ ∈ X∗ is said to be a support functional at x ∈ X \ {0} if

‖x∗‖ = 1 and x∗(x) = ‖x‖. The set of all support functionals at x is denoted by
Grad (x) and R Grad (x) denotes the set of all regular functionals from Grad (x).
We say that x ∈ X \ {0} is a smooth point if Grad (x) contains exactly one element.
We say a Banach space X is smooth if any x ∈ S(X) (equivalently any x ∈ X \ {0})
is a smooth point (see [7] and [19]).

Criteria for smoothness of Orlicz function spaces equipped with the Orlicz norm
were given in [3]. Smooth points in these spaces were characterized in [5]. Criteria
for smooth points and smoothness of Orlicz function (and sequence) spaces endowed
with the Luxemburg norm were presented in [9]. Smooth points and smoothness
in Orlicz sequence spaces equipped with the Orlicz norm were characterized in [6].
Smoothness of Musielak-Orlicz spaces equipped with the Luxemburg norm was char-
acterized under some restrictions in [21] and the problem was solved completely
in [12]. Criteria for smooth points in Musielak-Orlicz sequence and function spaces
endowed with the Luxemburg norm were given respectively in [13] and [22]. In this
paper we describe smooth points and smoothness in Musielak-Orlicz spaces LΦ and
their subspaces EΦ equipped with the Orlicz norm.

1. Introductory results

We start with the following lemma.

Lemma 1.1

If Φ is a Musielak-Orlicz function such that Φ(t, ·) vanishes only at zero for
µ-a.e. t ∈ T , then ‖x‖Φ < ‖x‖0

Φ for any x ∈ LΦ \ {0}.
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Proof. We may assume without loss of generality that ‖x‖Φ = 1. We need to show
that ‖x‖0

Φ > 1. It is obvious that IΦ(x) ≤ 1. Let us consider two cases.
10. IΦ(x) = 1. Then using the Amemiya formula for ‖x‖0

Φ (see [8]), we have

‖x‖0
Φ = inf

k>0

1
k

(
1 + IΦ(kx)

)
= inf

k≥1

1
k

(
1 + IΦ(kx)

)
=

1
k0

(
1 + IΦ(k0x)

)
for some k0 ≥ 1. The last equality follows by the assumption that (Φ(t, u)/u)
→ +∞ as u → +∞ for µ-a.e. t ∈ T in an analogous way as for Orlicz spaces
(see [9]). This yields ‖x‖0

Φ > 1.
20. IΦ(x) < 1. Then it must be IΦ(kx) = +∞ for any k > 1. Assume

for the contrary that IΦ(k0x) = +∞ for some k0 > 1 and define the function
f(k) = IΦ(kx) for k > 0. Clearly, f is convex, f(1) < 1 and f is finite (so also
continuous) on the interval [0, k0]. Thus, there is k1 > 1 such that IΦ(k1x) ≤ 1,
whence ‖x‖Φ ≤ 1/k1 < 1, a contradiction which proves that IΦ(kx) = +∞ for
any k > 1. So, ‖x‖0

Φ = 1
k0

(1 + IΦ(k0x)) for some 0 < k0 ≤ 1. This yields again
‖x‖0

Φ > 1. �

Lemma 1.2

For any x ∈ LΦ there holds the equalities

lim
n→+∞

‖x− xn‖0
Φ = lim

n→+∞
‖x− xn‖Φ = θ(x) = d0(x) = d(x) .

Proof. If x ∈ EΦ, then all the values are equal to 0, so the equalities hold true.
Assume now that x ∈ LΦ \ EΦ, i.e. θ(x) > 0. Since the sequences (‖x − xn‖0

Φ)
and (‖x− xn‖Φ) are nonincreasing, so the limits from the equalities exist. For any
ε ∈ (0, θ(x)), we have IΦ(x/(θ(x)−ε)) = +∞, so also IΦ((x−xn)/(θ(x)−ε)) = +∞,
whence ‖x− xn‖Φ ≥ θ(x) − ε for any n ∈ N. Consequently,

lim
n→+∞

‖x− xn‖0
Φ ≥ lim

n→+∞
‖x− xn‖Φ ≥ θ(x) .

Now, we will show the inequality limn→+∞ ‖x−xn‖0
Φ ≤ θ(x). Let ε > 0 be arbitrary

and denote for short θ(x) = θ. Then IΦ(x/(θ+ε)) < +∞, whence limn→+∞ IΦ((x−
xn)/(θ + ε)) = 0. By the Amemiya formula for the Orlicz norm, we get

‖x− xn‖0
Φ ≤ (θ + ε)

[
1 + IΦ((x− xn)/(θ + ε))

]
→ θ + ε

as n → +∞, whence the desired inequality follows. So,

θ(x) = lim
n→+∞

‖x− xn‖0
Φ ≥ d0(x) ≥ d(x) .

To finish the proof we need only to show that d(x) ≥ θ(x).
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Let ε ∈ (0, θ) be arbitrary. Take any function w ∈ EΦ and define the sequence
of measurable sets:

Fn =
{
t ∈ T : |w(t)| ≤ n

}
∩Gn,

where
Gn = Gn(x) =

{
t ∈ Tn : |x(t)| ≤ n

}
.

The sequence (Fn) is increasing and µ(T \ ⋃∞
n=1 Fn) = 0. By IΦ(w/(ε/2)) < +∞

and the Lebesgue dominated convergence theorem, we get for wn = wχFn ,

IΦ
(
(w − wn)/(ε/2)

)
= IΦ

(
wχT\Fn

/(ε/2)
)
→ 0

as n → +∞. Thus, there is n0 ∈ N such that

(1) IΦ
(
(w − wn)/(ε/2)

)
≤ 1, i.e. ‖w − wn‖ ≤ ε/2

for any n ≥ n0. From the definition of θ(x), we have IΦ(x/(θ − ε/2)) = +∞. Since
Fn0 ⊂ Gn0 , we have

IΦ
(
xχFn0

/(θ − ε/2)
)
≤ IΦ

(
xχGn0

/(θ − (ε/2)
)
< +∞ ,

whence
IΦ

(
xχT\Fn0

/(θ − ε/2)
)

= +∞ .

By suppwn0 = Fn0 , we get

IΦ
(
(x−wn0)/(θ − ε/2)

)
= IΦ

(
(x− wn0)χFn0

/(θ − ε/2)
)

+ IΦ
(
xχT\Fn0

/(θ − ε/2)
)
≥ IΦ

(
xχT\Fn0

/(θ − (ε/2)
)

= +∞ ,

whence ‖x− wn0‖Φ ≥ θ − ε/2. Combining this with (1), we get

‖x− w‖Φ ≥ ‖x− wn0‖Φ − ‖wn0 − w‖Φ ≥ θ − ε/2 − ε/2 = θ − ε .

By the arbitrariness of w ∈ EΦ and ε > 0, we get d(x) ≥ θ(x), which finishes the
proof. �

Lemma 1.3

For any singular functional ϕ there hold the equalities

‖ϕ‖ = ‖ϕ‖0 = sup
{
ϕ(x) : IΦ(x) < +∞

}
= sup

x∈LΦ
ϕ(x)/θ(x) .
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Proof. We have for any x ∈ LΦ and n ∈ N, ϕ(x) = ϕ(x − xn) ≤ ‖ϕ‖ ‖x − xn‖Φ,
whence in virtue of Lemma 1.2, we get ϕ(x) ≤ θ(x)‖ϕ‖. Moreover, if IΦ(x) < +∞,
then IΦ(x−xn) → 0 as n → +∞ and so θ(x) = limn→+∞ ‖x−xn‖Φ ≤ 1. Therefore,

‖ϕ‖ = sup
x∈LΦ

ϕ(x)/‖x‖0
Φ ≤ sup

x∈LΦ
ϕ(x)/‖x‖Φ = ‖ϕ‖0

≤ sup
{
ϕ(x) : IΦ(x) < +∞

}
≤ sup

{
ϕ(x)/θ(x) : IΦ(x) < +∞

}
≤ sup

x∈LΦ
ϕ(x)/θ(x) ≤ ‖ϕ‖ ,

whence it follows that all non-sharp inequalities are equalities in fact, which finishes
the proof. �

Lemma 1.4
For any functional x∗ = ξv + ϕ ∈ (LΦ)∗, we have

‖x∗‖0 = ‖v‖0
Φ∗ + ‖ϕ‖0,

‖x∗‖ = inf
{
λ > 0 : IΦ∗(v/λ) + ‖ψ‖/λ ≤ 1

}
.

Proof. To prove the first formula, it is enough to show that ‖x∗‖0 ≥ ‖v‖0
Φ∗ + ‖ϕ‖0.

For any ε > 0 we can find x1, x2 ∈ S(LΦ) such that

‖v‖0
Φ∗ − ε < ξv(x1) and ‖ϕ‖0 − ε < ϕ(x2) .

We may assume that x1 ∈ EΦ. Let (Gn) be the sequence of measurable sets defined
as in the proof of Lemma 1.2, but corresponding to x2 in place of x. By the Lebesgue
dominated convergence theorem, we have∫

T\Gn

|v(t)x1(t)| dµ → 0 as n → +∞,

∫
T\Gn

|v(t)x2(t)| dµ → 0 as n → +∞,

∫
T\Gn

Φ(t, x2(t))dµ → 0 as n → +∞ .

Moreover, x2χGn ∈ EΦ for any n ∈ N. Take m ∈ N large enough such that∫
T\Gm

|v(t)x1(t)| dµ < ε,(2) ∫
T\Gm

|v(t)x2(t)| dµ < ε,(3)

IΦ(x2χT\Gm
) < ε .(4)



550 Hudzik and Zba̧szyniak

Define

x(t) =

{
x1(t) if t ∈ Gm

x2(t) if t ∈ T \Gm.

In view of (4), we have

IΦ(x) ≤ IΦ(x1) + IΦ(x2χT\Gm
) ≤ 1 + ε .

Hence IΦ(x/(1 + ε)) ≤ 1 and consequently ‖x‖Φ ≤ 1 + ε. Since ϕ is singular, we
have ϕ(x1) = 0 and ϕ(x2) = ϕ(x2χT\Gm

). So, by (2) and (3), we get

(1 + ε)‖x∗‖0 ≥ x∗(x) = x∗(x1χGm
) + x∗(x2χT\Gm

)

= ξv(x1χGm
) + ξv(x2χT\Gm

) + ϕ(x2)

≥ ξv(x1) − ε− ε + ϕ(x2) > ‖v‖0
Φ∗ + ‖ϕ‖0 − 4ε,

which finishes the proof of the first formula.
To prove the second formula we can assume without loss of generality that

‖x∗‖ = 1. Take γ > 0 satisfying IΦ∗(v/γ) + ‖ϕ‖/γ ≤ 1 and x ∈ S(LΦ
0 ). Let k > 0

be such that
‖x‖0

Φ =
1
k

(
1 + IΦ(kx)

)
.

Since IΦ(kx) < +∞, applying Lemma 1.3, we get

1
γ
x∗(kx) =

1
γ
ξv(kx) +

1
γ
ϕ(kx) ≤ IΦ(kx) + IΦ∗(v/γ) + ‖ϕ‖/γ

≤ IΦ(kx) + 1 = k‖x‖0
Φ = k ,

whence x∗(x) ≤ γ. By the arbitrariness of x from S(LΦ
0 ) and γ > 0 satisfying

IΦ∗(v/γ) + ‖ϕ‖/γ ≤ 1, we get

(5) ‖x∗‖ ≤ inf
{
λ > 0 : IΦ∗(v/λ) + ‖ϕ‖/λ ≤ 1

}
.

If the inequality (5) is sharp, there exists δ > 0 such that

(6) IΦ∗(v) + ‖ϕ‖ > 1 + δ.

In fact, if such a number δ > 0 does not exist, then IΦ∗(v) + ‖ϕ‖ ≤ 1, which yields

inf
{
λ > 0 : IΦ∗(v/λ) + ‖ϕ‖/λ ≤ 1

}
≤ 1 = ‖x∗‖ ,
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so we have then equality in (5). In virtue of (6), there is x1 ∈ LΦ such that

IΦ(x1) ≤ 1 and IΦ∗(v) + ϕ(x1) > 1 + δ.

From the equalities

‖x∗|EΦ‖ = ‖ξv|EΦ‖ = ‖ξv‖ = ‖v‖Φ∗ ,

we get ‖v‖Φ∗ ≤ ‖x∗‖ = 1, which yields IΦ∗(v) ≤ 1. Using the left derivative
(Φ∗)′−(t, ·) of Φ∗(t, ·), we have the following Young equality

IΦ∗(v) =
∫
T

[
(Φ∗)′−(t, |v(t)|)|v(t)| − Φ(t, (Φ∗)′−(t, |v(t)|))

]
dµ.

Define the sets

Fn = {t ∈ Tn : |x1(t)| ≤ n},
Hn =

{
t ∈ Fn : (Φ∗)′−(t, |v(t)|) ≤ n

}
, n = 1, 2, . . . .

The sequence (Hn) is increasing and in virtue of the assumption (∞1), we have that
Φ∗(t, ·) is finitely valued for µ-a.e. t ∈ T and consequently (Φ∗)′−(t, ·) is also finitely
valued for µ-a.e. t ∈ T . Therefore, µ(T \ ⋃∞

n=1 Hn) = 0. Moreover,

(Φ∗)′−(t, |v(t)|)χHn ∈ EΦ and x1χHn ∈ EΦ,

for each n ∈ N. By the Beppo-Levi theorem we have∫
Hn

[
(Φ∗)′−(t, |v(t)|)|v(t)| − Φ(t, (Φ∗)′−(t, |v(t)|))

]
dµ →

∫
T

[
(Φ∗)′−

(
t, |v(t)|

)
|v(t)| − Φ(t, (Φ∗)′−(t, |v(t)|))

]
dµ,

∫
T\Hn

|x1(t)v(t)|dµ → 0 and
∫

T\Hn

Φ
(
t, x1(t)

)
dµ → 0 .

So, we can find n large enough such that the function

x2(t) = (Φ∗)′−(t, |v(t)|)χHn(t)

satisfies

(7) IΦ∗(v) − δ/6 <

∫
T

[
x2(t)|v(t)| − Φ(t, x2(t))

]
dµ,
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(8)
∫
T\Hn

|x1(t)v(t)|dµ < δ/6 and
∫
T\Hn

Φ(t, x1(t))dµ < δ/6.

Clearly, x2 ∈ EΦ. Define

x(t) =

{
x1(t) sgn(v(t)) if t ∈ T \Hn

x2(t) sgn(v(t)) if t ∈ Hn.

In virtue of (6), (7) and (8), we get

ξv(x) + ϕ(x) − Iϕ(x)

= ξv(x1χT\Hn
) + ξv(x2χHn

) + ϕ(x1χT\Hn
) − IΦ(x1χT\Hn

) − IΦ(x2χHn
)

> −δ/6 + ξv(x2) + ϕ(x1) − δ/6 − IΦ(x2)

= ξv(x2) − IΦ(x2) + ϕ(x1) − δ/3 > IΦ∗(v) + ϕ(x1) − δ/2

> 1 + δ − δ/2 = 1 + δ/2 > 1,

whence
ξv(x) + ϕ(x) > 1 + IΦ(x).

By this inequality and the inequality ‖x‖0
Φ ≤ 1 + IΦ(x), we get

1 = ‖x∗‖ ≥ x∗(x/‖x‖0
Φ) = ξv(x/‖x‖0

Φ) + ϕ(x/‖x‖0
Φ)

= (ξv(x) + ϕ(x))/‖x‖0
Φ >

1 + IΦ(x)
‖x‖0

Φ

≥ 1,

a contradiction, which finishes the proof that the non-sharp inequality in (5) is
equality in fact. So, the theorem is proved. �
Remark 1.5. Note that the first formula from Lemma 1.4 holds also true without
the assumption that the Musielak-Orlicz function Φ satisfies condition (∞1), which
is not used in the proof.

The second formula from Lemma 1.4 holds also true without condition (∞1) if
we assume that the set A = {t ∈ T : α(t) := sup[u > 0 : Φ(t, u) < +∞] < +∞} is
measurable and (Φ∗)′−(t, α(t)) < +∞ for µ-a.e. t ∈ A. The proof can be proceeded
without any change because IΦ∗(v) ≤ 1 implies that Φ∗(t, v(t)) < +∞ for µ-a.e.
t ∈ T and so, in virtue of our assumption, we have (Φ∗)′−(t, v(t)) < +∞ for µ-a.e.
t ∈ T . Note that condition (∞1) is equivalent to the fact that Φ∗(t, ·) is finitely
valued for µ-a.e. t ∈ T .

Lemma 1.6

A functional x∗ ∈ (LΦ)∗ is singular if and only if ‖x∗‖0 = ‖x∗‖.
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Proof. The necessity follows by Lemma 1.3. To prove the sufficiency, assume that
‖x∗‖0 = ‖x∗‖ for x∗ = ξv +ϕ, where v ∈ LΦ∗

, v �= 0, and ϕ is a singular functional.
Applying Lemma 1.1, Lemma 1.3 and the first formula from Lemma 1.4, we get

‖x∗‖0 = ‖x∗‖ = ‖ξv + ϕ‖ ≤ ‖ξv‖ + ‖ϕ‖ = ‖v‖Φ∗ + ‖ϕ‖0

< ‖v‖0
Φ∗ + ‖ϕ‖0 = ‖x∗‖0,

a contradiction, which finishes the proof. �

Lemma 1.7

There is no nonzero singular functional ϕ ∈ (LΦ)∗ attaining its norm on S(LΦ
0 ).

Proof. Let ϕ ∈ (LΦ)∗ be singular and let ϕ �= 0. Assume that there is x ∈ S(LΦ
0 )

such that ϕ(x) = ‖ϕ‖ �= 0. In virtue of Lemmas 1.1 and 1.3, we get

‖ϕ‖0 = ‖ϕ‖ = ϕ(x) ≤ ‖ϕ‖0‖x‖Φ < ‖ϕ‖0‖x‖0
Φ = ‖ϕ‖0 ,

a contradiction that proves the lemma. �

Lemma 1.8

Let x∗ = ξv + ϕ be a linear continuous functional over LΦ
0 such that ‖x∗‖ = 1,

where v ∈ LΦ∗
and ϕ is a singular functional. Then x∗ attains its norm at x ∈

S (LΦ
0 ) (or equivalently x∗ ∈ Grad(x)) if and only if for some (equivalently for any)

k ∈ [k∗, k∗∗] there hold:

10. IΦ∗(v) + ‖ϕ‖ = 1;

20. ‖ϕ‖ = ϕ(kx);
30. 〈kx, v〉 = IΦ(kx) + IΦ∗(v), i.e. v(t) ∈ ∂Φ(t, kx(t)) for µ-a.e. t ∈ T .

Proof. It can be proceeded in the same way as for Orlicz spaces in [5]. �

Let us denote suppx = {t ∈ T : x(t) �= 0}, for any x ∈ L0.

Lemma 1.9

If x ∈ LΦ and θ(x) > 0, then there exist h1, h2 ∈ LΦ with µ(supph1 ∩
supph2) = 0, h1 + h2 = x and two singular functionals ϕ1 and ϕ2 in S((LΦ)∗) such

that ϕ1(x) = ϕ2(x) = θ(x), ‖ϕ1‖ = ‖ϕ2‖ = 1, ϕ1 �= ϕ2 and ϕ1(h2) = ϕ2(h1) = 0.
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Proof. Let (Tn) be the sequence of sets defined in the Introduction. We have
IΦ(kχTn

) < +∞ for every k > 0 and n ∈ N. Take a sequence (λi)∞i=1 of positive
numbers such that λ1 < λ2 < . . . , λi < θ(x) and λi → θ(x) as i → +∞. Since
IΦ(x/λ1) = +∞, we can find n1 ∈ N such that for the set

A1 =
{
t ∈ Tn1 : |x(t)| ≤ n1

}
the inequality IΦ(xχA1/λ1) ≥ 2 is satisfied. We have IΦ(xχT\A1/λ2) = +∞ because
IΦ(xχA1/λ2) < +∞. We can find n2 ∈ N such that the set

A2 =
{
t ∈ (T \A1) ∩ Tn2 : |x(t)| ≤ n2

}
satisfies A1 ∩ A2 = ∅ and IΦ(xχA2/λ2) ≥ 2. Clearly, IΦ(xχT\(A1∪A2)/λ3) = +∞.
Repeating this inductional procedure, we can find a sequence (An)∞n=1 of pairwise
disjoint sets such that

IΦ(xχAn/λn) ≥ 2 (n = 1, 2, . . .) .

Divide any set An into two measurable disjoint sets A′
n and A′′

n in such a way that

IΦ(xχA′
n
/λn) = IΦ(xχA′′

n
/λn) =

1
2
IΦ(xχAn/λn) ≥ 1.

Define

A =
∞⋃

n=1

A′
n, B = T \A, h1 = xχA, h2 = xχB .

Take any λ ∈ (0, θ(x)). Let m ∈ N be such that λ ≤ λm. Then

IΦ(h1/λ) ≥ IΦ(h1/λm) = IΦ(xχA/λm)

≥ IΦ

(
xχ ∞⋃

n=m

A′
n

/λm

)
≥

∞∑
n=m

IΦ
(
xχA′

n
/λn

)
= +∞.

So, by the arbitrariness of λ ∈ (0, θ(x)), we have θ(x) = θ(h1). By Lemma 1.2,
we obtain d0(h1) = θ(x). In an analogous way, we get IΦ(h2/λ) = +∞ for any
λ ∈ (0, θ(x)), whence d0(h2) = θ(x). Define

EΦ(hi) = span {hi, E
Φ} (i = 1, 2).

Every element u ∈ EΦ(hi) is uniquely represented in the form u = ahi + w, where
a ∈ R and w ∈ EΦ. In fact, if we also have u = bhi+z with b ∈ R and z ∈ EΦ, then in
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the case when a �= b, we get 0 = (a−b)hi+(w−z), whence hi = (z−w)/(a−b) ∈ EΦ,
a contradiction. So, a = b and consequently w = z. For any u ∈ EΦ(h1) of the form
u = ah1 + wχB , we have |(h2 − u)(t)| ≥ |(h2 − w)(t)| for µ-a.e. t ∈ T , whence

‖h2 − u‖0
Φ ≥ ‖h2 − wχB‖0

Φ ≥ d0(h2) = θ(x).

So,
d0

(
h2, E

Φ(h1)
)

= inf
{
‖h2 − u‖0

Φ : u ∈ EΦ(h1)
}
≥ θ(x).

Moreover, by EΦ ⊂ EΦ(h1), we have d0(h2, E
Φ(h1)) ≤ d0(h2) = θ(x), whence

d0(h2, E
Φ(h1)) = θ(x). In an analogous way we can get

d0

(
h1, E

Φ(h2)
)

= inf
{
‖h1 − u‖0

Φ : u ∈ EΦ(h2)
}

= θ(x).

By the Hahn-Banach theorem there exist singular functionals ϕi ∈ (LΦ)∗ (i = 1, 2)
such that ‖ϕi‖ = 1 and

ϕ1(u2) = 0 for any u2 ∈ EΦ(h2),

ϕ2(u1) = 0 for any u1 ∈ EΦ(h1),

ϕ1(h1) = d0

(
h1, E

Φ(h2)
)

= θ(x),

ϕ2(h2) = d0

(
h2, E

Φ(h1)
)

= θ(x).

Therefore,

ϕ1(x) = ϕ1(h1 + h2) = ϕ1(h1) + ϕ1(h2) = ϕ1(h1) = θ(x),

ϕ2(x) = ϕ2(h1 + h2) = ϕ2(h1) + ϕ2(h2) = ϕ2(h2) = θ(x).

The proof is complete. �

2. Main results

We start with the following result.

Theorem 2.1

If Φ(t, ·) is smooth for µ-a.e. t ∈ T , then x ∈ S(LΦ
0 ) is a smooth point if and

only if Grad(x) contains a regular functional.
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Proof. Sufficiency. By the assumption there is v0 ∈ S(LΦ∗
) such that ‖x‖0

Φ =
ξv0(x) =

∫
T
x(t)v0(t)dµ. In virtue of Lemma 1.8, we get IΦ∗(v0) = 1. We will show

that ξv0 is the only support functional at x. Assume that a functional x∗ = ξv + ϕ,
where v ∈ LΦ∗

and ϕ is a singular functional on LΦ, is a support functional at x.
Then (x∗ + ξv0)/2 is also a support functional at x, i.e. ‖(x∗ + ξv0)/2‖ = 1 and

1
2
(
x∗ + ξv0

)
(x) =

1
2
x∗(x) +

1
2
ξv0(x) = ‖x‖0

Φ = 1.

By Lemma 1.8 and the convexity of Φ∗, we have

(9) 1 = IΦ∗

(
v0 + v

2

)
+

∥∥∥∥1
2
ϕ

∥∥∥∥ ≤ 1
2
IΦ∗(v0) +

1
2
IΦ∗(v) +

∥∥∥∥1
2
ϕ

∥∥∥∥ = 1,

whence

(10) IΦ∗

(
v0 + v

2

)
=

1
2
IΦ∗(v0) +

1
2
IΦ∗(v).

By smoothness of Φ(t, ·) for µ-a.e. t ∈ T we have strict convexity of Φ∗(t, ·), for
µ-a.e. t ∈ T . Therefore, equality (10) yields v0 = v, whence IΦ∗(v) = 1 and, in
view of (9), it follows that ϕ = 0. So, x∗ = ξv0 , which means that x is a smooth
point.

Necessity. Assume that there is no regular support functional at x. Then it must
be x �∈ EΦ, i.e. θ(x) > 0. In view of Lemma 1.9 there are two orthogonal elements
h1, h2 ∈ LΦ such that h1 + h2 = x and two different singular functionals ϕ1 and ϕ2

such that ‖ϕ1‖ = ‖ϕ2‖ = 1, ϕ1(h2) = ϕ2(h1) = 0 and ϕ1(x) = ϕ2(x) = θ(x). Let
x∗ = ξv + ϕ ∈ Grad(x), where v ∈ LΦ∗

and ϕ is the singular part of x∗. Define two
new functionals by

x∗
i = ξv + ‖ϕ‖ϕi (i = 1, 2).

Then x∗
i ∈ (LΦ)∗, x∗

1 �= x∗
2 and in view of Lemma 1.8

IΦ∗(v) + ‖ ‖ϕ‖ϕi‖ = IΦ∗(v) + ‖ϕ‖ = 1,

whence ‖x∗
i ‖ = 1 for i = 1, 2. Moreover, by Lemma 1.3,

ϕi(x) = ϕi(hi) = θ(x) ≥ ϕ(x)/‖ϕ‖ (i = 1, 2).

Therefore,
x∗
i (x) = ξv(x) + ‖ϕ‖ϕi(x) ≥ ξv(x) + ϕ(x)

= x∗(x) = ‖x‖0
Φ (i = 1, 2),

whence by the obvious inequality x∗
i (x) ≤ ‖x‖0

Φ, we get x∗
i (x) = ‖x‖0

Φ for i = 1, 2.
This means that x is not a smooth point and the proof is complete. �

Denote by EΦ
0 the space EΦ equipped with the Orlicz norm.

Theorem 2.2
The space EΦ

0 is smooth if and only if Φ(t, ·) is smooth for µ-a.e. t ∈ T .
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Proof. Sufficiency. Since (EΦ
0 )∗ = LΦ∗

, for any x ∈ S(EΦ
0 ), by the Hahn-Banach

theorem, we have R Grad(x) �= ∅. By Theorem 2.1 and smoothness of Φ(t, ·) for
µ-a.e. t ∈ T , every point x ∈ S(EΦ

0 ) is smooth, i.e. EΦ
0 is smooth.

Necessity. If Φ(t, ·) is not smooth for µ-a.e. t ∈ T , then the set

H =
{
t ∈ T : Φ′

−(t, u) < Φ′
+(t, u) for some u ∈ R+

}
,

which is measurable by the measurability of the derivatives Φ′
−(t, ·) and Φ′

+(t, ·), has
a positive measure. Define on H the following multifunction

Γ(t) =
{
u ∈ R+ : Φ′

−(t, u) < Φ′
+(t, u)

}
.

It follows by the definition of the Musielak-Orlicz function Φ (the Carathéodory
conditions!) that Φ is Σ × B-measurable, where B is the Σ-algebra of Borel sets in
R. This easily yields the Σ×B-measurability of Φ′

− and Φ′
+. Therefore, Φ′

− and Φ′
+

are also ΣH × B-measurable, where ΣH = {A ∩H : A ∈ Σ}, whence

Graph Γ = {(t, u) ∈ H × R+ : u ∈ Γ(t)}
=

{
(t, u) ∈ H × R+ : Φ′

−(t, u) < Φ′
+(t, u)

}
∈ ΣH × B.

By Theorem 2.5 from [10] there is a measurable selector f : H → R+ such that
f(t) ∈ Γ(t) for µ-a.e. t ∈ H. Define

Ψ+(t) = Φ∗(t,Φ′
+(t, f(t))

)
, Ψ−(t) = Φ∗(t,Φ′

−(t, f(t))
)
,

and g(t) = Ψ+(t) − Ψ−(t). Let A′ be a measurable subset of H such that

0 <

∫
A′

Ψ+(t) dµ ≤ 1.

There is m ∈ N such that

0 <

∫
A′∩Tm

Ψ+(t) dµ ≤ 1,

where Tm is a set from the sequence of sets defined in the Introduction but for Φ∗

in place of Φ. Define
An =

{
t ∈ A′ ∩ Tm : f(t) ≤ n

}
.
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The sequence (An)∞n=1 is ascending and µ((A′∩Tm)\⋃∞
n=1 An) = 0. So, it is possible

to choose n0 ∈ N in such a way that for A := An0 , we have

0 <

∫
A

Ψ+(t) dµ ≤ 1,

which implies

0 <

∫
A

g(t) dµ ≤ 1.

Define on Σ ∩A a new measure ν by

ν(E) =
∫
E

g(t) dµ
(
∀ E ∈ Σ ∩A

)
.

The measure ν is nonatomic, so there is B ∈ Σ ∩A such that ν(B) = ν(A \B), i.e.∫
B

(
Ψ+(t) − Ψ−(t)

)
dµ =

∫
A\B

(
Ψ+(t) − Ψ−(t)

)
dµ,

which is equivalent to the equality∫
B

Ψ+(t)dµ +
∫
A\B

Ψ−(t)dµ =
∫
A\B

Ψ+(t)dµ +
∫
B

Ψ−(t)dµ.

Denote this common value by κ. Clearly, κ ≤ 1. The assumption (∞1) implies that
Φ∗(t,Φ′

+(t, u)) → +∞ as u → +∞ and Φ∗(t, ·) is finitely valued for µ-a.e. t ∈ T .
So, we can find c > 0 such that∫

T\A
Φ∗(t,Φ′

+(t, c)
)
dµ ≥ 2.

Next, there is n0 ∈ N satisfying∫
(T\A)∩Tn0

Φ∗(t,Φ′
+(t, c)

)
dµ ≥ 3/2.

Define
Dn = {t ∈ (T \A) ∩ Tn0 : Φ′

+(t, c) ≤ n}; n = 1, 2, . . . .

Clearly, Dn ⊂ Dn+1 for any n ∈ N and
⋃∞

n=1 Dn = (T \ A) ∩ Tn0 up to a set of
measure zero. So, the Lebesgue dominated convergence theorem yields∫

Dn

Φ∗(t,Φ′
+(t, c)

)
dµ →

∫
(T\A)∩Tn0

Φ∗(t,Φ′
+(t, c)

)
dµ.
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Moreover, the integrals on the left side are finite. Hence, there is k ∈ N such that
1 ≤

∫
Dk

Φ∗(t,Φ′
+(t, c))dµ < +∞. Define on Σ ∩Dk a new measure ν1 by

ν1(E) =
∫
E

Φ∗(t,Φ′
+(t, c)

)
dµ

(
∀E ∈ Σ ∩Dk

)
.

Since the measure ν1 is nonatomic and ν1(Dk) ≥ 1, there is C ∈ Σ ∩Dk such that
ν1(C) = 1 − κ. Define

v1(t) = c(t)χA\B(t) + d(t)χB(t) + e(t)χC(t),

v2(t) = d(t)χA\B(t) + c(t)χB(t) + e(t)χC(t),

where
c(t) = Φ′

−
(
t, f(t)

)
for t ∈ A,

d(t) = Φ′
+

(
t, f(t)

)
for t ∈ A,

e(t) = Φ′
+(t, c) for t ∈ C.

We have IΦ∗(v1) = IΦ∗(v2) = 1, whence ‖ξv1‖ = ‖v1‖Φ∗ = 1 and ‖ξv2‖ = ‖v2‖Φ∗ =
1. Take x ∈ EΦ

0 defined by

x(t) = f(t)χA(t) + cχC(t).

Since vi(t) ∈ ∂Φ(t, x(t)) for µ-a.e. t ∈ T (i = 1, 2), we get

‖x‖0
Φ ≤ IΦ(x) + 1 = IΦ(x) + IΦ∗(vi) =

∫
T

x(t)vi(t)dµ = ξvi(x)

for i = 1, 2. On the other hand

ξvi
(x) ≤ ‖ξvi

‖ ‖x‖0
Φ = ‖x‖0

Φ,

so ξvi(x) = ‖x‖0
Φ for i = 1, 2. Since v1 �= v2, we have ξv1 �= ξv2 , which means that x

is not a smooth point. Consequently, the space EΦ
0 is not smooth, which completes

the proof. �

Theorem 2.3

The space LΦ
0 is smooth if and only if Φ(t, ·) is smooth for µ-a.e. t ∈ T and Φ

satisfies the ∆2-condition.
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Proof. Sufficiency. Since Φ ∈ ∆2 implies that LΦ
0 = EΦ

0 , by Theorem 2.2, smooth-
ness of Φ yields smoothness of LΦ

0 .

Necessity. Smoothness of LΦ
0 implies smoothness of EΦ

0 , so by Theorem 2.2 also
smoothness of Φ. To finish the proof, we only need to show that smoothness of LΦ

0

implies that Φ ∈ ∆2. Since the necessity of smoothness of Φ(t, ·) for µ-a.e. t ∈ T has
been already proved we have to show that if Φ(t, ·) is smooth for µ-a.e. t ∈ T and
Φ �∈ ∆2, then LΦ

0 is not smooth. If Φ �∈ ∆2, then (LΦ
0 )∗ ⊇/ LΦ∗

. The Bishop-Phelps
theorem says that the closure of the linear span of the set of these x∗ ∈ (LΦ

0 )∗ which
attain their norms on S(LΦ

0 ) is equal to the whole (LΦ
0 )∗. Since LΦ∗

is a closed
subspace of (LΦ

0 )∗ (by identifying functions v ∈ LΦ∗
with functionals ξv), there is

a functional x∗ = ξv + ϕ ∈ (LΦ
0 )∗, where v ∈ LΦ∗

and ϕ is a nonzero singular
functional, such that ‖x∗‖ = 1 and x∗ attains its norm at some point x ∈ S(LΦ

0 ).
This implies that LΦ

0 is not smooth. In fact, if LΦ
0 is smooth then by Theorem 2.1

there is v0 ∈ LΦ∗
such that ξv0 ∈ Grad(x). But this means that both x∗ and ξv0

belong to Grad(x). Since x∗ �= ξv0 , x is not a smooth point, whence LΦ
0 is not a

smooth space, a contradiction which finishes the proof. �

Note also that after proving the necessity of smoothness of Φ(t, ·) for µ-a.e.
t ∈ T , the necessity of Φ ∈ ∆2 in order that LΦ

0 be smooth can be proved in a
different way. Namely, Φ �∈ ∆2 implies that there is x ∈ S(LΦ

0 ) with θ(x) > 0. Now,
it is enough to apply Theorem 2.1.

Theorem 2.4

Let x ∈ S(LΦ
0 ). Then x is a smooth point if and only if one of the following

conditions is satisfied:

(i) IΦ∗(Φ′
− ◦ k∗|x|) = 1,

(ii) θ(k∗x) < 1 and IΦ∗(Φ′
− ◦ k∗|x|) = 1.

Proof. This theorem can be proved in the same way as Theorem 2.1 in [5]. �
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