Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 48, 4-6 (1997), 513-522
(c) 1997 Universitat de Barcelona

A Liouville-type theorem for very weak solutions of nonlinear partial differential equations

Alberto Fiorenza*
Dipartimento di Matematica e Applicazioni "Renato Caccioppoli",
Universitá di Napoli, Via Cintia, 80126 Napoli, Italy
E-Mail: fiorenza@matna2.dma.unina.it

Abstract

Let us consider the variational equation in \mathbb{R}^{n}

$$
\operatorname{div}\left(a(x) F^{\prime}(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right)=0
$$

where $0<\lambda_{0} \leq a(x) \leq \Lambda_{0}<\infty$ and F is a convex increasing function verifying suitable conditions. We prove that the very weak solutions of such equation, whose gradient belongs to a suitable Orlicz space, must be constant almost everywhere. The result applies, in particular, to the case in which F is the power $F(t)=t^{p}(p>1)$, i.e. to the variational equation in \mathbb{R}^{n}

$$
\operatorname{div}\left(a(x)|\nabla u|^{p-2} \nabla u\right)=0
$$

1. Introduction

Throughout the paper we will denote by $F=F(t)$ a convex differentiable increasing function on $\left[0, \infty\left[\right.\right.$ such that $p F(t) \leq t F^{\prime}(t) \leq q F(t) \forall t \geq 0$ where $1<p \leq q<\infty$, and such that $\liminf _{t \rightarrow 0} \frac{t F^{\prime}(t)}{F(t)}>n$ or $\limsup _{t \rightarrow \infty} \frac{t F^{\prime}(t)}{F(t)} \leq n$. Let us consider the very weak solutions of the variational equation in \mathbb{R}^{n}

$$
\begin{equation*}
\operatorname{div}\left(a(x) F^{\prime}(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right)=0 \tag{1.1}
\end{equation*}
$$

[^0]where $a(x)$ is a measurable function such that $0<\lambda_{0} \leq a(x) \leq \Lambda_{0}<\infty$, i.e. (see Iwaniec-Sbordone [8]) the functions $u \in W_{l o c}^{1,1}\left(\mathbb{R}^{n}\right),|\nabla u| \in L_{F_{r}}\left(\mathbb{R}^{n}\right), F_{r}(t)=$ $F(t) t^{r-p}, \max \{1, p-1\} \leq r<p$, such that
$$
\int_{\mathbb{R}^{n}} a(x) F^{\prime}(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla \phi=0, \quad \forall \phi \in W^{1, \infty}\left(\mathbb{R}^{n}\right) \quad \text { with compact support. }
$$

The definition of very weak solution is best visualized when F is the power $F(t)=t^{p}(p>1)$. In this case the equation (1.1) reduces to the variational equation in \mathbb{R}^{n}

$$
\begin{equation*}
\operatorname{div}\left(a(x)|\nabla u|^{p-2} \nabla u\right)=0 \tag{1.2}
\end{equation*}
$$

and any weak solution $u \in W_{l o c}^{1, p}\left(\mathbb{R}^{n}\right)$ of (1.2) must satisfy the identity
(1.3) $\int_{\mathbb{R}^{n}} a(x)|\nabla u|^{p-2} \nabla u \nabla \phi=0, \quad \forall \phi \in W^{1, \infty}\left(\mathbb{R}^{n}\right) \quad$ with compact support.

In order to give meaning to the integral in (1.3), the assumption $u \in W_{l o c}^{1, p}\left(\mathbb{R}^{n}\right)$ is not necessary. Actually, it will be sufficient to assume

$$
\begin{equation*}
u \in W_{l o c}^{1, r}\left(\mathbb{R}^{n}\right), \quad \max \{1, p-1\} \leq r<p \tag{1.4}
\end{equation*}
$$

Any function u verifying (1.4) is called a very weak solution (see [10]) of equation (1.2) if (1.3) holds for any $\phi \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$ with compact support.

The aim of this paper is to prove the following Liouville-type theorem.

Theorem 1.1

There exists $r_{0}<p$ such that, if u is a very weak solution of (1.1) such that $|\nabla u| \in L_{F_{r}}\left(\mathbb{R}^{n}\right)$, with $r_{0}<r<p$, then u is constant.

If F is such that $\liminf _{t \rightarrow 0} \frac{t F^{\prime}(t)}{F(t)}>n$ or $\lim \sup _{t \rightarrow \infty} \frac{t F^{\prime}(t)}{F(t)} \leq n$, then from Theorem 1.1 we can deduce, in particular, the main results of [4], [2] in which, under a further assumption of integrability on u, it is proved that u must be zero a.e. The proof of Theorem 1.1 will be deduced by using the same technique (introduced by Lewis in [9]) as in [4], without any integrability assumption on u.

We remark that the Liouville theorem for weak solutions of the p-harmonic equation is well-known (see [7], for instance, in which also nonhomogeneous equations are considered).

2. Notations and preliminary results

We begin with the following
Remark 2.1. If

$$
\liminf _{t \rightarrow 0} \frac{t F^{\prime}(t)}{F(t)}>n, \quad \text { then } \lim _{t \rightarrow 0} \frac{F(t)}{t^{n}}=0
$$

The statement follows by noticing that for small $\epsilon>0$ the function $\frac{F(t)}{t^{n+\epsilon}}$ has first derivative positive near zero, and therefore has a finite limit when $t \rightarrow 0$.

Next theorem is well known in the theory of Sobolev spaces. We will use the following version, which is a generalization in the context of the Orlicz-Sobolev spaces theory.

Theorem 2.2 ([11], [3])
If $p F(t) \leq t F^{\prime}(t) \leq q F(t), \forall t \geq 0$ with $1<p \leq q<n$, and if $u \in W_{l o c}^{1,1}\left(\mathbb{R}^{n}\right)$ is such that $|D u| \in L_{F}\left(\mathbb{R}^{n}\right)$, then there exists a constant $c \in \mathbb{R}$ such that $u-c \in$ $L_{F_{*}}\left(\mathbb{R}^{n}\right)$, where F_{*} is the Sobolev conjugate function of F defined by

$$
F_{*}^{-1}(t)=\int_{0}^{t} \frac{F^{-1}(\tau)}{\tau^{1+1 / n}} d \tau \quad \forall t \geq 0
$$

Let us remark that, more generally, Theorem 2.2 is true under the assumption $1<i(F) \leq I(F)<n$, where $i(F), I(F)$ are the reciprocal of the Boyd indices of F : this fact can be deduced by using some relations between the Simonenko indices and the Boyd indices (see [5]).

Let us note also that functions u verifying the assumptions of Theorem 2.2 are such that $M u$ is almost everywhere finite, where M is the Hardy-Littlewood maximal operator defined by

$$
M u(y)=\sup _{Q \ni y} f_{Q} u(x) d x
$$

where the supremum is taken over all cubes Q in \mathbb{R}^{n} containing y. The proof of Theorem 2.2 may be carried out by using the Riesz potential in a standard way. It is easy to realize also that

$$
c=\lim _{\rho \rightarrow \infty} f_{B_{\rho(y)}} u(x) d x \quad \forall y \in \mathbb{R}^{n}
$$

where $B_{\rho}(y)=\left\{x \in \mathbb{R}^{n}:|y-x|<\rho\right\}$. We observe also that by using results proved in [1] about Riesz potentials, if

$$
\int_{0}^{\infty} \frac{\widetilde{F}(t)}{t^{1+n / n-1}} d t<\infty
$$

where \widetilde{F} denotes the conjugate function of F, and if $u \in W_{l o c}^{1,1}\left(\mathbb{R}^{n}\right)$ is such that $|D u| \in L_{F}\left(\mathbb{R}^{n}\right)$, then u is bounded. This result is proved in [1] for functions belonging to the Orlicz-Sobolev space $W^{1} L_{F}\left(\mathbb{R}^{n}\right)$.

Next theorem, due to Gustavsson-Peetre ([6]), is from Interpolation theory, and is a particular case of the original statement.

Theorem 2.3

Let $\left.p^{*}, p, q^{*}, q \in\right] 1, \infty[$ and let T be a continuous linear operator

$$
\begin{aligned}
& T: L_{p^{*}}(\Omega) \rightarrow L_{p}(\Omega) \\
& T: L_{q^{*}}(\Omega) \rightarrow L_{q}(\Omega)
\end{aligned}
$$

respectively with norm $\|T\|_{p^{*}, p},\|T\|_{q^{*}, q}$, where Ω is a bounded open set in \mathbb{R}^{n}.
Let $\eta:] 0, \infty[\rightarrow] 0, \infty[$ be such that

$$
\bar{\alpha} \eta(t) \leq t \eta^{\prime}(t) \leq \bar{\beta} \eta(t) \quad \forall t>0
$$

for some $\bar{\alpha}, \bar{\beta} \in] 0,1[$ and let

$$
A^{-1}(t)=t^{1 / q^{*}} \eta\left(t^{1 / p^{*}-1 / q^{*}}\right) \quad, \quad B^{-1}(t)=t^{1 / q} \eta\left(t^{1 / p-1 / q}\right)
$$

Then the operator

$$
T: L_{A}(\Omega) \rightarrow L_{B}(\Omega)
$$

is a continuous linear operator with norm $\|T\|_{A, B} \leq \max \left(\|T\|_{p^{*}, p},\|T\|_{q^{*}, q}\right)$.
Next lemmas are parts of the proof of the main theorem of [4].

Lemma 2.4 ([4])

If $u \in W_{l o c}^{1,1}\left(\mathbb{R}^{n}\right)$ is a very weak solution of (1.1) such that $|\nabla u| \in L_{F_{r}}\left(\mathbb{R}^{n}\right)$ with $r_{0}<r<p$, and if u^{k} is the truncation of u at levels k and $-k, u_{\rho}^{k}=u^{k} \phi_{\rho}$ where ϕ_{ρ} are cut-off, $\lambda_{\rho}=c \rho^{-n} \int_{B_{2 \rho}}\left|\nabla u_{\rho}^{k}(y)\right| d y$, and

$$
E\left(\lambda_{\rho}\right)=\left\{x \in \mathbb{R}^{n}: M\left(\left|\nabla u_{\rho}^{k}(x)\right|\right) \leq \lambda_{\rho}\right\}
$$

then we have $\lim _{\rho \rightarrow \infty} \lambda_{\rho}=0$ and $\chi_{E\left(\lambda_{\rho}\right) \longrightarrow 0}$ a.e. in \mathbb{R}^{n}.

Lemma 2.5 ([4])
If $u \in W_{l o c}^{1,1}\left(\mathbb{R}^{n}\right)$ is a very weak solution of (1.1) such that $|\nabla u| \in L_{F_{r}}\left(\mathbb{R}^{n}\right)$ with $r_{0}<r<p$, then if $\delta=p-r>0$ the following inequality holds

$$
\begin{gather*}
\frac{1}{\delta} \int_{B_{4 \rho} \backslash E\left(\lambda_{\rho_{h}}\right)} a F^{\prime}(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla u_{\rho}^{k}\left(M\left(\left|\nabla u_{\rho}^{k}\right|\right)\right)^{-\delta} d x \tag{2.1}\\
\quad+\frac{\lambda_{\rho}^{-\delta}}{\delta} \int_{E\left(\lambda_{\rho_{h}}\right)} a F^{\prime}(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla u_{\rho}^{k} d x \\
\leq \frac{c}{1-\delta} \int_{B_{4 \rho}} a F^{\prime}(|\nabla u|)\left(M\left(\left|\nabla u_{\rho}^{k}\right|\right)\right)^{1-\delta} d x
\end{gather*}
$$

3. Proof of Theorem 1.1

We will proceed as follows: first we prove it suffices to show that there exists $r_{0}<p$ such that for every $k>0, r_{0}<r<p$ there exists a sequence $\left(\rho_{h}\right)_{h \in \mathbb{N}}$ such that

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \frac{\left\|u^{k}\right\|_{L_{F_{r}\left(\Omega_{\rho_{h}}\right)}}}{\rho_{h}}=0 \tag{3.1}
\end{equation*}
$$

where u^{k} for $k>0$ is defined by

$$
u^{k}(x)=\left\{\begin{array}{lll}
u & \text { if } & |u(x)| \leq k \\
k & \text { if } & u(x) \geq k \\
-k & \text { if } & u(x) \leq-k
\end{array}\right.
$$

and $\Omega_{\rho}=B_{2 \rho}-B_{\rho} \quad \forall \rho>0$.
Then we will prove (3.1) by considering the following three cases:
Case 1: $\quad \liminf _{t \rightarrow 0} \frac{t F^{\prime}(t)}{F(t)}>n$.
Case 2: $\quad \limsup _{t \rightarrow 0} \frac{t F^{\prime}(t)}{F(t)} \leq n \quad$ and $\quad \limsup _{t \rightarrow \infty} \frac{t F^{\prime}(t)}{F(t)} \leq n$.
Case 3: $\quad \limsup _{t \rightarrow 0} \frac{t F^{\prime}(t)}{F(t)} \leq n \quad$ and $\quad \limsup _{t \rightarrow \infty} \frac{t F^{\prime}(t)}{F(t)}>n$.

To show that (3.1) is sufficient to prove Theorem 1.1, we begin by noticing that

$$
\begin{gathered}
\left\|\nabla u_{\rho}^{k}-\nabla u^{k}\right\|_{L_{F_{r}}\left(\mathbb{R}^{n}\right)}=\left\|\left(\nabla u^{k}\right)\left(\phi_{\rho}-1\right)+u^{k} \nabla \phi_{\rho}\right\|_{L_{F_{r}}\left(\mathbb{R}^{n}\right)} \\
\leq\left\|\left(\nabla u^{k}\right)\left(\phi_{\rho}-1\right)\right\|_{L_{F_{r}}\left(\mathbb{R}^{n}\right)}+\left\|u^{k} \nabla \phi_{\rho}\right\|_{L_{F_{r}}\left(\mathbb{R}^{n}\right)} .
\end{gathered}
$$

The first term on the right hand side goes to 0 as $\rho \rightarrow \infty$ because of the Lebesgue Dominated Convergence Theorem and

$$
\left\|u^{k} \nabla \phi_{\rho}\right\|_{L_{F_{r}}\left(\mathbb{R}^{n}\right)} \leq \frac{\left\|u^{k}\right\|_{L_{F_{r}\left(\Omega_{\rho}\right)}}}{\rho}
$$

By using (3.1) we get that there exists a sequence $\left(\rho_{h}\right)_{h \in \mathbb{N}}$ such that $\nabla u_{\rho_{h}}^{k} \rightarrow \nabla u^{k}$ in $L_{F_{r}}\left(\mathbb{R}^{n}\right)$. Now let us pass to the limit in the second term on the left hand side of (2.1). We will call $H(x)$ a function in $L_{F_{r}}\left(\mathbb{R}^{n}\right)$ that majorizes a subsequence of $\nabla u_{\rho_{h}}^{k}$ and we will denote, for simplicity of notations, by ρ_{h} again, the relative subsequence of indices. We have

$$
\begin{aligned}
& \left|\int_{E\left(\lambda_{\rho_{h}}\right)} a F^{\prime}(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla u_{\rho_{h}}^{k}\left(M\left(\left|\nabla u_{\rho_{h}}^{k}\right|\right)\right)^{-\delta} d x\right| \\
& \quad=\left|\int_{E\left(\lambda_{\rho_{h}}\right) \cap \Omega_{\rho_{h}}} a F^{\prime}(|\nabla u|) \frac{\nabla u}{|\nabla u|} \nabla u_{\rho_{h}}^{k}\left(M\left(\left|\nabla u_{\rho_{h}}^{k}\right|\right)\right)^{-\delta} d x\right| \\
& \quad \leq \int_{\Omega_{\rho_{h}}} a F^{\prime}(|\nabla u|)\left(M\left(\left|\nabla u_{\rho_{h}}^{k}\right|\right)\right)^{1-\delta} d x \\
& \quad \leq \int_{\Omega_{\rho_{h}}} a F^{\prime}(|\nabla u|)(M(H))^{1-\delta} d x \rightarrow 0
\end{aligned}
$$

because the last integrand is in $L_{1}\left(\mathbb{R}^{n}\right)$ by virtue of Lemma 2.3 of [4].
At this point we can conclude the proof by using Lemma 2.4 exactly as in [4], one has only to remember that the δ in Step 4 has to be chosen also such that $0<\delta<p-r_{0}$.

Now we prove (3.1).
Case 1: $\quad \liminf _{t \rightarrow 0} \frac{t F^{\prime}(t)}{F(t)}>n$.
Since

$$
\frac{t F_{r}^{\prime}(t)}{F_{r}(t)}=\frac{t F^{\prime}(t)}{F(t)}-(p-r)
$$

let $1<r_{0}<p$ be such that for every $r_{0}<r<p$

$$
\liminf _{t \rightarrow 0} \frac{t F_{r}^{\prime}(t)}{F_{r}(t)}>n
$$

and let $\left(t_{h}\right)_{h \in \mathbb{N}}$ any decreasing sequence such that $t_{h} \rightarrow 0$, and therefore, by Remark 2.1, such that

$$
\lim _{h \rightarrow \infty} \frac{F_{r}\left(t_{h}\right)}{t_{h}^{n}}=0
$$

Set $c_{n}=\left[\left(2^{n}-1\right) \omega_{n}\right]^{-1}$ where ω_{n} denotes the measure of the unit ball in \mathbb{R}^{n}, and

$$
\rho_{h}=\left(\frac{c_{n}}{F_{r}\left(t_{h}\right)}\right)^{1 / n}
$$

We have

$$
\frac{\left\|u^{k}\right\|_{L_{F_{r}\left(\Omega_{\rho_{h}}\right)}}}{\rho_{h}} \leq \frac{k\|1\|_{L_{F_{r}\left(\Omega_{\rho_{h}}\right)}}}{\rho_{h}}=\frac{k}{\rho_{h} F_{r}^{-1}\left(c_{n} \rho_{h}^{-n}\right)}=k\left(\frac{F_{r}\left(t_{h}\right)}{c_{n}}\right)^{1 / n} \frac{1}{t_{h}} \rightarrow 0
$$

as $h \rightarrow \infty$ and therefore in this case the proof is complete.
Case 2: $\quad \limsup _{t \rightarrow 0} \frac{t F^{\prime}(t)}{F(t)} \leq n$ and $\limsup _{t \rightarrow \infty} \frac{t F^{\prime}(t)}{F(t)} \leq n$.
Since the inverse $I(F)$ of the upper Boyd index of F is such that (see [5])

$$
I(F) \leq \max \left\{\limsup _{t \rightarrow 0} \frac{t F^{\prime}(t)}{F(t)}, \limsup _{t \rightarrow \infty} \frac{t F^{\prime}(t)}{F(t)}\right\}
$$

we have $I(F) \leq n$ and therefore (see [5]) $I\left(F_{r}\right) \leq n-(p-r)<n$, so we may assume, eventually considering a function equivalent to F_{r}, that

$$
\begin{equation*}
p_{r} F_{r}(t) \leq t F_{r}^{\prime}(t) \leq q_{r} F_{r}(t) \quad \forall t \geq 0 \tag{3.2}
\end{equation*}
$$

for some $1<p_{r}, q_{r}<n$. Just to simplify the notations, let us drop the index r in all the symbols of (3.2), until the end of the proof of this case: no confusion arise, because we never need to consider the function F.

The proof of (3.1) easily follows from the following inequality

$$
\begin{equation*}
\|v\|_{L_{F}\left(\Omega_{\rho}\right)} \leq c(n) \rho\|v\|_{L_{F_{*}}\left(\Omega_{\rho}\right)} \quad \forall v \in L_{F_{*}\left(\mathbb{R}^{n}\right)}, \quad \forall \rho>0 \tag{3.3}
\end{equation*}
$$

where F^{*} is the Sobolev-conjugate function of F, in fact, after (3.3), we have

$$
0 \leq \lim _{\rho \rightarrow \infty} \frac{\left\|u^{k}\right\|_{L_{F_{r}\left(\Omega_{\rho}\right)}}}{\rho_{h}} \leq c(n) \lim _{\rho \rightarrow \infty}\left\|u^{k}\right\|_{L_{F_{*}}\left(\Omega_{\rho}\right)}=0
$$

because we may assume, without loss of generality, that $u^{k} \in L_{F_{*}\left(\mathbb{R}^{n}\right)}$ by virtue of Theorem 2.2.

In the case of powers, i.e. $F(t)=t^{r}$ with $\left.r \in\right] 1, n[$, inequality (3.3) follows from Hölder inequality:

$$
\begin{equation*}
\|v\|_{L_{r}\left(\Omega_{\rho}\right)} \leq\|v\|_{L_{r^{*}}\left(\Omega_{\rho}\right)}\left|\Omega_{\rho}\right|^{\left(1-r / r^{*}\right) 1 / r}=c(n) \rho\|v\|_{L_{r^{*}}\left(\Omega_{\rho}\right)} \tag{3.4}
\end{equation*}
$$

where $c(n)=\left[\left(2^{n}-1\right) \omega_{n}\right]^{1 / n}$ and $r^{*}=\frac{n r}{n-r}$ is the Sobolev-conjugate exponent of r.

If F is not a power, we will proceed by the following interpolation argument. By (3.2) we have

$$
\frac{1}{q} F^{-1}(t) \leq t\left(F^{-1}(t)\right)^{\prime} \leq \frac{1}{p} F^{-1}(t) \quad \forall t>0
$$

with $\frac{1}{n}<\frac{1}{q} \leq \frac{1}{p}<1$. Therefore F^{-1} may be written as follows

$$
F^{-1}(t)=t^{1 / q_{1}} \eta\left(t^{1 / p_{1}-1 / q_{1}}\right) \quad \forall t \geq 0
$$

with η as in Theorem 2.3 and $\frac{1}{n}<\frac{1}{q_{1}}<\frac{1}{q} \leq \frac{1}{p}<\frac{1}{p_{1}}<1$. Let p_{1}^{*}, q_{1}^{*} be the Sobolevconjugate exponents of p_{1}, q_{1} and let T be the identity operator. We can apply Theorem 2.3 with $\Omega=\Omega_{\rho}$ because (3.4) shows that

$$
\|T\|_{p_{1}^{*}, p_{1}} \leq c(n) \rho, \quad\|T\|_{q_{1}^{*}, q_{1}} \leq c(n) \rho
$$

Then we have

$$
\|v\|_{L_{B}\left(\Omega_{\rho}\right)} \leq c(n) \rho\|v\|_{L_{A}\left(\Omega_{\rho}\right)}
$$

with $B(t)=F(t)$ and $A(t)$ given by

$$
A^{-1}(t)=t^{1 / q_{1}^{*}} \eta\left(t^{1 / p_{1}^{*}-1 / q_{1}^{*}}\right) \quad \forall t \geq 0
$$

But $L_{A}\left(\Omega_{\rho}\right)=L_{F_{*}}\left(\Omega_{\rho}\right)$ because the function A^{-1} is equivalent to F_{*}^{-1}, in fact

$$
\begin{aligned}
F_{*}^{-1}(t) & =\int_{0}^{t} \frac{F^{-1}(\tau)}{\tau^{1+1 / n}} d \tau=\int_{0}^{t} \frac{\tau^{1 / q_{1}} \eta\left(\tau^{1 / p_{1}-1 / q_{1}}\right)}{\tau^{1+1 / n}} d \tau \\
& =\int_{0}^{t} \frac{\tau^{1 / q_{1}^{*}} \eta\left(\tau^{1 / p_{1}^{*}-1 / q_{1}^{*}}\right)}{\tau} d \tau=\int_{0}^{t} \frac{A^{-1}(\tau)}{\tau} d \tau
\end{aligned}
$$

Therefore we obtain (3.3) and Theorem 1.1 is proved also in this case.
Case 3: $\quad \limsup \frac{t F^{\prime}(t)}{F(t)} \leq n$ and $\limsup _{t \rightarrow \infty} \frac{t F^{\prime}(t)}{F(t)}>n$.
Roughly speaking, this case will be treated by noticing that the behavior of F_{r} on big values of t does not influence substantially the norm of u^{k} in $L_{F_{r}}\left(\Omega_{\rho}\right)$, and therefore this case can be reduced to the previous one. Now let us see the proof in details.

Since

$$
\frac{t F_{r}^{\prime}(t)}{F_{r}(t)}=\frac{t F^{\prime}(t)}{F(t)}-(p-r)
$$

let $1<r_{0}<p$ be such that for every $r_{0}<r<p$

$$
\limsup _{t \rightarrow 0} \frac{t F_{r}^{\prime}(t)}{F_{r}(t)}<n \quad \text { and } \quad \limsup _{t \rightarrow \infty} \frac{t F_{r}^{\prime}(t)}{F_{r}(t)}>n
$$

and let $\bar{t}>0$ be such that

$$
r F_{r}(t) \leq t F_{r}^{\prime}(t) \leq \bar{q} F_{r}(t) \quad \forall t \in[0, \bar{t}]
$$

for some $r<\bar{q}<n$. Define

$$
G(t)= \begin{cases}F_{r}(t) & \text { if } t \in[0, \bar{t}] \\ \frac{F_{r}(\bar{t})}{\bar{t}^{r}} t^{r} & \text { if } t \in] \bar{t}, \infty[\end{cases}
$$

so that G is convex, increasing and such that

$$
\begin{equation*}
G(t) \leq F_{r}(t) \quad \forall t \geq 0 \tag{3.5}
\end{equation*}
$$

and

$$
1<r \leq \frac{t G^{\prime}(t)}{G(t)} \leq \bar{q}<n \quad \forall t>0
$$

We may assume that

$$
\limsup _{\rho \rightarrow \infty}\left\|u^{k}\right\|_{L_{F_{r}}\left(\Omega_{\rho}\right)}>0
$$

otherwise the proof is trivial, and therefore there exists $\left(\rho_{h}\right)_{h \in \mathbb{N}}$ such that

$$
\left\|u^{k}\right\|_{L_{F_{r}}\left(\Omega_{\rho_{h}}\right)}>\bar{\epsilon} \quad \forall h \in \mathbb{N}
$$

for some $0<\bar{\epsilon}<\frac{k}{\bar{t}}$. By (3.5) we have

$$
G(t) \leq F_{r}(t) \leq G(t) \frac{F_{r}\left(\frac{k}{\bar{\epsilon}}\right)}{G(\bar{t})} \quad \forall t \in\left[0, \frac{k}{\bar{\epsilon}}\right]
$$

and therefore

$$
\begin{aligned}
\left\|u^{k}\right\|_{L_{F_{r}}\left(\Omega_{\rho_{h}}\right)} & =\inf \left\{\lambda>0: \int_{\Omega_{\rho_{h}}} F_{r}\left(\frac{u^{k}}{\lambda}\right) d x \leq 1\right\} \\
& =\inf \left\{\lambda>\bar{\epsilon}: \int_{\Omega_{\rho_{h}}} F_{r}\left(\frac{u^{k}}{\lambda}\right) d x \leq 1\right\} \leq c(\bar{t}, k, \bar{\epsilon})\left\|u^{k}\right\|_{L_{G}\left(\Omega_{\rho_{h}}\right)}
\end{aligned}
$$

from which, by the Case 2 applied to G, we have the assertion. \square

References

1. A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J. 45(1) (1996), 39-65.
2. A. Dolcini, A uniqueness result for very weak solutions of p-harmonic type equations, Boll. Un. Mat. Ital. 7(10-A) (1996), 71-84.
3. T.K. Donaldson and N.S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971), 52-75.
4. A. Fiorenza, On very weak entire solutions of nonlinear partial differential equations, Preprint del Dipartimento di Matematica e Appl. Univ. Napoli, 38 (1995).
5. A. Fiorenza and M. Krbec, Indices of Orlicz Spaces and some applications, Preprint Math. Institute of the Czech Academy os Sciences, Prag, 115 (1996).
6. A. Gustavsson and M. Peetre, Interpolation of Orlicz Spaces, Studia Math. 60 (1977), 33-59.
7. T. Iwaniec, Projections onto gradient fields and L^{p}-estimates for degenerated elliptic operators, Studia Math. 75 (1983), 293-312.
8. T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew Math. 454 (1994), 143-161.
9. J. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations 18 (9-10) (1993), 1515-1537.
10. C. Sbordone, Maximal Inequalities and Applications to Regularity Problems in the Calculus of Variations, Calculus of Variations, applications and computations, Pot-á-Mousson 1994, C. Bandle et al (Editors), Pitman Research Notes in Math. Series 326 (1995), 230-234.
11. L. Schwartz, Théorie des distributions. Tome II, Publications de l'Institut de Mathématique de l'Université de Strasbourg, 10 Hermann, Paris 1957.

[^0]: * This work has been performed as a part of a National Research Project supported by M.U.R.S.T.

