Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 48, 4-6 (1997), 539-541
(c) 1997 Universitat de Barcelona

Each operator in $\mathcal{L}\left(l^{p}, l^{r}\right)(1 \leq r<p<\infty)$ is compact

Ryszard GrZąśsewicz ${ }^{1}$
Institute of Mathematics, Politechnika, Wb. Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
E-Mail: GRZASLEW@im.pwr.wroc.pl

Abstract

It is known that each bounded operator from $l^{p} \rightarrow l^{r}$ is compact. The purpose of this paper is to present a very simple proof of this useful fact.

1. Introduction

Using construction of normalized block basis it can be proved that each bounded operator from l^{p} into $l^{r}, 1 \leq r<p<\infty$) is compact (see [1], Proposition 2.e.3, p. 76). This result can also be obtained using theory of norm ideals (see [2], 5.1.2).

The aim of this note is to present very elementary proof of this important and useful fact.

2. The main result

By l^{p} we denote the sequence l^{p}-space equipped with the standard norm. Let $1 \leq$ $r<p<\infty$. By $\mathcal{K}\left(l^{p}, l^{r}\right)$ we denote the set of all compact operators from l^{p} into l^{r} equipped with the operator norm. And by $\mathcal{F}\left(l^{p}, l^{r}\right)$ we denote the set of all finite rank operators from l^{p} into l^{r}. Clearly $\overline{\mathcal{F}\left(l^{p}, l^{r}\right)}\|\cdot\|=\mathcal{K}\left(l^{p}, l^{r}\right)$. And $\mathcal{K}\left(l^{p}, l^{r}\right)$ forms a closed subspace of the space of all bounded operators $\mathcal{L}\left(l^{p}, l^{r}\right)$.

[^0]Remark. Let E be a normed space. Let $\mathbf{0} \neq \mathbf{x} \in E$ and let $\xi \in E^{*}$ be such that $\|\xi\|=1$ and $\xi(\mathbf{x})=\|\mathbf{x}\|$. Then $\|\mathbf{y}+\lambda \mathbf{x}\| \geq \frac{1}{2}\|\mathbf{y}\|$ for all $\mathbf{y} \in E$ with $\xi(\mathbf{y})=0$.

Indeed, $\|\mathbf{y}+\lambda \mathbf{x}\| \geq\|\mathbf{y}\|-|\lambda|\|\mathbf{x}\|$. Additionally $|\lambda|\|\mathbf{x}\|=|\xi(\mathbf{y}+\lambda \mathbf{x})| \leq\|\mathbf{y}+\lambda \mathbf{x}\|$. Thus $\|\mathbf{y}+\lambda \mathbf{x}\| \geq \max \{|\lambda|\|\mathbf{x}\|,\|\mathbf{y}\|-|\lambda|\|\mathbf{x}\|\}=\frac{1}{2}\|\mathbf{y}\|$.

For a normed spaces E, F we denote be $\mathbf{y} \otimes \xi$ the one dimensional operator defined by $\mathbf{y} \otimes \xi(\mathbf{x})=\mathbf{y} \xi(\mathbf{x}), \mathbf{x} \in E, \mathbf{y} \in F, \xi \in E^{*}$.

By $P_{n}: l^{p} \rightarrow l^{p}$ we denote a projection defined by

$$
P_{n} \mathbf{e}_{i}= \begin{cases}1 & \text { if } i \leq n \\ 0 & \text { if } i>n\end{cases}
$$

By $Q_{n}: l^{r} \rightarrow l^{r}$ we denote the analogous projection for l^{r}.

Theorem

$$
\text { If } 1 \leq r<p<\infty \text { then } \mathcal{L}\left(l^{p}, l^{r}\right)=\mathcal{K}\left(l^{p}, l^{r}\right)
$$

Proof. Suppose that there exists non compact $T \in \mathcal{L}\left(l^{p}, l^{r}\right)$. Without loss of generality we can assume that $\|T\|=1$. Put

$$
a=\frac{1}{6} d\left(T, \mathcal{F}\left(l^{p}, l^{r}\right)\right)=\inf \left\{\|F-T\|: F \in \mathcal{F}\left(l^{p}, l^{r}\right)\right\}
$$

Clearly $a>0$ (since $\left.\mathcal{F}\left(l^{p}, l^{r}\right) \subset \mathcal{K}\left(l^{p}, l^{r}\right) \subset \overline{\mathcal{K}\left(l^{p}, l^{r}\right)}{ }^{\|\cdot\|}\right)$. Consider a function $f(t)=$ $\left(1+t^{p}\right)^{r / p}-a^{r} t^{r}$. Choose $t_{0}>0$ such that $f\left(t_{0}\right)<1$ (for instance $t_{0}=a^{r / p-r}$). Let $\varepsilon>0$ be such that $(1-\varepsilon)^{r}+a^{r} t_{0}^{r}>\left(1+t_{0}^{p}\right)^{r / p}$.

Now choose $\mathbf{x} \in l^{p}$ and $n, m \in \mathbb{N}$ such that $\|\mathbf{x}\|=1,\left(I-P_{n}\right) \mathbf{x}=\mathbf{0},\left\|Q_{m} T \mathbf{x}\right\|>$ $1-\varepsilon,\left\|\left(I-Q_{m}\right) T \mathbf{x}\right\|<a t_{0}$. We find $\eta \in\left(l^{r}\right)^{*}$ such that $\eta\left(Q_{m} T \mathbf{x}\right)=\left\|Q_{m} T \mathbf{x}\right\|$ and $\|\eta\|=1$. Put

$$
\xi=\frac{\left(I-P_{n}\right)^{*} T^{*} Q_{m}^{*} \eta}{\left\|\left(I-P_{n}\right)^{*} T^{*} Q_{m}^{*} \eta\right\|}
$$

(we admit $\frac{0}{0}=0$).
Note that if $\xi(\mathbf{z})=0$ and $P_{n} \mathbf{z}=\mathbf{0}$ then $\eta\left(Q_{m} T \mathbf{z}\right)=0$ and

$$
\begin{equation*}
\left\|Q_{m} T(\mathbf{x}+\mathbf{z})\right\| \geq\left|\eta\left(Q_{m} T(\mathbf{x}+\mathbf{z})\right)\right|=\left\|Q_{m} T \mathbf{x}\right\| \geq 1-\varepsilon \tag{1}
\end{equation*}
$$

We fix $\mathbf{w} \in l^{p}$ such that $\|\mathbf{w}\|=\xi(\mathbf{w})=1$ (if $\xi=0$ we put $\mathbf{w}=0$). Obviously $P_{n} \mathbf{w}=0$.

Put $R=\left(I-Q_{m}\right)(T-T \mathbf{w} \otimes \xi)\left(I-P_{n}\right)$. We have

$$
\begin{aligned}
6 a \leq\|R\| & =\sup \left\{\frac{\|R \mathbf{z}\|}{\|\mathbf{z}\|}: \mathbf{z} \neq \mathbf{0}, P_{n} \mathbf{z}=\mathbf{0}\right\} \\
& =\sup \left\{\frac{\|R(\mathbf{z}+\lambda \mathbf{w})\|}{\|\mathbf{z}+\lambda \mathbf{w}\|}: \mathbf{z} \neq \mathbf{0}, P_{n} \mathbf{z}=\mathbf{0}, \xi(\mathbf{z})=0, \lambda \text { is a scalar }\right\}
\end{aligned}
$$

and by the remark,

$$
\begin{aligned}
6 a & \leq 2 \sup \left\{\frac{\|R(\mathbf{z}+\lambda \mathbf{w})\|}{\|\mathbf{z}\|}: \mathbf{z} \neq \mathbf{0}, P_{n} \mathbf{z}=\mathbf{0}, \xi(\mathbf{z})=0, \lambda \text { is a scalar }\right\} \\
& =2 \sup \left\{\frac{\left\|\left(I-Q_{m}\right) T \mathbf{z}\right\|}{\|\mathbf{z}\|}: \mathbf{z} \neq \mathbf{0}, P_{n} \mathbf{z}=\mathbf{0}, \xi(\mathbf{z})=0\right\}
\end{aligned}
$$

Hence

$$
\sup \left\{\frac{\left\|\left(I-Q_{m}\right) T \mathbf{z}\right\|}{\|\mathbf{z}\|}: \mathbf{z} \neq \mathbf{0}, P_{n} \mathbf{z}=\mathbf{0} \xi(\mathbf{z})=0\right\} \geq 3 a
$$

Now choose $\mathbf{u} \in l^{p}$ such that $\|\mathbf{u}\|=t_{0}, P_{n} \mathbf{u}=\mathbf{0}, \xi(\mathbf{u})=0$ and

$$
\left\|\left(I-Q_{m}\right) T \mathbf{u}\right\|>2 a t_{0}
$$

Note that

$$
\begin{equation*}
\left\|\left(I-Q_{m}\right) T(\mathbf{x}+\mathbf{u})\right\| \geq\left\|\left(I-Q_{m}\right) T \mathbf{u}\right\|-\left\|\left(I-Q_{m}\right) T \mathbf{x}\right\|>a t_{0} \tag{2}
\end{equation*}
$$

We have

$$
\begin{equation*}
\|T(\mathbf{x}+\mathbf{u})\|_{r}^{r} \leq\|\mathbf{x}+\mathbf{u}\|_{p}^{r}=\left(1+t_{0}^{p}\right)^{r / p} \tag{3}
\end{equation*}
$$

And

$$
\|T(\mathbf{x}+\mathbf{u})\|_{r}^{r}=\left\|Q_{m} T(\mathbf{x}+\mathbf{u})\right\|_{r}^{r}+\left\|\left(I-Q_{m}\right) T(\mathbf{x}+\mathbf{u})\right\|_{r}^{r}
$$

And by (1) and (2) we get

$$
\geq(1-\varepsilon)^{r}+a^{r} t_{0}^{r}>\left(1+t_{0}^{p}\right)^{r / p}
$$

This contradicts to (3), and the proof is complete.

References

1. J. Lindenstrauss and L.Tzafriri, Classical Banach spaces I, Sequence spaces, Springer Verlag, 1977.
2. A. Pietsch, Operator Ideals, North Holland, 1980.

[^0]: 1 This paper was written while the author was a research fellow of the Alexander von HumboldtStiftung at Mathematisches Institut der Eberhard Karls-Universität in Tübingen.

