Collect. Math. **48**, 4-6 (1997), 523–538 © 1997 Universitat de Barcelona

Some basic properties of generalized Calderon-Lozanovskii spaces

PAWEŁ FORALEWSKI AND HENRYK HUDZIK*

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

Abstract

Generalized Calderon-Lozanovskiĭ spaces $\Psi_{\varphi}(E_1, E_2)$ introduced in [3] are investigated. These spaces are generated by a function $\Psi: T \times R^2 \to R_+$ such that $\Psi(\cdot, u)$ is a Σ -measurable function for any $u \in R^2$ and $\Psi(t, \cdot)$ is a homogeneous, concave function vanishing at zero and by a couple of Banach function lattices E_1 and E_2 over a nonatomic measure space (T, Σ, μ) . We investigate the special class of these spaces, namely the spaces E_{φ} corresponding to $\Psi(E, L^{\infty})$, where E is an arbitrary Banach function lattice. We investigate the problem of order continuity, Fatou property, property \mathbf{H}_{μ} and order isomorphically isometric copies of l^{∞} in E_{φ} . We also consider some relationships between the norm and the modular as well as between the modular convergence and the norm convergence in E_{φ} . In order to do so, we define a regularity condition Δ_2^E .

0. Introduction

Throughout the paper R, R_+ and N denote the sets of reals, nonnegative reals and natural numbers, respectively. A triple (T, Σ, μ) stands for a nonatomic, positive, complete and σ -finite measure space, while $L^0 = L^0(\mu)$ denotes the space of all (equivalence classes of) Σ -measurable functions $x : T \to R$. For any $x \in L^0$, we denote by |x| the absolute value of x, i.e. |x|(t) = |x(t)| for μ -a.e. $t \in T$. Moreover, φ stands for a Musielak-Orlicz function, i.e. a function defined on $T \times R$ with values in R_+ such that $\varphi(t, \cdot)$ is a nonzero function, it vanishes at zero, it is

^{*} Supported by KBN grant 2 P03A 031 10.

convex and even for μ -a.e. $t \in T$ and $\varphi(\cdot, u)$ as well as $\varphi^{-1}(\cdot, u)$ are Σ -measurable functions for any $u \in R_+$.

The letter E stands for a Banach function lattice over the measure space (T, Σ, μ) , i.e. E is a Banach subspace of L^0 satisfying the following conditions:

- (i) if $x \in E$, $y \in L^0$ and $|y| \leq |x|$ μ -a.e., then $y \in E$ and $||y||_E \leq ||x||_E$.
- (ii) there exists a function x in E which is strictly positive on the whole T.

The positive cone in E is denoted by E_+ .

We say a Musielak-Orlicz function φ satisfies the condition Δ_2^E if there exist a set $A \in \Sigma$ with $\mu(A) = 0$, a constant K > 0 and a nonnegative function $h \in E$ such that the inequality

$$\varphi(t, 2u) \le K\varphi(t, u) + h(t)$$

holds for all $t \in T \setminus A$ and $u \in R$ (cf. [22]).

We say that φ satisfies the condition $\Delta_2^E(\varepsilon)$ if it satisfies the condition Δ_2^E with $\|h\|_E < \varepsilon$. The condition Δ_2^E can be equivalently formulated in the form

$$\varphi(t, 2u) \le K_1 \varphi(t, u)$$

for all $t \in T \setminus A$ and $u \geq f(t)$, where f is a nonnegative function on T such that $\varphi \circ 2f \in E$ and $K_1 > 0$ is independent of $t \in T \setminus A$ and $u \geq f(t)$ (cf. [7]). We understand $(\varphi \circ 2f)(t) = \varphi(t, 2f(t)) \mu$ -a.e.

Given any Musielak-Orlicz function φ such that $\varphi(t, \cdot)$ vanishes only at zero for μ -a.e. $t \in T$, we define a concave function $\Psi_{\varphi} : T \times R^2_+ \to R_+$ by the formula

$$\Psi_{\varphi}(t, u, v) = v\varphi^{-1}(t, u/v)$$

for $t \in T$, $u, v \in R_+$, $v \neq 0$ and $\Psi_{\varphi}(t, u, 0) = 0$ for all $t \in T$ and $u \in R_+$, where $\varphi^{-1}(t, \cdot)$ is the inverse function of $\varphi(t, \cdot)$. It is easy to see that $\Psi_{\varphi}(t, \cdot, \cdot)$ is a continuous concave function of two variables and that it is homogeneous, i.e.

$$\Psi_{\varphi}(t,\lambda u,\lambda v) = \lambda \Psi_{\varphi}(t,u,v)$$

for all $\lambda > 0$ and $u, v \in R_+$. Denote the class of such functions by \mathcal{C} . Then, conversely, if $\Psi \in \mathcal{C}$ is such a function that for μ -a.e. $t \in T$, $\Psi(t, u, v) = 0$ iff u = 0 whenever $v \neq 0$ and $\Psi(t, u, 0) = 0$ for any $u \in E$, defining $\varphi(t, \cdot)$ as the inverse function of $\Psi(t, \cdot, 1)$, we get $\Psi_{\varphi} = \Psi$. Therefore, there exist *one*-to-one correspondence between the class of Musielak-Orlicz functions and the class \mathcal{C} .

Given a Musielak-Orlicz function φ and a couple of Banach function lattices E_1 and E_2 we define following Calderon (cf. [3], pp. 162–163 and 165–166) the generalized Calderon-Lozanowskii space

$$\Psi_{\varphi}(E_1, E_2) = \left\{ x \in L^0 : |x(\cdot)| \le \lambda \Psi_{\varphi}(\cdot, |x_1(\cdot)|, |x_2(\cdot)|) \\ \mu \text{-a.e. for some } \lambda > 0 \text{ and } x_i \in B(E_i) \ (i = 1, 2) \right\},$$

where $B(E_i)$ denote the unit ball of E_i (i = 1, 2). A norm in $\Psi_{\varphi}(E_1, E_2)$ is defined by

$$\|x\|_{\Psi_{\varphi}(E_{1},E_{2})} = \inf \left\{ \lambda > 0 : |x(\cdot)| \le \lambda \Psi_{\varphi}(\cdot, |x_{1}(\cdot)|, |x_{2}(\cdot)|) \\ \mu \text{-a.e. for some } x_{i} \in B(E_{i}) \ (i = 1, 2) \right\}.$$

The couple $(\Psi_{\varphi}(E_1, E_2), \|\cdot\|_{\Psi_{\varphi}(E_1, E_2)})$ is a Banach space. In the case when $E_1 = E$ and $E_2 = L^{\infty}$ we write E_{φ} in place of $\Psi_{\varphi}(E, L^{\infty})$. We have

$$E_{\varphi} = \left\{ x \in L^0 : \varphi \circ \lambda x \in E \text{ for some } \lambda > 0 \right\}.$$

Moreover, the norm $\|\cdot\|_{\Psi_{\varphi}(E,L^{\infty})}$ coincides with the norm $\|\cdot\|_{\varphi}$ defined by

$$||x||_{\varphi} = \inf \left\{ \lambda > 0 : \rho(x/\lambda) \le 1 \right\},\$$

where

$$\rho(x) = \begin{cases} \| \varphi \circ x \|_E & \text{if } \varphi \circ x \in E, \\ \infty & \text{otherwise.} \end{cases}$$

The subspace E_{φ}^{o} of E_{φ} defined by $E_{\varphi}^{o} = \{x \in L^{0} : \rho(\lambda x) < \infty \text{ for any } \lambda > 0\}$ is considered with the norm $\|\cdot\|_{\varphi}$ induced from E_{φ} .

In the case when φ is an Orlicz function, i.e. there is a set $A \in \Sigma$ with $\mu(A) = 0$ such that $\varphi(t_1, \cdot) = \varphi(t_2, \cdot)$ for all $t_1, t_2 \in T \setminus A$, these Calderon-Lozanovskiĭ spaces were investigated by Lozanovskiĭ in [15], [16] and [17] and the investigations were continued in the papers [4], [8], [19], [20], [21], [24] and [25]. For the concave functions

$$\Psi(u, v) = v \left(\frac{u}{v}\right)^p = u^p v^{1-p} \ (0$$

the spaces $\Psi_{\varphi}(E_1, E_2)$ were mainly considered by Calderon [3].

It is easy to see that for each Musielak-Orlicz function φ the space $\Psi_{\varphi}(L^1, L^{\infty})$ become the Musielak-Orlicz space L^{φ} and the norm $\|\cdot\|_{\varphi}$ coincides in this case with the Luxemburg norm. For the theory of Musielak-Orlicz spaces (Orlicz spaces) we refer to [22] (resp. [13], [18], [20] and [23]).

We assume in the whole paper that E has the Fatou property ($E \in \mathbf{FP}$ for short), i.e. for any $x \in L^0$ and $(x_n)_{n=1}^{\infty}$ in E such that $0 \leq x_n \nearrow x \mu$ -a.e. and $\sup_n || x_n ||_E < \infty$ we have $|| x ||_E = \lim_n || x_n ||_E$ (cf. [1], [12], [14]). This assumption guarantees that for any Musielak-Orlicz function φ the modular ρ is left continuous, i.e. $\sup \{\rho(\lambda x) : |\lambda| \leq \lambda_0\} = \rho(\lambda_0 x)$ for any $\lambda_0 > 0$. We also have $\rho(x) \leq || x ||_{\varphi}$ whenever $|| x ||_{\varphi} \leq 1$ and $|| x ||_{\varphi} \leq \rho(x)$ whenever $|| x ||_{\varphi} \geq 1$. Moreover, $|| x_n ||_{\varphi} \to 0$ if and only if $\rho(\lambda x_n) \to 0$ for any $\lambda > 0$.

An element $x \in E$ is said to be order continuous if for any sequence (x_n) in E such that $0 \swarrow x_n \leq |x|$, we have $||x_n||_E \to 0$. The subset E_a of all order continuous elements in E is a sublattice of E. The lattice E is said to be order continuous $(E \in \mathbf{OC} \text{ for short})$ if $E_a = E$ (cf. [1], [12], [14]). In the following we assume that E_a satisfies condition (ii) from the definition of a Banach function lattice, i.e. supp $E_a = T$.

We say that E has the property \mathbf{H}_{μ} if for any $x \in E$ and any sequence (x_n) in E such that $|| x_n ||_E \to || x ||_E$ and $x_n \chi_A \to x \chi_A$ in measure for any $A \in \Sigma$ with $\mu(A) < \infty$, we have $|| x - x_n ||_E \to 0$ (cf. [9]).

By σ -finiteness of the measure space (T, Σ, μ) in the definition of the property \mathbf{H}_{μ} we can replace the local convergence in measure by the μ -a.e. convergence of (x_n) to x.

1. Results

We start with the following fundamental lemma.

Lemma 1

For any Musielak-Orlicz function φ we have $\operatorname{supp} E_{\varphi} = \operatorname{supp} E_{\varphi}^{o} = \operatorname{supp} (E_{a})_{\varphi} = T$. Namely, there exists a sequence $(T_{n})_{n=1}^{\infty}$ in Σ such that $\bigcup_{n} T_{n} = T$ and $\chi_{T_{n}} \in E_{\varphi}^{o} \cap (E_{a})_{\varphi}$ for each $n \in N$.

Proof. Kamińska [11] has proved that there exists an ascending sequence $(T'_n)_{n=1}^{\infty}$ such that $\bigcup_n T'_n = T$ and

$$\sup_{t\in T'_n}\varphi(t,u)<\infty$$

for each $n \in N$ and $u \in R_+$. Moreover, there exist an ascending sequence $(A_n)_{n=1}^{\infty}$ such that $\chi_{A_n} \in E$ and $\bigcup_n A_n = T$ (cf. [12], Corollary 2, p. 138). Define $T_n =$

 $T'_n \cap A_n$. It is obvious that $\bigcup_n T_n = T$. First, we will show that $\chi_{T_n} \in E^o_{\varphi}$, i.e. $\rho(\lambda \chi_{T_n}) < \infty$ for each $\lambda > 0$ and $n \in N$. We have

$$a_{n,\lambda} = \sup_{t \in T_n} \varphi(t,\lambda) < \infty$$

Hence

$$\rho(\lambda \chi_{T_n}) = \| \varphi \circ \lambda \chi_{T_n} \|_E \le \| a_{n,\lambda} \chi_{T_n} \|_E = a_{n,\lambda} \| \chi_{T_n} \|_E$$
$$\le a_{n,\lambda} \| \chi_{A_n} \|_E < +\infty.$$

To prove that $\chi_{T_n} \in (E_a)_{\varphi}$ for any $n \in N$, take any sequence $\{x_k\}$ in $(E_a)_{\varphi}$ such that $0 \swarrow x_k \leq \chi_{T_n}$. Then we have for any $\lambda > 0$:

$$0 \swarrow \varphi \circ \lambda x_k \le \varphi \circ \lambda \chi_{T_n} \le a_n \chi_{T_n} \le a_n \chi_{A_n},$$

where $a_n = \sup_{t \in T'_n} \varphi(t, \lambda)$. Since $a_n \chi_{A_n} \in E_a$, we get $\rho(\lambda x_k) = \| \varphi \circ \lambda x_k \|_E \to 0$. By the arbitrariness of $\lambda > 0$, $\| x_k \|_{\varphi} \to 0$. This finishes the proof. \Box

Lemma 2

If $\varphi(t, \cdot)$ vanishes only at zero for μ -a.e. $t \in T$ and $E \in \mathbf{OC}$, then $\varphi \in \Delta_2^E$ if and only if for every $\varepsilon > 0$ there exist $K \ge 2$, a set $A \in \Sigma$ with $\mu(A) = 0$ and a function $h_{\varepsilon} : T \to R_+$ such that $\varphi \circ 2h_{\varepsilon} \in E$, $\|\varphi \circ 2h_{\varepsilon}\|_E < \varepsilon$ and $\varphi(t, 2u) \le K\varphi(t, u)$ for all $t \in T \setminus A$ and $u \ge h_{\varepsilon}(t)$.

Proof. It is enough to show that $\varphi \in \Delta_2^E$ implies the condition from the lemma. Take an arbitrary $\varepsilon > 0$ and let h be the function determined by $\varphi \in \Delta_2^E$, i.e. $\varphi \circ 2h \in E$ and $\varphi(t, 2u) \leq K\varphi(t, u)$ for all $u \geq h(t) \mu$ -a.e. in T. Then

$$0 \le \left\|\frac{1}{n}\,\varphi \circ 2h\right\|_E \le \frac{1}{n}\,\|\,\varphi \circ 2h\,\|_E \to 0$$

as $n \to \infty$. So, there exists $n_0 \in N$ such that $\| 1/n_0 \varphi \circ 2h \|_E < \varepsilon/2$. Define

$$A_m = \left\{ t \in T : \varphi(t, 2u) \le 2^m \varphi(t, u) \text{ if } \frac{1}{n_0} \varphi(t, 2h(t)) \le \varphi(t, u) \le \varphi(t, 2h(t)) \right\}.$$

Clearly, $A_m \uparrow$ and $\mu(T \setminus \bigcup_m A_m) = 0$. Denote

$$x_m = \varphi \circ 2h\chi_{T \setminus A_m} \,.$$

We have $x_m \searrow 0$, whence by $E \in \mathbf{OC}$, we get $||x_m||_E \to 0$ as $m \to \infty$. Therefore, there exists $m_0 \in N$ such that $||x_{m_0}||_E < \varepsilon/2$. Let g be the function satisfying $1/n_0\varphi(t, 2h(t)) = \varphi(t, g(t))$ and define

$$h_{\varepsilon}(t) = \frac{1}{2} g(t) \chi_{A_{m_0}}(t) + h(t) \chi_{T \setminus A_{m_0}}(t) \,.$$

Clearly $\varphi \circ 2h_{\varepsilon} \in E$ and $\varphi(t, 2u) \leq \max(K, 2^{m_0})\varphi(t, u)$ for $u \geq h_{\varepsilon}(t)$ μ -a.e. in T. Moreover,

$$\| \varphi \circ 2h_{\varepsilon} \|_{E} \leq \| \varphi \circ g\chi_{A_{m_{0}}} \|_{E} + \| \varphi \circ 2h\chi_{T \setminus A_{m_{0}}} \|_{E} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

So, h_{ε} has the desired properties. \Box

Note that Lemma 2 generalizes Lemma 1.6 in [6] from Orlicz spaces L^{φ} to Calderon-Lozanovskiĭ spaces E_{φ} .

Lemma 3

Assume that $\varphi(t, \cdot)$ vanishes only at zero for μ -a.e. $t \in T$, $\varphi \in \Delta_2^E$ and $E \in \mathbf{OC}$. Then for any sequence (x_n) in E_{φ} we have $||x_n||_{\varphi} \to 1$ if and only if $\rho(x_n) \to 1$.

Proof. We have $\rho(x) \leq ||x||_{\varphi}$ if $||x||_{\varphi} \leq 1$ and $\rho(x) \geq ||x||_{\varphi}$ if $||x||_{\varphi} \geq 1$, whence it follows that $\rho(x_n) \to 1$ implies $||x_n||_{\varphi} \to 1$. We will prove the opposite implication. It is enough to consider only the cases when $||x_n||_{\varphi} \leq 1$ for all $n \in N$ or $||x_n||_{\varphi} \geq 1$ for all $n \in N$.

1°. $||x_n||_{\varphi} \leq 1$ for all $n \in N$ and $||x_n||_{\varphi} \to 1$. Assume for the contrary that $\rho(x_n) \neq 1$. Then we may assume without loss of generality that there exists $\delta > 0$ such that $\rho(x_n) \leq 1-\delta$ for any $n \in N$. By Lemma 2, there exist $K \geq 2$, a set $A \in \Sigma$ with $\mu(A) = 0$ and a function $h: T \to R_+$ such that $\varphi \circ 2h \in E$, $||\varphi \circ 2h||_E < \delta/2$ and the inequality $\varphi(t, 2u) \leq K\varphi(t, u)$ holds for all $t \in T \setminus A$ and $u \geq h(t)$. Denoting the right derivative of $\varphi(t, \cdot)$ by $p(t, \cdot)$, we get

$$up(t, u) \le \varphi(t, 2u) \le K\varphi(t, u)$$

for all $t \in T \setminus A$ and $u \ge h(t)$. Hence for all $\alpha \ge 1$, $t \in T \setminus A$ and $u \ge h(t)$, we get

$$\int_{u}^{\alpha u} \frac{p(t,s)}{\varphi(t,s)} ds \le K \int_{u}^{\alpha u} \frac{ds}{s},$$

i.e. $\varphi(t, \alpha u) \leq \alpha^K \varphi(t, u)$. Let $\alpha \in (1, 2]$ be such that $1 < \alpha^K \leq \frac{1 - \delta/2}{1 - \delta}$ and define

$$B_n = \{ t \in T : |x_n(t)| \ge h(t) \}, \ n = 1, 2, \dots$$

Then we have for all $n \in N$:

$$\rho(\alpha x_n) \le \rho(\alpha x_n \chi_{B_n}) + \rho(\alpha x_n \chi_{T \setminus B_n}) \le \alpha^K \rho(x_n \chi_{B_n}) + \rho(2x_n \chi_{T \setminus B_n})$$
$$\le \frac{1 - \delta/2}{1 - \delta} (1 - \delta) + \frac{\delta}{2} = 1.$$

Hence it follows that $||x_n||_{\varphi} \leq \alpha^{-1} < 1$ for all $n \in N$, which contradicts the condition $||x_n||_{\varphi} \to 1$.

 2° . $||x_n||_{\varphi} \geq 1$ for all $n \in N$ and $||x_n||_{\varphi} \to 1$. Assume for the contrary that $\rho(x_n) \neq 1$. We may assume without loss of generality that there exists $\delta > 0$ such that $\rho(x_n) \geq 1 + \delta$ for any $n \in N$. By Lemma 2, we can find a function $h: T \to R_+$ such that $\varphi \circ h \in E$, $||\varphi \circ h||_E < \delta/2$ and $\varphi(t, 2u) \leq K\varphi(t, u)$ for all $t \in T \setminus A$ and $u \geq h(t)/2$, where $\mu(A) = 0$ and $K \geq 2$ is independent of t. Analogously, as in the first case, we can show that

$$\varphi(t, \alpha u) \ge \alpha^K \varphi(t, u)$$

for all $t \in T \setminus A$, $u \ge h(t)$ and $1/2 \le \alpha \le 1$. Defining

$$C_n = \{ t \in T : |x_n(t)| \ge h(t) \}, \ n = 1, 2, \dots,$$

we have $\rho(x_n\chi_{T\setminus C_n}) \leq \rho(h) < \delta/2$, whence $\rho(x_n\chi_{C_n}) > 1 + \delta/2$ for each $n \in N$. Therefore, for *n* large enough such that $||x_n||_{\varphi} \leq 2$, we get

$$1 = \rho\left(\frac{x_n}{\parallel x_n \parallel_{\varphi}}\right) \ge \rho\left(\frac{x_n}{\parallel x_n \parallel_{\varphi}}\chi_{C_n}\right) \ge \frac{1}{(\parallel x_n \parallel_{\varphi})^K}\rho(x_n\chi_{C_n}) \ge \frac{1+\delta/2}{(\parallel x_n \parallel_{\varphi})^K},$$

which yields a contradiction for large $n \in N$. \Box

Note that in the case when $E = L^1$ and $\rho(x_n) \leq 1$, Lemma 3 coincides with Lemma 1.5 from [6].

Lemma 4

If $\varphi \notin \Delta_2^E$, then E_{φ} contains an order isomorphically isometric copy of l^{∞} .

Proof. Define for μ -a.e. $t \in T$

$$g_n(t) = \sup\left\{u \in R_+ : \varphi\left(t, \left(1+\frac{1}{n}\right)u\right) \ge 2^{n+1}\varphi(t, u)\right\}.$$

Functions g_n are Σ -measurable for all $n \in N$ (see S. Chen, Geometry of Orlicz spaces, Dissertationes Math. **356** (1996), Lemma 5.4, p. 176). Assume by definition $\varphi(t, \infty) = \infty$ for μ -a.e. $t \in T$. It is easy to see that $\varphi \notin \Delta_2^E$ is equivalent to $\varphi \notin \Delta_{1+\frac{1}{n}}^E$ for n = 1, 2, ... and that the last fact is equivalent to $\| \varphi \circ g_n \|_E = \infty$ for n = 1, 2, ...

Define $T_n = \{t \in T : g_n(t) = \infty\}$. Then $T_{n+1} \subset T_n$ for any $n \in N$. We will show that there exists a sequence (x_n) of elements with pairwise disjoint support and such that $\rho(x_n) < 2^{-n}$ and $||x_n||_E = 1$ for all $n \in N$, $\rho(x) \le 1/2$ and $||x||_E = 1$, where $x = \sum_{n=1}^{\infty} x_n$. To build such a sequence of elements consider three cases.

1°. Assume first that $\mu(T_n) = 0$ for *n* large enough. We can assume without loss of generality that $\mu(T_1) = 0$. Then, by the continuity of φ , we have

$$\varphi(t, (1+\frac{1}{n})g_n(t)) \ge 2^{n+1}\varphi(t, g_n(t)),$$

for μ -a.e. $t \in T$. Let $(A_n)_{n=1}^{\infty}$ be an ascending sequence of measurable sets of finite measure such that $\chi_{A_n} \in E$ for n = 1, 2, ... and $\bigcup_n A_n = T$ (see [12], p. 132, Corollary 2). Defining

$$B_n^1 = \{t \in T : \varphi(t, g_1(t)) \le n\}, \ n = 1, 2, \dots,$$

we have $B_1^1 \subset B_2^1 \subset \dots$ and $\mu(T \setminus \bigcup_n B_n^1) = 0$. We get by $E \in \mathbf{FP}$ that

$$\| \varphi \circ g_1 \chi_{B_n^1 \cap A_n} \|_E \to \| \varphi \circ g_1 \|_E = \infty.$$

So, there exist $n_1 \in N$ and $B_1 \subset B_{n_1}^1 \cap A_{n_1}, B_1 \in \Sigma$, such that

$$\|\varphi \circ g_1 \chi_{B_1}\|_E = \frac{1}{4}.$$

We applied here the Dobrakov result from [5] which says that submeasures which are absolutely continuous with respect to μ being nonatomic have the Darboux property.

Since $g_2 \leq g_1$, we get $\| \varphi \circ g_2 \chi_{B_1} \|_E \leq \frac{1}{4}$, whence $\| \varphi \circ g_2 \chi_{T \setminus B_1} \|_E = \infty$. Define the sets

$$B_n^2 = \{t \in T \setminus B_1 : \varphi(t, g_2(t)) \le n\}, \ n = 1, 2, \dots$$

Then $\| \varphi \circ g_2 \chi_{B_n^2 \cap A_n} \|_E \to \| \varphi \circ g_2 \chi_{T \setminus B_1} \|_E$. So, there exist $n_2 \in N$ and $B_2 \subset B_{n_2}^2 \cap A_{n_2}$ such that $B_2 \in \Sigma$ and

$$\| \varphi \circ g_2 \chi_{B_2} \|_E = \frac{1}{8}, \| \varphi \circ g_3 \chi_{T \setminus B_2} \|_E = \infty.$$

Continuing this procedure by induction, we can find a sequence $(B_n)_{n=1}^{\infty}$ of pairwise disjoint measurable sets such that

$$\| \varphi \circ g_n \chi_{B_n} \|_E = \frac{1}{2^{n+1}}, \ (n = 1, 2, ...).$$

Define

$$x = \sum_{n=1}^{\infty} g_n \chi_{B_n}.$$

Then we have $\rho(x) \leq \sum_{n=1}^{\infty} \|\varphi \circ g_n \chi_{B_n}\|_E = \sum_{n=1}^{\infty} \frac{1}{2^{n+1}} = \frac{1}{2}$, whence $\|x\|_{\varphi} \leq 1$. Let $\lambda > 1$. There is $m \in N$ such that $\lambda \geq 1 + \frac{1}{m}$. Therefore,

$$\rho(\lambda x) \ge \| \varphi \circ (1 + \frac{1}{m}) g_m \chi_{B_m} \|_E \ge \| 2^{m+1} \varphi \circ g_m \chi_{B_m} \|_E = 2^{m+1} \frac{1}{2^{m+1}} = 1,$$

whence $\|\lambda x\|_{\varphi} \ge 1$ and, by the arbitrariness of $\lambda > 1$, $\|x\|_{\varphi} \ge 1$. So, we have $\|x\|_{\varphi} = 1$. Define

$$x_1 = g_1 \chi_{B_1} + g_3 \chi_{B_3} + g_5 \chi_{B_5} + \dots,$$

$$x_2 = g_2 \chi_{B_2} + g_6 \chi_{B_6} + g_{10} \chi_{B_{10}} + \dots$$

and by induction we define x_n to be the sum of every second term $g_l\chi_{B_l}$ of $\sum_{i=1}^{\infty} g_i\chi_{B_i} - \sum_{k=1}^{n-1} x_k$ beginning from the first term of the rest. Then we can prove in the same way as for x that $\rho(x_n) < 2^{-n}$ and $||x_n||_{\varphi} = 1$ for each $n \in N$.

2°. Assume that $\mu(\bigcap_{n=1}^{\infty} T_n) = a > 0$. By σ -finiteness of μ , we know that there exists a sequence of Σ -measurable functions and a sequence $(B'_n)_{n=1}^{\infty}$ of pairwise disjoint sets such that $B'_n \subset \bigcap_{n=1}^{\infty} T_n$ and $\mu(B'_n) = 2^{-n-1}a$ for any $n \in N$. Note that $\| \varphi \circ g_n \chi_{B'_n} \|_E = \infty$ for any $n \in N$. Now, for any $n \in N$ there exists a sequence $(f_k^n)_{k=1}^{\infty}$ of Σ -measurable finitely valued nonnegative functions such that $f_k^n(t) \nearrow g_n(t)$ and $\varphi(t, (1 + \frac{1}{n})f_k^n(t)) \ge 2^{n+1}\varphi(t, f_k^n(t))$ for μ -a.e. $t \in T$ (see S. Chen, Geometry of Orlicz spaces, Dissertationes Math. **356** (1996), Lemma 5.4, p. 176). Since E has the Fatou property, we get

$$\|\varphi \circ f_k^n \chi_{B'_n}\|_E \to \|\varphi \circ g_n \chi_{B'_n}\|_E = \infty$$

for any $n \in N$. Therefore, for any $n \in N$ there are $k_n \in N$ and a measurable set $B_n \subset B'_n$ such that $\| \varphi \circ f_k^n \chi_{B_n} \|_E = 2^{-n-1}$.

In an analogous way as in case 1°, we can construct $x \in E_{\varphi}$ and a sequence (x_m) in E_{φ} , which have the desired properties.

3°. Finally, consider the case when $\mu(T_n) > 0$ for any $n \in N$ and $\mu(\bigcap_{n=1}^{\infty} T_n) = 0$. Then there is a sequence (m_n) of natural numbers such that $\mu(T_{m_n} \setminus T_{m_{n+1}}) > 0$ for any $n \in N$. Let, for any $n \in N$, B_n be a Σ -measurable set in $T_{m_n} \setminus T_{m_{n+1}}$ such that $\mu(B_n) > 0$. Then $\parallel \varphi \circ g_n \chi_{B_n} \parallel_E = \infty$. Now, we can proceed as in case 2°.

Define an operator $P: l^{\infty} \to E_{\varphi}$ by

$$(Pz)(t) = \sum_{n=1}^{\infty} z_n x_n(t) \quad (\forall z = (z_n) \in l^{\infty}).$$

It is obvious that P is a linear operator. We have for all $z \in l^{\infty} \setminus \{0\}$:

$$\rho\left(\frac{Pz}{\|z\|_{\infty}}\right) = \left\|\sum_{n=1}^{\infty} \varphi \circ \frac{|x|z_n}{\|z\|_{\infty}} |x| |x_n\right\|_E \le \sum_{n=1}^{\infty} \|\varphi \circ x_n\|_E \le \sum_{n=1}^{\infty} 2^{-n} = 1,$$

whence $||Pz||_{\varphi} \leq ||z||_{\infty}$. Taking any $\lambda < 1$, we can find $m \in N$ such that $\frac{|z_m|}{\lambda ||z||_{\infty}} = \lambda_o > 1$. Therefore,

$$\left\|\frac{Pz}{\lambda \| z \|_{\infty}}\right\|_{\varphi} \ge \left\|\frac{|z_m|}{\lambda \| z \|_{\infty}} |x_m|\right\|_{\varphi} = \|\lambda_o x_m\|_{\varphi} = \lambda_o > 1,$$

whence $||Pz||_{\varphi} > \lambda ||z||_{\infty}$ and, by the arbitrariness of $\lambda < 1$, $||Pz||_{\varphi} \ge ||z||_{\infty}$. Consequently, $||Pz||_{\varphi} = ||z||_{\infty}$ for all $z \in l^{\infty}$. Since the functions x_n are nonnegative, we have $Pz \ge 0$ for $z \ge 0$, so P is an order isomorphic isometry. The proof is complete. \Box

In the case when φ does not depend on the parameter, Lemma 4 has been proved in [8].

Lemma 5

The property that $||x||_{\varphi} = 1$ if and only if $\rho(x) = 1$ holds true for any $x \in E_{\varphi}$ if and only if $\varphi \in \Delta_2^E$.

Proof. Sufficiency. Assume that $\varphi \in \Delta_2^E$, $||x||_{\varphi} = 1$ and $\rho(x) < 1$. Define the function $f(\lambda) = \rho(\lambda x)$ for $\lambda > 0$. It is clear that f is convex and (by $\varphi \in \Delta_2^E$) finitely valued. So, f is continuous and consequently it has the Darboux property. Since $f(1) = \rho(x) < 1$, there exist $\lambda_0 > 1$ such that $f(\lambda_0) = \rho(\lambda_0 x) < 1$. This yields $||x||_{\varphi} \leq 1/\lambda_0 < 1$, a contradiction.

Necessity. If $\varphi \notin \Delta_2^E$ then, by the proof of Lemma 4, there exists $x \in E_{\varphi}$ such that $\rho(x) \leq 1/2$ and $||x||_{\varphi} = 1$. \Box

Lemma 6

Let $E \in \mathbf{OC}$. We have $||x_n||_{\varphi} \to 0$ if and only if $\rho(x_n) \to 0$ for any sequence $(x_n)_{n=1}^{\infty}$ in E_{φ} if and only if $\varphi \in \Delta_2^E$ and $\varphi(t, \cdot)$ vanishes only at zero for μ -a.e. $t \in T$.

Proof. Sufficiency. By Lemma 2, the assumptions yields that $\varphi \in \Delta_2^E(\varepsilon)$ for any $\varepsilon > 0$. Let (x_n) be a sequence in E_{φ} such that $\rho(x_n) \to 0$. We need to show that $\rho(2x_n) \to 0$. Take an arbitrary $\varepsilon > 0$. Then, by $\varphi \in \Delta_2^E(\varepsilon/2)$, there exist a set $A \in \Sigma$ with $\mu(A) = 0$, a constant $K \ge 2$ and a nonnegative function $h \in L^0$ such that $\|h\|_E < \varepsilon/2$ and

$$\varphi(t, 2u) \le K\varphi(t, u) + h(t)$$

for all $t \in T \setminus A$ and $u \in R$. If $m \in N$ is such that $\rho(x_n) < \varepsilon/2K$ for all $n \ge m$, we get

$$\rho(2x_n) \le K\rho(x_n) + \parallel h \parallel_E < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

for all $n \ge m$, which shows that $\rho(2x_n) \to 0$, finishing the proof of the sufficiency.

Necessity. If $\varphi \notin \Delta_2^E$, then taking the sequence (x_n) defined in the proof of Lemma 4, we have $\rho(x_n) = 2^{-n}$ and $||x_n||_{\varphi} = 1$ for all $n \in N$.

Assume now that φ vanishes outside zero, i.e. there is $k \in N$ such that the set $A = \{t \in T : \varphi(t, 1/k) = 0\}$ has positive measure. Defining $x_n = 1/k\chi_A$ for all $n \in N$, we have $\rho(x_n) = 0$ and $||x_n||_{\varphi} = ||k^{-1}\chi_A||_{\varphi} > 0$ for $n = 1, 2, ... \square$

Corollary 7

If $\varphi(t, \cdot)$ vanishes outside zero for $t \in A \in \Sigma$ with $\mu(A) > 0$, then $\varphi \notin \Delta_2^E(\varepsilon)$ for some $\varepsilon > 0$.

Proof. Otherwise, $\varphi \in \Delta_2^E(\varepsilon)$ for any $\varepsilon > 0$, and by the proof of the sufficiency in Lemma 6, we have $|| x ||_{\varphi} \to 0$ whenever $\rho(x_n) \to 0$. However, this contradicts the necessity part of the proof of Lemma 6. \Box

Lemma 8

If (x_n) is in E_{φ} , $x_n \to 0$ μ -a.e. or locally in measure, $\rho(x_n) \to 0$, $E \in \mathbf{OC}$ and $\varphi \in \Delta_2^E$, then $||x||_{\varphi} \to 0$.

Proof. By the σ -finiteness of the measure space, it is enough to consider the case when $x_n \to 0 \mu$ -a.e. Then we have $\varphi \circ x_n \to 0 \mu$ -a.e. and $\| \varphi \circ x_n \|_E \to 0$. Therefore, there exist $y \in E_+$, a subsequence (x_{n_k}) of (x_n) and a sequence (ε_{n_k}) in $R_+ \setminus \{0\}$ with $\varepsilon_{n_k} \searrow 0$ such that

$$\varphi \circ x_{n_k} \le \varepsilon_{n_k} y$$

for all $k \in N$ and μ -a.e. $t \in T$ (cf. [12], Lemma 2, p. 141). We may assume without loss of generality that $\varepsilon_{n_k} \leq 1$ for all $k \in N$, whence

$$\varphi \circ x_{n_k} \le y$$

for all $k \in N$. Let $\lambda > 0$ be arbitrary. Then $\lambda \leq 2^{l}$ for some $l \in N$, so applying $\varphi \in \Delta_{2}^{E}$, we get

$$\varphi \circ \lambda x_{n_k} \le \varphi \circ 2^l x_{n_k} \le K^l \varphi \circ x_{n_k} + \left(\sum_{i=1}^{l-1} K^i\right) h \le K^l y + \left(\sum_{i=1}^{l-1} K^i\right) h = z \in E_+.$$

Since $\varphi \circ \lambda x_{n_k} \to 0$ μ -a.e., by $E \in \mathbf{OC}$, we get $\| \varphi \circ \lambda x_{n_k} \|_E = \rho(\lambda x_{n_k}) \to 0$. By the arbitrariness of $\lambda > 0$ this means that $\| x_{n_k} \|_{\varphi} \to 0$. In virtue of the double extract subsequence theorem this yields $\| x_n \|_{\varphi} \to 0$, finishing the proof. \Box

Theorem 9

The following hold true:

- (i) The inclusions $(E_a)^o_{\varphi} \subset (E_{\varphi})_a \subset E^o_{\varphi}$ hold always true.
- (ii) If $E \in \mathbf{OC}$, then the inclusions in (i) are equalities.
- (iii) If $\varphi \in \Delta_2^E$ and $\varphi(t, \cdot)$ vanishes only at zero for μ -a.e. $t \in T$, then $(E_{\varphi})_a = E_{\varphi}^o$ if and only if $E \in \mathbf{OC}$.
- (iv) If $\varphi(t, \cdot)$ vanishes only at zero for μ -a.e. $t \in T$ and $\varphi \in \Delta_2^{E_a}$, then $(E_a)_{\varphi} \neq E_{\varphi}$ whenever $E \notin \mathbf{OC}$.

Proof. Let $(T_n)_{n=1}^{\infty}$ be the sequence of sets from Lemma 1 and let $x \in (E_{\varphi})_a$. Define

$$x_n(t) = \begin{cases} x(t) & t \in T_n \text{ and } |x(t)| \le n, \\ 0 & \text{otherwise.} \end{cases}$$

Then $x_n \in E_{\varphi}^o$ for each $n \in N$ and $0 \swarrow |x - x_n| \leq |x|$. Since $x \in (E_{\varphi})_a$, we get $||x - x_n||_{\varphi} \to 0$, i.e. $\rho(\lambda(x - x_n)) \to 0$ for each $\lambda > 0$. By the convexity of ρ , we have for any $\lambda > 0$:

$$\rho(\lambda x) = \rho(\lambda(x - x_n) + \lambda(x_n)) \le \frac{1}{2} \big\{ \rho(2\lambda(x - x_n)) + \rho(2\lambda(x_n)) \big\}.$$

By $\rho(2\lambda(x-x_n)) \to 0$, there is $m \in N$ such that $\rho(2\lambda(x-x_n)) \leq 1$ for all $n \geq m$. Since $\rho(2\lambda x_n) < \infty$ for all $\lambda > 0$ and $n \in N$, this yields that $\rho(\lambda x) < \infty$ for any $\lambda > 0$, and the inclusion $(E_{\varphi})_a \subset E_{\varphi}^o$ is proved.

Assume now that $x \in (E_a)_{\varphi}^o$, i.e. $\varphi \circ \lambda x \in E_a$ for all $\lambda > 0$. Let $(x_n)_{n=1}^\infty$ be a sequence in L^0 such that $0 \swarrow x_n \leq |x|$. Then we get $0 \swarrow \varphi \circ \lambda x_n \leq \varphi \circ \lambda x \in E_a$, whence $\rho(\lambda x_n) = ||\varphi \circ \lambda x_n||_E \to 0$. By the arbitrariness of $\lambda > 0$, we have $||x_n||_{\varphi} \to 0$, which yields $x \in (E_{\varphi})_a$. So, the proof of (i) is complete.

Let $E \in \mathbf{OC}$, then $E_a = E$. Hence, (i) implies (ii).

Now, we will prove (iii). We need only to show that under the assumptions that $\varphi \in \Delta_2^E$ and $\varphi(t, \cdot)$ vanishes only at zero for μ -a.e. $t \in T$, we have $(E_{\varphi})_a \neq E_{\varphi}^o$ whenever $E \notin \mathbf{OC}$. By $E \notin \mathbf{OC}$ there exist $\delta > 0$, $x \in E_+$ and a sequence (x_n) in E_+ such that $0 \swarrow x_n \leq x$ and $||x_n||_E \geq \delta$. Defining $y_n = x_n/||x_n||_E$, we have $||y_n||_E = 1$ for each $n \in N$ and $0 \swarrow y_n \leq x/\delta \in E$. Define now $z_n = \varphi^{-1} \circ y_n$ and $z = \varphi^{-1} \circ x/\delta$. Then $\varphi \circ z_n = y_n \in E$, $\varphi \circ z = x/\delta \in E$ and

$$\rho(z_n) = \| \varphi \circ z_n \|_E = \| y_n \|_E = 1.$$

Hence, $||z_n||_{\varphi} = 1$ for all $n \in N$, which means that $z \notin (E_{\varphi})_a$. However, by $\varphi \in \Delta_2^E$, we have $z \in E_{\varphi}^o$, which finishes the proof of (iii).

Finally, we will prove (iv). Assuming that $E \notin \mathbf{OC}$, we have $E \neq E_a$, so there exists $x \in E \setminus E_a$. Define $y = \varphi^{-1} \circ |x|$. Then $y \in L^0$ by Σ -measurability of $\varphi^{-1}(\cdot, u)$ for all $u \in R$. Since $\varphi \circ y = |x| \in E$, we have $y \in E_{\varphi}$. Assuming that $y \in (E_a)_{\varphi}$, we get $\varphi \circ \lambda y \in E_a$ for some $\lambda > 0$, whence in view of $\varphi \in \Delta_2^{E_a}$, $|x| = \varphi \circ y \in E_a$, a contradiction. \Box

Theorem 10

If φ is a Musielak-Orlicz function such that $\varphi(t, \cdot)$ vanishes only at zero for μ -a.e. $t \in T$, then $E_{\varphi} \in \mathbf{OC}$ if and only if $E \in \mathbf{OC}$ and $\varphi \in \Delta_2^E$.

Proof. Sufficiency. Take any $x \in E_{\varphi}$ and a sequence (x_n) in E_{φ} such that $0 \swarrow x_n \leq x$. x. Let $\lambda > 0$ be such that $\varphi \circ \lambda x \in E$. We have $0 \swarrow \varphi \circ \lambda x_n \leq \varphi \circ \lambda |x| \in E$, whence $\rho(\lambda x_n) = \|\varphi \circ \lambda x_n\|_E \to 0$. Since $\varphi \in \Delta_2^E(\varepsilon)$ for any $\varepsilon > 0$, this yields $\|x_n\|_{\varphi} \to 0$, which means that $x \in (E_{\varphi})_a$. By the arbitrariness of $x \in E_{\varphi}$ this means that $E_{\varphi} \in \mathbf{OC}$.

Necessity. If $\varphi \notin \Delta_2^E$ then, in virtue of Lemma 4, E_{φ} contains an order isomorphically isometric copy of l^{∞} , so $E_{\varphi} \notin \mathbf{OC}$.

Assume now that $E \notin \mathbf{OC}$. Then there exist $x \in E$ and a sequence (x_n) in E such that $0 \swarrow x_n \leq x$ and $||x_n||_E = 1$ for each $n \in N$. Define $y_n = \varphi^{-1} \circ x_n$ and $y = \varphi^{-1} \circ x$. Then we get $0 \swarrow x_n = \varphi \circ y_n \leq \varphi \circ y = x$, whence $\rho(y_n) = ||\varphi \circ y_n||_E = ||x_n||_E = 1$, and consequently $||y_n||_{\varphi} = 1$ for each $n \in N$. Since $y \in E_{\varphi}$, this means that $E_{\varphi} \notin \mathbf{OC}$ and the proof is finished. \Box

Theorem 11

If $\varphi \in \Delta_2^E$ and E has the property \mathbf{H}_{μ} , then E_{φ} has the property \mathbf{H}_{μ} .

Proof. Under the assumptions of the theorem, take x and (x_n) in $(E_{\varphi})_+$ such that $x_n \to x$ locally in measure and $||x_n||_{\varphi} \to ||x||_{\varphi}$. We can assume without loss of generality that $||x||_{\varphi} = 1$. Then in virtue of Lemma 3, we have $\rho(x_n) \to \rho(x) = 1$. By σ -finiteness of the measure space we may assume (passing to a subsequence if necessary) that $x_n \to x \mu$ -a.e. So, $\varphi \circ x_n \to \varphi \circ x \mu$ -a.e. and $||\varphi \circ x_n||_E \to ||\varphi \circ x||_E$. By the assumption that $E \in \mathbf{H}_{\mu}$, this yields $||\varphi \circ x_n - \varphi \circ x||_E \to 0$. So, there exist $y \in E_+$ and a subsequence (x_{n_k}) of (x_n) such that

$$\left| \varphi \circ x_{n_k} - \varphi \circ x \right| \leq \varepsilon_{n_k} y$$

 μ -a.e. for a sequence (ε_{n_k}) with $\varepsilon_{n_k} \searrow 0$ (cf. [12], Lemma 2, p. 141). We may assume without loss of generality that $\varepsilon_{n_k} \leq 1$ for all $k \in N$. Since $\varphi \in \Delta_2^E$ we have $\varphi \circ x \in E$ and consequently

$$\varphi \circ x_{n_k} \le |\varphi \circ x_{n_k} - \varphi \circ x| + \varphi \circ x \le y + \varphi \circ x \in E_+.$$

Applying again $\varphi \in \Delta_2^E$, we get

$$\begin{split} \varphi \circ (x_{n_k} - x) &\leq \varphi \circ 2 \frac{(x_{n_k} - x)}{2} \leq \frac{K}{2} \left\{ \varphi \circ x_{n_k} + \varphi \circ x \right\} + h \\ &\leq \frac{K}{2} \left\{ y + \varphi \circ x + \varphi \circ x \right\} + h = K\varphi \circ x + \frac{K}{2}y + h \in E_+ \,. \end{split}$$

So, by $E \in \mathbf{OC}$, which follows by $E \in \mathbf{H}_{\mu}$ (cf. [10]), we get $\rho(x_{n_k} - x) = \| \varphi \circ (x_{n_k} - x) \|_E \to 0$. Applying now Lemma 8, we get $\| x_{n_k} - x \|_{\varphi} \to 0$. In virtue of the double extract subsequence theorem, we get $\| x_n - x \|_{\varphi} \to 0$. This means that $(E_{\varphi})_+ \in \mathbf{H}_{\mu}$, and consequently (cf. [9]) $E_{\varphi} \in \mathbf{H}_{\mu}$ as well. The proof is complete. \Box

Note that in the case when φ does not depend on the parameter, Theorem 11 has been proved in [9].

Theorem 12

For any Musielak-Orlicz function φ the space E_{φ} has the Fatou property.

Proof. Assume for the contrary that $0 \leq x_n \nearrow x$, $x_n \in E_{\varphi}$ for all $n \in N$, $x \in L^0$, $k = \sup_n ||x_n||_{\varphi} < \infty$ and $||x_n||_{\varphi} \nleftrightarrow ||x||_{\varphi}$. Since $E \in \mathbf{FP}$, we can conclude that $||x||_{\varphi} < \infty$. In fact, by the definition of the norm $|| \cdot ||_{\varphi}$, we have

$$\rho\left(\frac{x_n}{k+1}\right) = \left\|\varphi \circ \frac{x_n}{k+1}\right\|_E \le 1,$$

for all $n \in N$ and $\varphi \circ (x_n/(k+1)) \nearrow \varphi \circ (x/(k+1))$. Therefore, by $E \in \mathbf{FP}$, we get

$$\rho\left(\frac{x}{k+1}\right) = \left\|\varphi \circ \frac{x}{k+1}\right\|_{E} = \lim_{n \to \infty} \left\|\varphi \circ \frac{x_{n}}{k+1}\right\|_{E} \le 1,$$

whence $||x||_{\varphi} \leq k+1 < \infty$. We may assume without loss of generality that $||x_n||_{\varphi} \leq ||x||_{\varphi} - \varepsilon$, i.e. $||x_n/(||x||_{\varphi} - \varepsilon)||_{\varphi} \leq 1$. Hence

$$\rho(x_n/(||x||_{\varphi} - \varepsilon)) = ||\varphi \circ (x_n/(||x||_{\varphi} - \varepsilon))||_E \le 1.$$

But $0 \leq \varphi \circ (x_n/(||x||_{\varphi} - \varepsilon)) \nearrow \varphi \circ (x/(||x||_{\varphi} - \varepsilon))$. So, by $E \in \mathbf{FP}$, we get $\varphi \circ x/(||x||_{\varphi} - \varepsilon) \in E$ and $||\varphi \circ \frac{x}{||x||_{\varphi} - \varepsilon}||_E = \lim_{n \to \infty} ||\varphi \circ \frac{x_n}{||x||_{\varphi} - \varepsilon}||_E \leq 1$, which contradicts the definition of $||x||_{\varphi}$. So $||x_n||_{\varphi} \to ||x||_{\varphi}$, i.e. $E \in \mathbf{FP}$. \Box

References

- 1. C.D. Aliprantis and O. Burkinshow, *Positive Operators*, Pure and Applied Math. Academic Press, Inc, 1985.
- E.I. Berezhnoi and M. Mastyło, On Calderon-Lozanovskii construction, Bull. Polish Acad. Sci. Math. 37 (1989), 23–32.
- 3. A.P. Calderon, Intermediate spaces and interpolation, the complex method, *Studia Math.* 24 (1964), 113–190.
- J. Cerdà, H. Hudzik and M. Mastyło, On the geometry of some Calderon-Lozanovskii interpolation spaces, *Indag. Math.* 6(1) (1995), 35–49.
- 5. I. Dobrakov, On submeasures I, Dissertationes Math. 112, 1974.
- H. Hudzik, Uniform convexity of Musielak-Orlicz spaces with Luxsemburg norm, *Comment. Math. Prace Mat.* 23(1) (1983), 21–32.
- H. Hudzik and A. Kamińska, On uniformly convexifiable and B-convex Musielak-Orlicz spaces, Comment. Math. Prace Mat. 25 (1985), 59–75.
- H. Hudzik, A. Kamińska and M. Mastyło, Geometric properties of some Calderon-Lozanovskii spaces and Orlicz-Lorentz spaces, *Houston J. Math.* 22 (1996), 639–663.

- H. Hudzik and M. Mastyło, Strongly extreme points in Kőthe-Bochner spaces, *Rocky Mountain J. Math.* 23(3) (1993), 899–909.
- 10. H. Hudzik, A. Kamińska and M. Mastyło, Some geometric properties of Banach lattices, to appear.
- A. Kamińska, Some convexity properties of Musielak-Orlicz spaces of Bochner type, *Rend. Circ. Mat. Palermo Suppl.*, Serie II **10** (1985), 63–73.
- 12. L.V. Kantorovitz and G.P. Akilov, Functional Analysis, Nauka, Moscow 1977 (Russian).
- 13. M.A. Krasnoselskii and Ya. B. Rutickii *Convex Function and Orlicz Spaces*, P. Nordhoff Ltd., Groningen 1961 (translation).
- J. Lindenstrauss and L. Tzafriri, *Classical Banach SpacesII*, Springer-Verlag, Berlin-Heidelberg-New York 1979.
- 15. G. Ya. Lozanovskii, On some Banach lattices, Sibirsk. Math. Zh. 10 (1969), 584-599 (Russian).
- 16. G. Ya. Lozanovskiĭ, On some Banach lattices II, Sibirsk. Math. Zh. 12 (1971), 562–567 (Russian).
- 17. G. Ya. Lozanovskiĭ, A remark on an interpolation theorem of Calderon, *Funktsional. Anal. i Prilozhen.* **6** (1972), 333–334.
- 18. W.A. J. Luxemburg, Banach Function Spaces, Thesis, Delft 1955.
- L. Maligranda, Calderon-Lozanovskii space and interpolation of operators, Semesterbericht Functionalanalysis, Tübingen 8 (1985), 83–92.
- 20. L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Campinas 1989.
- M. Mastyło, Interpolation of linear operators in Calderon-Lozanovskii spaces, *Comment. Math. Prace Mat.* 26 (1986) 247–256.
- J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag 1983.
- M.M. Rao and Z. D. Ren, *Theory of Orlicz Spaces*, Marcel Dekker Inc., New York Basel Hong Kong 1991.
- 24. Y. Raynoud, On duals of Calderon-Lozanovskiĭ intermediate space, preprint.
- 25. Y. Raynoud, Ultrapowers of Calderon-Lozanovskiĭ interpolation space, preprint.