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Abstract

Generalized Calderon-Lozanovskiı̌ spaces Ψϕ(E1, E2) introduced in [3] are
investigated. These spaces are generated by a function Ψ : T × R2 → R+

such that Ψ(·, u) is a Σ-measurable function for any u ∈ R2 and Ψ(t, ·) is
a homogeneous, concave function vanishing at zero and by a couple of Banach
function lattices E1 and E2 over a nonatomic measure space (T,Σ, µ). We in-
vestigate the special class of these spaces, namely the spaces Eϕ corresponding
to Ψ(E,L∞), where E is an arbitrary Banach function lattice. We investigate
the problem of order continuity, Fatou property, property Hµ and order isomor-
phically isometric copies of l∞ in Eϕ. We also consider some relationships
between the norm and the modular as well as between the modular convergence
and the norm convergence in Eϕ. In order to do so, we define a regularity
condition ∆E

2 .

0. Introduction

Throughout the paper R, R+ and N denote the sets of reals, nonnegative reals and
natural numbers, respectively. A triple (T,Σ, µ) stands for a nonatomic, positive,
complete and σ-finite measure space, while L0 = L0(µ) denotes the space of all
(equivalence classes of) Σ-measurable functions x : T → R. For any x ∈ L0, we
denote by | x | the absolute value of x, i.e. | x |(t) = | x(t) | for µ-a.e. t ∈ T .
Moreover, ϕ stands for a Musielak-Orlicz function, i.e. a function defined on T ×R

with values in R+ such that ϕ(t, ·) is a nonzero function, it vanishes at zero, it is
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convex and even for µ-a.e. t ∈ T and ϕ(·, u) as well as ϕ−1(·, u) are Σ-measurable
functions for any u ∈ R+.

The letter E stands for a Banach function lattice over the measure space
(T,Σ, µ), i.e. E is a Banach subspace of L0 satisfying the following conditions:

(i) if x ∈ E, y ∈ L0 and | y | ≤ | x | µ-a.e., then y ∈ E and ‖ y ‖E ≤ ‖x ‖E .
(ii) there exists a function x in E which is strictly positive on the whole T .

The positive cone in E is denoted by E+.

We say a Musielak-Orlicz function ϕ satisfies the condition ∆E
2 if there exist a

set A ∈ Σ with µ(A) = 0, a constant K > 0 and a nonnegative function h ∈ E such
that the inequality

ϕ(t, 2u) ≤ Kϕ(t, u) + h(t)

holds for all t ∈ T\A and u ∈ R (cf. [22]).
We say that ϕ satisfies the condition ∆E

2 (ε) if it satisfies the condition ∆E
2 with

‖h ‖E < ε. The condition ∆E
2 can be equivalently formulated in the form

ϕ(t, 2u) ≤ K1ϕ(t, u)

for all t ∈ T\A and u ≥ f(t), where f is a nonnegative function on T such that
ϕ ◦ 2f ∈ E and K1 > 0 is independent of t ∈ T\A and u ≥ f(t) (cf. [7]). We
understand (ϕ ◦ 2f)(t) = ϕ(t, 2f(t)) µ-a.e. .

Given any Musielak-Orlicz function ϕ such that ϕ(t, ·) vanishes only at zero for
µ-a.e. t ∈ T , we define a concave function Ψϕ : T ×R2

+ → R+ by the formula

Ψϕ(t, u, v) = vϕ−1(t, u/v)

for t ∈ T , u, v ∈ R+, v �= 0 and Ψϕ(t, u, 0) = 0 for all t ∈ T and u ∈ R+,
where ϕ−1(t, ·) is the inverse function of ϕ(t, ·). It is easy to see that Ψϕ(t, ·, ·) is a
continuous concave function of two variables and that it is homogeneous, i.e.

Ψϕ(t, λu, λv) = λΨϕ(t, u, v)

for all λ > 0 and u, v ∈ R+. Denote the class of such functions by C. Then, con-
versely, if Ψ ∈ C is such a function that for µ-a.e. t ∈ T , Ψ(t, u, v) = 0 iff u = 0
whenever v �= 0 and Ψ(t, u, 0) = 0 for any u ∈ E, defining ϕ(t, ·) as the inverse func-
tion of Ψ(t, ·, 1), we get Ψϕ = Ψ. Therefore, there exist one−to−one correspondence
between the class of Musielak-Orlicz functions and the class C.
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Given a Musielak-Orlicz function ϕ and a couple of Banach function lattices
E1 and E2 we define following Calderon (cf. [3], pp. 162–163 and 165–166) the
generalized Calderon-Lozanowskǐı space

Ψϕ(E1, E2) =
{
x ∈ L0 : |x(·) | ≤ λΨϕ(·, |x1(·) |, |x2(·) |)

µ-a.e. for some λ > 0 and xi ∈ B(Ei) (i = 1, 2)
}
,

where B(Ei) denote the unit ball of Ei (i = 1, 2). A norm in Ψϕ(E1, E2) is defined
by

‖x ‖Ψϕ(E1,E2) = inf
{
λ > 0 : |x(·) | ≤ λΨϕ(·, |x1(·) |, |x2(·) |)

µ-a.e. for some xi ∈ B(Ei) (i = 1, 2)} .

The couple (Ψϕ(E1, E2), ‖ · ‖Ψϕ(E1,E2)) is a Banach space. In the case when E1 = E

and E2 = L∞ we write Eϕ in place of Ψϕ(E,L∞). We have

Eϕ =
{
x ∈ L0 : ϕ ◦ λx ∈ E for some λ > 0

}
.

Moreover, the norm ‖ · ‖Ψϕ(E,L∞) coincides with the norm ‖ · ‖ϕ defined by

‖ x ‖ϕ = inf
{
λ > 0 : ρ(x/λ) ≤ 1

}
,

where

ρ(x) =
{ ‖ ϕ ◦ x ‖E if ϕ ◦ x ∈ E,

∞ otherwise .

The subspace Eo
ϕ of Eϕ defined by Eo

ϕ = {x ∈ L0 : ρ(λx) < ∞ for any λ > 0}
is considered with the norm ‖ · ‖ϕ induced from Eϕ.

In the case when ϕ is an Orlicz function, i.e. there is a set A ∈ Σ with µ(A) = 0
such that ϕ(t1, ·) = ϕ(t2, ·) for all t1, t2 ∈ T\A, these Calderon-Lozanovskǐı spaces
were investigated by Lozanovskǐı in [15], [16] and [17] and the investigations were
continued in the papers [4], [8], [19], [20], [21], [24] and [25]. For the concave functions

Ψ(u, v) = v
(u

v

)p

= upv1−p (0 < p < 1)

the spaces Ψϕ(E1, E2) were mainly considered by Calderon [3].
It is easy to see that for each Musielak-Orlicz function ϕ the space Ψϕ(L1, L∞)

become the Musielak-Orlicz space Lϕ and the norm ‖ · ‖ϕ coincides in this case with
the Luxemburg norm. For the theory of Musielak-Orlicz spaces (Orlicz spaces) we
refer to [22] (resp. [13], [18], [20] and [23]).
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We assume in the whole paper that E has the Fatou property (E ∈ FP for
short), i.e. for any x ∈ L0 and (xn)∞n=1 in E such that 0 ≤ xn ↗ x µ-a.e. and
supn ‖ xn ‖E < ∞ we have ‖ x ‖E = limn ‖ xn ‖E (cf. [1], [12], [14]). This as-
sumption guarantees that for any Musielak-Orlicz function ϕ the modular ρ is left
continuous, i.e. sup {ρ(λx) : |λ | ≤ λ0} = ρ(λ0x) for any λ0 > 0. We also have
ρ(x) ≤ ‖ x ‖ϕ whenever ‖ x ‖ϕ ≤ 1 and ‖ x ‖ϕ ≤ ρ(x) whenever ‖ x ‖ϕ ≥ 1. More-
over, ‖ xn ‖ϕ → 0 if and only if ρ(λxn) → 0 for any λ > 0.

An element x ∈ E is said to be order continuous if for any sequence (xn) in
E such that 0 ↙ xn ≤ | x |, we have ‖ xn ‖E → 0. The subset Ea of all order
continuous elements in E is a sublattice of E. The lattice E is said to be order
continuous (E ∈ OC for short) if Ea = E (cf. [1], [12], [14]). In the following we
assume that Ea satisfies condition (ii) from the definition of a Banach function
lattice, i.e. suppEa = T .

We say that E has the property Hµ if for any x ∈ E and any sequence (xn) in
E such that ‖ xn ‖E → ‖ x ‖E and xnχA → xχA in measure for any A ∈ Σ with
µ(A) < ∞, we have ‖ x− xn ‖E → 0 (cf. [9]).

By σ-finiteness of the measure space (T,Σ, µ) in the definition of the property
Hµ we can replace the local convergence in measure by the µ-a.e. convergence of
(xn) to x.

1. Results

We start with the following fundamental lemma.

Lemma 1

For any Musielak-Orlicz function ϕ we have suppEϕ = suppEo
ϕ = supp (Ea)ϕ =

T . Namely, there exists a sequence (Tn)∞n=1 in Σ such that
⋃

n Tn = T and χTn
∈

Eo
ϕ ∩ (Ea)ϕ for each n ∈ N .

Proof. Kamińska [11] has proved that there exists an ascending sequence (T ′
n)∞n=1

such that
⋃

n T
′
n = T and

sup
t∈T ′

n

ϕ(t, u) < ∞

for each n ∈ N and u ∈ R+. Moreover, there exist an ascending sequence (An)∞n=1

such that χAn ∈ E and
⋃

n An = T (cf. [12], Corollary 2, p. 138). Define Tn =
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T ′
n ∩ An. It is obvious that

⋃
n Tn = T . First, we will show that χTn

∈ Eo
ϕ, i.e.

ρ(λχTn
) < ∞ for each λ > 0 and n ∈ N . We have

an,λ = sup
t∈Tn

ϕ(t, λ) < ∞ .

Hence

ρ(λχTn
) = ‖ ϕ ◦ λχTn

‖E ≤ ‖ an,λχTn
‖E = an,λ‖ χTn

‖E
≤ an,λ‖ χAn

‖E < +∞ .

To prove that χTn
∈ (Ea)ϕ for any n ∈ N , take any sequence {xk} in (Ea)ϕ such

that 0 ↙ xk ≤ χTn
. Then we have for any λ > 0:

0 ↙ ϕ ◦ λxk ≤ ϕ ◦ λχTn
≤ anχTn

≤ anχAn ,

where an = supt∈T ′
n
ϕ(t, λ). Since anχAn ∈ Ea, we get ρ(λxk) = ‖ ϕ ◦ λxk ‖E → 0.

By the arbitrariness of λ > 0, ‖ xk ‖ϕ → 0. This finishes the proof. �

Lemma 2

If ϕ(t, ·) vanishes only at zero for µ-a.e. t ∈ T and E ∈ OC, then ϕ ∈ ∆E
2 if and

only if for every ε > 0 there exist K ≥ 2, a set A ∈ Σ with µ(A) = 0 and a function

hε : T → R+ such that ϕ ◦ 2hε ∈ E, ‖ ϕ ◦ 2hε ‖E < ε and ϕ(t, 2u) ≤ Kϕ(t, u) for

all t ∈ T\A and u ≥ hε(t).

Proof. It is enough to show that ϕ ∈ ∆E
2 implies the condition from the lemma.

Take an arbitrary ε > 0 and let h be the function determined by ϕ ∈ ∆E
2 , i.e.

ϕ ◦ 2h ∈ E and ϕ(t, 2u) ≤ Kϕ(t, u) for all u ≥ h(t) µ-a.e. in T. Then

0 ≤
∥∥∥ 1
n
ϕ ◦ 2h

∥∥∥
E
≤ 1

n
‖ ϕ ◦ 2h ‖E → 0

as n → ∞. So, there exists n0 ∈ N such that ‖ 1/n0ϕ ◦ 2h ‖E < ε/2. Define

Am =
{
t ∈ T : ϕ(t, 2u) ≤ 2mϕ(t, u) if

1
n0

ϕ
(
t, 2h(t)

)
≤ ϕ

(
t, u

)
≤ ϕ

(
t, 2h(t)

)}
.

Clearly, Am ↑ and µ
(
T\⋃

m Am

)
= 0. Denote

xm = ϕ ◦ 2hχT\Am
.
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We have xm ↘ 0, whence by E ∈ OC, we get ‖ xm ‖E → 0 as m → ∞. Therefore,
there exists m0 ∈ N such that ‖ xm0 ‖E < ε/2. Let g be the function satisfying
1/n0ϕ(t, 2h(t)) = ϕ(t, g(t)) and define

hε(t) =
1
2
g(t)χAm0

(t) + h(t)χT\Am0
(t) .

Clearly ϕ ◦ 2hε ∈ E and ϕ(t, 2u) ≤ max(K, 2m0)ϕ(t, u) for u ≥ hε(t) µ-a.e. in T.
Moreover,

‖ ϕ ◦ 2hε ‖E ≤ ‖ ϕ ◦ gχAm0
‖E + ‖ ϕ ◦ 2hχT\Am0

‖E <
ε

2
+

ε

2
= ε .

So, hε has the desired properties. �

Note that Lemma 2 generalizes Lemma 1.6 in [6] from Orlicz spaces Lϕ to
Calderon-Lozanovskǐı spaces Eϕ.

Lemma 3

Assume that ϕ(t, ·) vanishes only at zero for µ-a.e. t ∈ T , ϕ ∈ ∆E
2 and E ∈ OC.

Then for any sequence (xn) in Eϕ we have ‖ xn ‖ϕ → 1 if and only if ρ(xn) → 1.

Proof. We have ρ(x) ≤ ‖ x ‖ϕ if ‖ x ‖ϕ ≤ 1 and ρ(x) ≥ ‖ x ‖ϕ if ‖ x ‖ϕ ≥ 1,
whence it follows that ρ(xn) → 1 implies ‖ xn ‖ϕ → 1. We will prove the opposite
implication. It is enough to consider only the cases when ‖ xn ‖ϕ ≤ 1 for all n ∈ N

or ‖ xn ‖ϕ ≥ 1 for all n ∈ N .

1◦. ‖ xn ‖ϕ ≤ 1 for all n ∈ N and ‖ xn ‖ϕ → 1. Assume for the contrary that
ρ(xn) �→ 1. Then we may assume without loss of generality that there exists δ > 0
such that ρ(xn) ≤ 1−δ for any n ∈ N . By Lemma 2, there exist K ≥ 2, a set A ∈ Σ
with µ(A) = 0 and a function h : T → R+ such that ϕ ◦ 2h ∈ E, ‖ ϕ ◦ 2h ‖E < δ/2
and the inequality ϕ(t, 2u) ≤ Kϕ(t, u) holds for all t ∈ T\A and u ≥ h(t). Denoting
the right derivative of ϕ(t, ·) by p(t, ·), we get

up(t, u) ≤ ϕ(t, 2u) ≤ Kϕ(t, u)

for all t ∈ T\A and u ≥ h(t). Hence for all α ≥ 1, t ∈ T\A and u ≥ h(t), we get

∫ αu

u

p(t, s)
ϕ(t, s)

ds ≤ K

∫ αu

u

ds

s
,
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i.e. ϕ(t, αu) ≤ αKϕ(t, u). Let α ∈ (1, 2] be such that 1 < αK ≤ 1−δ/2
1−δ and define

Bn =
{
t ∈ T : |xn(t) | ≥ h(t)

}
, n = 1, 2, ... .

Then we have for all n ∈ N :

ρ(αxn) ≤ ρ(αxnχBn) + ρ(αxnχT\Bn
) ≤ αKρ(xnχBn) + ρ(2xnχT\Bn

)

≤ 1 − δ/2
1 − δ

(1 − δ) +
δ

2
= 1 .

Hence it follows that ‖ xn ‖ϕ ≤ α−1 < 1 for all n ∈ N , which contradicts the
condition ‖ xn ‖ϕ → 1.

2◦. ‖ xn ‖ϕ ≥ 1 for all n ∈ N and ‖ xn ‖ϕ → 1. Assume for the contrary that
ρ(xn) �→ 1. We may assume without loss of generality that there exists δ > 0 such
that ρ(xn) ≥ 1 + δ for any n ∈ N . By Lemma 2, we can find a function h : T → R+

such that ϕ ◦ h ∈ E, ‖ ϕ ◦ h ‖E < δ/2 and ϕ(t, 2u) ≤ Kϕ(t, u) for all t ∈ T\A and
u ≥ h(t)/2, where µ(A) = 0 and K ≥ 2 is independent of t. Analogously, as in the
first case, we can show that

ϕ(t, αu) ≥ αKϕ(t, u)

for all t ∈ T\A, u ≥ h(t) and 1/2 ≤ α ≤ 1. Defining

Cn =
{
t ∈ T : |xn(t) | ≥ h(t)

}
, n = 1, 2, ... ,

we have ρ(xnχT\Cn
) ≤ ρ(h) < δ/2, whence ρ(xnχCn

) > 1 + δ/2 for each n ∈ N .
Therefore, for n large enough such that ‖ xn ‖ϕ ≤ 2, we get

1 = ρ

(
xn

‖ xn ‖ϕ

)
≥ ρ

(
xn

‖ xn ‖ϕ
χCn

)
≥ 1

(‖ xn ‖ϕ)K
ρ(xnχCn) ≥ 1 + δ/2

(‖ xn ‖ϕ)K
,

which yields a contradiction for large n ∈ N . �

Note that in the case when E = L1 and ρ(xn) ≤ 1, Lemma 3 coincides with
Lemma 1.5 from [6].

Lemma 4

If ϕ �∈ ∆E
2 , then Eϕ contains an order isomorphically isometric copy of l∞.
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Proof. Define for µ-a.e. t ∈ T

gn(t) = sup
{
u ∈ R+ : ϕ

(
t,

(
1 +

1
n

)
u

)
≥ 2n+1ϕ(t, u)

}
.

Functions gn are Σ-measurable for all n ∈ N (see S. Chen, Geometry of Orlicz

spaces, Dissertationes Math. 356 (1996), Lemma 5.4, p. 176). Assume by definition
ϕ(t,∞) = ∞ for µ-a.e. t ∈ T . It is easy to see that ϕ �∈ ∆E

2 is equivalent to ϕ �∈ ∆E
1+ 1

n

for n = 1, 2, ... and that the last fact is equivalent to ‖ ϕ ◦ gn ‖E = ∞ for n = 1, 2, ...
Define Tn = {t ∈ T : gn(t) = ∞}. Then Tn+1 ⊂ Tn for any n ∈ N . We will

show that there exists a sequence (xn) of elements with pairwise disjoint support and
such that ρ(xn) < 2−n and ‖ xn ‖E = 1 for all n ∈ N , ρ(x) ≤ 1/2 and ‖ x ‖E = 1,
where x =

∑∞
n=1 xn. To build such a sequence of elements consider three cases.

1◦. Assume first that µ(Tn) = 0 for n large enough. We can assume without
loss of generality that µ(T1) = 0. Then, by the continuity of ϕ, we have

ϕ(t, (1 +
1
n

)gn(t)) ≥ 2n+1ϕ(t, gn(t)),

for µ-a.e. t ∈ T . Let (An)∞n=1 be an ascending sequence of measurable sets of finite
measure such that χAn ∈ E for n = 1, 2, ... and

⋃
n An = T (see [12], p. 132,

Corollary 2). Defining

B1
n = {t ∈ T : ϕ(t, g1(t)) ≤ n}, n = 1, 2, ... ,

we have B1
1 ⊂ B1

2 ⊂ ... and µ(T\⋃
n B

1
n) = 0. We get by E ∈ FP that

‖ ϕ ◦ g1χB1
n∩An

‖E → ‖ ϕ ◦ g1 ‖E = ∞.

So, there exist n1 ∈ N and B1 ⊂ B1
n1

∩An1 , B1 ∈ Σ, such that

‖ ϕ ◦ g1χB1 ‖E =
1
4
.

We applied here the Dobrakov result from [5] which says that submeasures which are
absolutely continuous with respect to µ being nonatomic have the Darboux property.

Since g2 ≤ g1, we get ‖ ϕ ◦ g2χB1 ‖E ≤ 1
4 , whence ‖ ϕ ◦ g2χT\B1 ‖E = ∞.

Define the sets

B2
n = {t ∈ T\B1 : ϕ(t, g2(t)) ≤ n}, n = 1, 2, ... .



Some basic properties of generalized Calderon-Lozanovskiı̌ spaces 531

Then ‖ ϕ ◦ g2χB2
n∩An

‖E → ‖ ϕ ◦ g2χT\B1 ‖E . So, there exist n2 ∈ N and B2 ⊂
B2

n2
∩An2 such that B2 ∈ Σ and

‖ ϕ ◦ g2χB2 ‖E =
1
8
, ‖ ϕ ◦ g3χT\B2 ‖E = ∞.

Continuing this procedure by induction, we can find a sequence (Bn)∞n=1 of pairwise
disjoint measurable sets such that

‖ ϕ ◦ gnχBn
‖E =

1
2n+1

, (n = 1, 2, ...).

Define

x =
∞∑

n=1

gnχBn
.

Then we have ρ(x) ≤ ∑∞
n=1 ‖ ϕ ◦ gnχBn

‖E =
∑∞

n=1
1

2n+1 = 1
2 , whence ‖ x ‖ϕ ≤ 1.

Let λ > 1. There is m ∈ N such that λ ≥ 1 + 1
m . Therefore,

ρ(λx) ≥ ‖ ϕ ◦ (1 + 1
m )gmχBm ‖E ≥ ‖ 2m+1ϕ ◦ gmχBm ‖E = 2m+1 1

2m+1
= 1,

whence ‖ λx ‖ϕ ≥ 1 and, by the arbitrariness of λ > 1, ‖ x ‖ϕ ≥ 1. So, we have
‖ x ‖ϕ = 1. Define

x1 = g1χB1 + g3χB3 + g5χB5 + ...,

x2 = g2χB2 + g6χB6 + g10χB10 + ...

and by induction we define xn to be the sum of every second term glχBl
of∑∞

i=1 giχBi
− ∑n−1

k=1 xk beginning from the first term of the rest. Then we can
prove in the same way as for x that ρ(xn) < 2−n and ‖ xn ‖ϕ = 1 for each n ∈ N .

2◦. Assume that µ(
⋂∞

n=1 Tn) = a > 0. By σ-finiteness of µ, we know that there
exists a sequence of Σ-measurable functions and a sequence (B′

n)∞n=1 of pairwise
disjoint sets such that B′

n ⊂ ⋂∞
n=1 Tn and µ(B′

n) = 2−n−1a for any n ∈ N . Note
that ‖ ϕ ◦ gnχB′

n
‖E = ∞ for any n ∈ N . Now, for any n ∈ N there exists a

sequence (fn
k )∞k=1 of Σ-measurable finitely valued nonnegative functions such that

fn
k (t) ↗ gn(t) and ϕ(t, (1 + 1

n )fn
k (t)) ≥ 2n+1ϕ(t, fn

k (t)) for µ-a.e. t ∈ T (see S. Chen,
Geometry of Orlicz spaces, Dissertationes Math. 356 (1996), Lemma 5.4, p. 176).
Since E has the Fatou property, we get

‖ ϕ ◦ fn
k χB′

n
‖E → ‖ ϕ ◦ gnχB′

n
‖E = ∞

for any n ∈ N . Therefore, for any n ∈ N there are kn ∈ N and a measurable set
Bn ⊂ B′

n such that ‖ ϕ ◦ fn
k χBn ‖E = 2−n−1.
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In an analogous way as in case 1◦, we can construct x ∈ Eϕ and a sequence
(xm) in Eϕ, which have the desired properties.

3◦. Finally, consider the case when µ(Tn) > 0 for any n ∈ N and µ(
⋂∞

n=1 Tn) =
0. Then there is a sequence (mn) of natural numbers such that µ(Tmn

\Tmn+1) > 0
for any n ∈ N . Let, for any n ∈ N , Bn be a Σ-measurable set in Tmn\Tmn+1 such
that µ(Bn) > 0. Then ‖ ϕ ◦ gnχBn

‖E = ∞. Now, we can proceed as in case 2◦.
Define an operator P : l∞ → Eϕ by

(Pz)(t) =
∞∑

n=1

znxn(t) (∀z = (zn) ∈ l∞).

It is obvious that P is a linear operator. We have for all z ∈ l∞\{0}:

ρ

(
Pz

‖z‖∞

)
=

∥∥∥∥
∞∑

n=1

ϕ ◦ | x |zn
‖z‖∞

| x |xn

∥∥∥∥
E

≤
∞∑

n=1

‖ ϕ ◦ xn ‖E ≤
∞∑

n=1

2−n = 1,

whence ‖ Pz ‖ϕ ≤ ‖z‖∞. Taking any λ < 1, we can find m ∈ N such that |zm|
λ‖ z ‖∞ =

λo > 1. Therefore,∥∥∥∥ Pz

λ‖ z ‖∞

∥∥∥∥
ϕ

≥
∥∥∥∥ |zm|
λ‖ z ‖∞

|xm|
∥∥∥∥
ϕ

= ‖ λoxm ‖ϕ = λo > 1,

whence ‖ Pz ‖ϕ > λ‖z‖∞ and, by the arbitrariness of λ < 1, ‖ Pz ‖ϕ ≥ ‖ z ‖∞.
Consequently, ‖ Pz ‖ϕ = ‖z‖∞ for all z ∈ l∞. Since the functions xn are nonnega-
tive, we have Pz ≥ 0 for z ≥ 0, so P is an order isomorphic isometry. The proof is
complete. �

In the case when ϕ does not depend on the parameter, Lemma 4 has been
proved in [8].

Lemma 5

The property that ‖ x ‖ϕ = 1 if and only if ρ(x) = 1 holds true for any x ∈ Eϕ

if and only if ϕ ∈ ∆E
2 .

Proof. Sufficiency. Assume that ϕ ∈ ∆E
2 , ‖ x ‖ϕ = 1 and ρ(x) < 1. Define the

function f(λ) = ρ(λx) for λ > 0. It is clear that f is convex and (by ϕ ∈ ∆E
2 )

finitely valued. So, f is continuous and consequently it has the Darboux property.
Since f(1) = ρ(x) < 1, there exist λ0 > 1 such that f(λ0) = ρ(λ0x) < 1. This yields
‖ x ‖ϕ ≤ 1/λ0 < 1, a contradiction.

Necessity. If ϕ �∈ ∆E
2 then, by the proof of Lemma 4, there exists x ∈ Eϕ such that

ρ(x) ≤ 1/2 and ‖ x ‖ϕ = 1. �
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Lemma 6

Let E ∈ OC. We have ‖ xn ‖ϕ → 0 if and only if ρ(xn) → 0 for any sequence

(xn)∞n=1 in Eϕ if and only if ϕ ∈ ∆E
2 and ϕ(t, ·) vanishes only at zero for µ-a.e. t ∈ T .

Proof. Sufficiency. By Lemma 2, the assumptions yields that ϕ ∈ ∆E
2 (ε) for any

ε > 0. Let (xn) be a sequence in Eϕ such that ρ(xn) → 0. We need to show that
ρ(2xn) → 0. Take an arbitrary ε > 0. Then, by ϕ ∈ ∆E

2 (ε/2), there exist a set
A ∈ Σ with µ(A) = 0, a constant K ≥ 2 and a nonnegative function h ∈ L0 such
that ‖ h ‖E < ε/2 and

ϕ(t, 2u) ≤ Kϕ(t, u) + h(t)

for all t ∈ T\A and u ∈ R. If m ∈ N is such that ρ(xn) < ε/2K for all n ≥ m, we
get

ρ(2xn) ≤ Kρ(xn) + ‖ h ‖E <
ε

2
+

ε

2
= ε

for all n ≥ m, which shows that ρ(2xn) → 0, finishing the proof of the sufficiency.

Necessity. If ϕ �∈ ∆E
2 , then taking the sequence (xn) defined in the proof of Lemma 4,

we have ρ(xn) = 2−n and ‖ xn ‖ϕ = 1 for all n ∈ N .
Assume now that ϕ vanishes outside zero, i.e. there is k ∈ N such that the set

A = {t ∈ T : ϕ(t, 1/k) = 0} has positive measure. Defining xn = 1/kχA for all
n ∈ N , we have ρ(xn) = 0 and ‖ xn ‖ϕ = ‖ k−1χA ‖ϕ > 0 for n = 1, 2, ... �

Corollary 7

If ϕ(t, ·) vanishes outside zero for t ∈ A ∈ Σ with µ(A) > 0, then ϕ �∈ ∆E
2 (ε)

for some ε > 0.

Proof. Otherwise, ϕ ∈ ∆E
2 (ε) for any ε > 0, and by the proof of the sufficiency in

Lemma 6, we have ‖ x ‖ϕ → 0 whenever ρ(xn) → 0. However, this contradicts the
necessity part of the proof of Lemma 6. �

Lemma 8

If (xn) is in Eϕ, xn → 0 µ-a.e. or locally in measure, ρ(xn) → 0, E ∈ OC and

ϕ ∈ ∆E
2 , then ‖ x ‖ϕ → 0.
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Proof. By the σ-finiteness of the measure space, it is enough to consider the case
when xn → 0 µ-a.e. Then we have ϕ◦xn → 0 µ-a.e. and ‖ ϕ ◦ xn ‖E → 0. Therefore,
there exist y ∈ E+, a subsequence (xnk

) of (xn) and a sequence (εnk
) in R+\{0}

with εnk
↘ 0 such that

ϕ ◦ xnk
≤ εnk

y

for all k ∈ N and µ-a.e. t ∈ T (cf. [12], Lemma 2, p. 141). We may assume without
loss of generality that εnk

≤ 1 for all k ∈ N , whence

ϕ ◦ xnk
≤ y

for all k ∈ N . Let λ > 0 be arbitrary. Then λ ≤ 2l for some l ∈ N , so applying
ϕ ∈ ∆E

2 , we get

ϕ ◦ λxnk
≤ ϕ ◦ 2lxnk

≤ Klϕ ◦ xnk
+

(
l−1∑
i=1

Ki

)
h ≤ Kly +

(
l−1∑
i=1

Ki

)
h = z ∈ E+.

Since ϕ◦λxnk
→ 0 µ-a.e., by E ∈ OC, we get ‖ ϕ ◦ λxnk

‖E = ρ(λxnk
) → 0. By the

arbitrariness of λ > 0 this means that ‖ xnk
‖ϕ → 0. In virtue of the double extract

subsequence theorem this yields ‖ xn ‖ϕ → 0, finishing the proof. �

Theorem 9

The following hold true:

(i) The inclusions (Ea)oϕ ⊂ (Eϕ)a ⊂ Eo
ϕ hold always true.

(ii) If E ∈ OC, then the inclusions in (i) are equalities.

(iii) If ϕ ∈ ∆E
2 and ϕ(t, ·) vanishes only at zero for µ-a.e. t ∈ T , then (Eϕ)a = Eo

ϕ if

and only if E ∈ OC.

(iv) If ϕ(t, ·) vanishes only at zero for µ-a.e. t ∈ Tand ϕ ∈ ∆Ea
2 , then (Ea)ϕ �= Eϕ

whenever E �∈ OC.

Proof. Let (Tn)∞n=1 be the sequence of sets from Lemma 1 and let x ∈ (Eϕ)a. Define

xn(t) =
{
x(t) t ∈ Tn and |x(t)| ≤ n,

0 otherwise.

Then xn ∈ Eo
ϕ for each n ∈ N and 0 ↙ |x − xn | ≤ |x |. Since x ∈ (Eϕ)a, we get

‖ x− xn ‖ϕ → 0, i.e. ρ(λ(x− xn)) → 0 for each λ > 0. By the convexity of ρ, we
have for any λ > 0:

ρ(λx) = ρ(λ(x− xn) + λ(xn)) ≤ 1
2
{
ρ(2λ(x− xn)) + ρ(2λ(xn))

}
.
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By ρ(2λ(x− xn)) → 0, there is m ∈ N such that ρ(2λ(x− xn)) ≤ 1 for all n ≥ m.
Since ρ(2λxn) < ∞ for all λ > 0 and n ∈ N , this yields that ρ(λx) < ∞ for any
λ > 0, and the inclusion (Eϕ)a ⊂ Eo

ϕ is proved.
Assume now that x ∈ (Ea)oϕ, i.e. ϕ ◦ λx ∈ Ea for all λ > 0. Let (xn)∞n=1 be

a sequence in L0 such that 0 ↙ xn ≤ |x |. Then we get 0 ↙ ϕ ◦ λxn ≤ ϕ ◦ λx ∈
Ea, whence ρ(λxn) = ‖ ϕ ◦ λxn ‖E → 0. By the arbitrariness of λ > 0, we have
‖ xn ‖ϕ → 0, which yields x ∈ (Eϕ)a. So, the proof of (i) is complete.

Let E ∈ OC, then Ea = E. Hence, (i) implies (ii).
Now, we will prove (iii). We need only to show that under the assumptions

that ϕ ∈ ∆E
2 and ϕ(t, ·) vanishes only at zero for µ-a.e. t ∈ T , we have (Eϕ)a �= Eo

ϕ

whenever E �∈ OC. By E �∈ OC there exist δ > 0, x ∈ E+ and a sequence (xn) in
E+ such that 0 ↙ xn ≤ x and ‖ xn ‖E ≥ δ. Defining yn = xn/‖ xn ‖E , we have
‖ yn ‖E = 1 for each n ∈ N and 0 ↙ yn ≤ x/δ ∈ E. Define now zn = ϕ−1 ◦ yn and
z = ϕ−1 ◦ x/δ. Then ϕ ◦ zn = yn ∈ E, ϕ ◦ z = x/δ ∈ E and

ρ(zn) = ‖ ϕ ◦ zn ‖E = ‖ yn ‖E = 1.

Hence, ‖ zn ‖ϕ = 1 for all n ∈ N , which means that z �∈ (Eϕ)a. However, by
ϕ ∈ ∆E

2 , we have z ∈ Eo
ϕ, which finishes the proof of (iii).

Finally, we will prove (iv). Assuming that E �∈ OC, we have E �= Ea, so
there exists x ∈ E\Ea. Define y = ϕ−1 ◦ | x |. Then y ∈ L0 by Σ-measurability
of ϕ−1(·, u) for all u ∈ R. Since ϕ ◦ y = | x | ∈ E, we have y ∈ Eϕ. Assuming

that y ∈ (Ea)ϕ, we get ϕ ◦ λy ∈ Ea for some λ > 0, whence in view of ϕ ∈ ∆Ea
2 ,

| x | = ϕ ◦ y ∈ Ea, a contradiction. �

Theorem 10
If ϕ is a Musielak-Orlicz function such that ϕ(t, ·) vanishes only at zero for

µ-a.e. t ∈ T , then Eϕ ∈ OC if and only if E ∈ OC and ϕ ∈ ∆E
2 .

Proof. Sufficiency. Take any x ∈ Eϕ and a sequence (xn) in Eϕ such that 0 ↙ xn ≤
x. Let λ > 0 be such that ϕ ◦ λx ∈ E. We have 0 ↙ ϕ ◦ λxn ≤ ϕ ◦ λ| x | ∈ E,
whence ρ(λxn) = ‖ ϕ ◦ λxn ‖E → 0. Since ϕ ∈ ∆E

2 (ε) for any ε > 0, this yields
‖ xn ‖ϕ → 0, which means that x ∈ (Eϕ)a. By the arbitrariness of x ∈ Eϕ this
means that Eϕ ∈ OC.

Necessity. If ϕ �∈ ∆E
2 then, in virtue of Lemma 4, Eϕ contains an order isomorphi-

cally isometric copy of l∞, so Eϕ �∈ OC.
Assume now that E �∈ OC. Then there exist x ∈ E and a sequence (xn) in

E such that 0 ↙ xn ≤ x and ‖ xn ‖E = 1 for each n ∈ N . Define yn = ϕ−1 ◦ xn

and y = ϕ−1 ◦ x. Then we get 0 ↙ xn = ϕ ◦ yn ≤ ϕ ◦ y = x, whence ρ(yn) =
‖ ϕ ◦ yn ‖E = ‖ xn ‖E = 1, and consequently ‖ yn ‖ϕ = 1 for each n ∈ N . Since
y ∈ Eϕ, this means that Eϕ �∈ OC and the proof is finished. �
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Theorem 11

If ϕ ∈ ∆E
2 and E has the property Hµ, then Eϕ has the property Hµ.

Proof. Under the assumptions of the theorem, take x and (xn) in (Eϕ)+ such that
xn → x locally in measure and ‖ xn ‖ϕ → ‖ x ‖ϕ. We can assume without loss of
generality that ‖ x ‖ϕ = 1. Then in virtue of Lemma 3, we have ρ(xn) → ρ(x) = 1.
By σ-finiteness of the measure space we may assume (passing to a subsequence if
necessary) that xn → x µ-a.e. . So, ϕ ◦ xn → ϕ ◦ xµ-a.e. and ‖ ϕ ◦ xn ‖E →
‖ ϕ ◦ x ‖E . By the assumption that E ∈ Hµ, this yields ‖ ϕ ◦ xn − ϕ ◦ x ‖E → 0.
So, there exist y ∈ E+ and a subsequence (xnk

) of (xn) such that

∣∣ϕ ◦ xnk
− ϕ ◦ x

∣∣ ≤ εnk
y

µ-a.e. for a sequence (εnk
) with εnk

↘ 0 (cf. [12], Lemma 2, p. 141). We may
assume without loss of generality that εnk

≤ 1 for all k ∈ N . Since ϕ ∈ ∆E
2 we have

ϕ ◦ x ∈ E and consequently

ϕ ◦ xnk
≤

∣∣ϕ ◦ xnk
− ϕ ◦ x

∣∣ + ϕ ◦ x ≤ y + ϕ ◦ x ∈ E+ .

Applying again ϕ ∈ ∆E
2 ,we get

ϕ ◦ (xnk
− x) ≤ ϕ ◦ 2

(xnk
− x)

2
≤ K

2
{
ϕ ◦ xnk

+ ϕ ◦ x
}

+ h

≤ K

2
{
y + ϕ ◦ x + ϕ ◦ x

}
+ h = Kϕ ◦ x +

K

2
y + h ∈ E+ .

So, by E ∈ OC, which follows by E ∈ Hµ (cf. [10]), we get ρ(xnk
− x) =

‖ ϕ ◦ (xnk
− x) ‖E → 0. Applying now Lemma 8, we get ‖ xnk

− x ‖ϕ → 0. In
virtue of the double extract subsequence theorem, we get ‖ xn − x ‖ϕ → 0. This
means that (Eϕ)+ ∈ Hµ, and consequently (cf. [9]) Eϕ ∈ Hµ as well. The proof is
complete. �

Note that in the case when ϕ does not depend on the parameter, Theorem 11
has been proved in [9].

Theorem 12

For any Musielak-Orlicz function ϕ the space Eϕ has the Fatou property.
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Proof. Assume for the contrary that 0 ≤ xn ↗ x, xn ∈ Eϕ for all n ∈ N , x ∈ L0,
k = supn ‖ xn ‖ϕ < ∞ and ‖ xn ‖ϕ �→ ‖ x ‖ϕ. Since E ∈ FP, we can conclude that
‖ x ‖ϕ < ∞. In fact, by the definition of the norm ‖ · ‖ϕ, we have

ρ

(
xn

k + 1

)
=

∥∥∥ϕ ◦ xn

k + 1

∥∥∥
E
≤ 1 ,

for all n ∈ N and ϕ ◦ (xn/(k + 1)) ↗ ϕ ◦ (x/(k + 1)). Therefore, by E ∈ FP, we get

ρ

(
x

k + 1

)
=

∥∥∥ϕ ◦ x

k + 1

∥∥∥
E

= lim
n→∞

∥∥∥ϕ ◦ xn

k + 1

∥∥∥
E
≤ 1 ,

whence ‖ x ‖ϕ ≤ k + 1 < ∞. We may assume without loss of generality that
‖ xn ‖ϕ ≤ ‖ x ‖ϕ − ε, i.e. ‖ xn/(‖ x ‖ϕ − ε) ‖ϕ ≤ 1. Hence

ρ(xn/(‖ x ‖ϕ − ε)) = ‖ ϕ ◦ (xn/(‖ x ‖ϕ − ε)) ‖E ≤ 1 .

But 0 ≤ ϕ ◦ (xn/(‖ x ‖ϕ − ε)) ↗ ϕ ◦ (x/(‖ x ‖ϕ − ε)). So, by E ∈ FP, we get
ϕ ◦ x/(‖ x ‖ϕ − ε) ∈ E and ‖ ϕ ◦ x

‖ x ‖ϕ−ε
‖E = limn→∞ ‖ ϕ ◦ xn

‖ x ‖ϕ−ε
‖E ≤ 1,

which contradicts the definition of ‖ x ‖ϕ. So ‖ xn ‖ϕ → ‖ x ‖ϕ, i.e. E ∈ FP. �
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8. H. Hudzik, A. Kamińska and M. Masty�lo, Geometric properties of some Calderon-Lozanovskiı̌

spaces and Orlicz-Lorentz spaces, Houston J. Math. 22 (1996), 639–663.



538 Foralewski and Hudzik

9. H. Hudzik and M. Masty�lo, Strongly extreme points in Kőthe-Bochner spaces, Rocky Mountain
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