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Abstract

Let us consider the variational equation in R
n

div

(
a(x)F ′(| ∇u |) ∇u

| ∇u |

)
= 0

where 0 < λ0 ≤ a(x) ≤ Λ0 < ∞ and F is a convex increasing function
verifying suitable conditions. We prove that the very weak solutions of such
equation, whose gradient belongs to a suitable Orlicz space, must be constant
almost everywhere. The result applies, in particular, to the case in which F is
the power F (t) = tp (p > 1), i.e. to the variational equation in R

n

div
(
a(x)| ∇u |p−2∇u

)
= 0.

1. Introduction

Throughout the paper we will denote by F = F (t) a convex differentiable increasing
function on [0,∞[ such that pF (t) ≤ tF ′(t) ≤ qF (t) ∀t ≥ 0 where 1 < p ≤ q < ∞,
and such that lim inft→0

tF ′(t)
F (t) > n or lim supt→∞

tF ′(t)
F (t) ≤ n. Let us consider the

very weak solutions of the variational equation in R
n

(1.1) div

(
a(x)F ′(| ∇u |) ∇u

| ∇u |

)
= 0,
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where a(x) is a measurable function such that 0 < λ0 ≤ a(x) ≤ Λ0 < ∞, i.e.
(see Iwaniec-Sbordone [8]) the functions u ∈ W 1,1

loc (Rn), | ∇u |∈ LFr (R
n), Fr(t) =

F (t)tr−p, max{1, p− 1} ≤ r < p, such that∫
Rn

a(x)F ′(| ∇u |) ∇u

| ∇u |∇φ = 0, ∀φ ∈ W 1,∞(Rn) with compact support.

The definition of very weak solution is best visualized when F is the power
F (t) = tp (p > 1). In this case the equation (1.1) reduces to the variational equation
in R

n

(1.2) div
(
a(x)| ∇u |p−2∇u

)
= 0,

and any weak solution u ∈ W 1,p
loc (Rn) of (1.2) must satisfy the identity

(1.3)
∫

Rn

a(x)| ∇u |p−2∇u∇φ = 0, ∀φ ∈ W 1,∞(Rn) with compact support.

In order to give meaning to the integral in (1.3), the assumption u ∈ W 1,p
loc (Rn) is

not necessary. Actually, it will be sufficient to assume

(1.4) u ∈ W 1,r
loc (Rn), max{1, p− 1} ≤ r < p.

Any function u verifying (1.4) is called a very weak solution (see [10]) of equation
(1.2) if (1.3) holds for any φ ∈ W 1,∞(Rn) with compact support.

The aim of this paper is to prove the following Liouville-type theorem.

Theorem 1.1

There exists r0 < p such that, if u is a very weak solution of (1.1) such that

| ∇u |∈ LFr
(Rn), with r0 < r < p, then u is constant.

If F is such that lim inft→0
tF ′(t)
F (t) > n or lim supt→∞

tF ′(t)
F (t) ≤ n, then from

Theorem 1.1 we can deduce, in particular, the main results of [4], [2] in which, under
a further assumption of integrability on u, it is proved that u must be zero a.e. The
proof of Theorem 1.1 will be deduced by using the same technique (introduced by
Lewis in [9]) as in [4], without any integrability assumption on u.

We remark that the Liouville theorem for weak solutions of the p-harmonic
equation is well-known (see [7], for instance, in which also nonhomogeneous equa-
tions are considered).



A Liouville-type theorem for very weak solutions 515

2. Notations and preliminary results

We begin with the following

Remark 2.1. If

lim inf
t→0

tF ′(t)
F (t)

> n, then lim
t→0

F (t)
tn

= 0.

The statement follows by noticing that for small ε > 0 the function F (t)
tn+ε has

first derivative positive near zero, and therefore has a finite limit when t → 0.
Next theorem is well known in the theory of Sobolev spaces. We will use the

following version, which is a generalization in the context of the Orlicz-Sobolev
spaces theory.

Theorem 2.2 ([11], [3])

If pF (t) ≤ tF ′(t) ≤ qF (t), ∀t ≥ 0 with 1 < p ≤ q < n, and if u ∈ W 1,1
loc (Rn)

is such that | Du |∈ LF (Rn), then there exists a constant c ∈ R such that u − c ∈
LF∗(R

n), where F∗ is the Sobolev conjugate function of F defined by

F−1
∗ (t) =

∫ t

0

F−1(τ)
τ1+1/n

dτ ∀t ≥ 0.

Let us remark that, more generally, Theorem 2.2 is true under the assumption
1 < i(F ) ≤ I(F ) < n, where i(F ), I(F ) are the reciprocal of the Boyd indices of
F : this fact can be deduced by using some relations between the Simonenko indices
and the Boyd indices (see [5]).

Let us note also that functions u verifying the assumptions of Theorem 2.2
are such that Mu is almost everywhere finite, where M is the Hardy-Littlewood
maximal operator defined by

Mu(y) = sup
Q�y

∫
−
Q

u(x)dx

where the supremum is taken over all cubes Q in R
n containing y. The proof of

Theorem 2.2 may be carried out by using the Riesz potential in a standard way. It
is easy to realize also that

c = lim
ρ→∞

∫
−
Bρ(y)

u(x)dx ∀y ∈ R
n
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where Bρ(y) = {x ∈ R
n :| y− x |< ρ}. We observe also that by using results proved

in [1] about Riesz potentials, if∫ ∞

0

F̃ (t)
t1+n/n−1

dt < ∞

where F̃ denotes the conjugate function of F , and if u ∈ W 1,1
loc (Rn) is such that

| Du |∈ LF (Rn), then u is bounded. This result is proved in [1] for functions
belonging to the Orlicz-Sobolev space W 1LF (Rn).

Next theorem, due to Gustavsson-Peetre ([6]), is from Interpolation theory, and
is a particular case of the original statement.

Theorem 2.3

Let p∗, p, q∗, q ∈]1,∞[ and let T be a continuous linear operator

T : Lp∗(Ω) → Lp(Ω)

T : Lq∗(Ω) → Lq(Ω)

respectively with norm ‖T‖p∗,p, ‖T‖q∗,q, where Ω is a bounded open set in R
n.

Let η :]0,∞[→]0,∞[ be such that

ᾱη(t) ≤ tη′(t) ≤ β̄η(t) ∀t > 0

for some ᾱ, β̄ ∈]0, 1[ and let

A−1(t) = t1/q
∗
η

(
t1/p

∗−1/q∗
)

, B−1(t) = t1/qη
(
t1/p−1/q

)
.

Then the operator

T : LA(Ω) → LB(Ω)

is a continuous linear operator with norm ‖T‖A,B ≤ max(‖T‖p∗,p, ‖T‖q∗,q).

Next lemmas are parts of the proof of the main theorem of [4].

Lemma 2.4 ([4])

If u ∈ W 1,1
loc (Rn) is a very weak solution of (1.1) such that | ∇u |∈ LFr

(Rn) with

r0 < r < p, and if uk is the truncation of u at levels k and −k, uk
ρ = ukφρ where φρ

are cut-off, λρ = cρ−n
∫
B2ρ

| ∇uk
ρ(y) | dy, and

E(λρ) = {x ∈ R
n : M(| ∇uk

ρ(x) |) ≤ λρ},

then we have limρ→∞ λρ = 0 and χE(λρ)−→0 a.e. in R
n.
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Lemma 2.5 ([4])

If u ∈ W 1,1
loc (Rn) is a very weak solution of (1.1) such that | ∇u |∈ LFr (R

n) with

r0 < r < p, then if δ = p− r > 0 the following inequality holds

(2.1)
1
δ

∫
B4ρ\E(λρh

)

aF ′(| ∇u |) ∇u

| ∇u |∇uk
ρ(M(| ∇uk

ρ |))−δdx

+
λ−δ
ρ

δ

∫
E(λρh

)

aF ′(| ∇u |) ∇u

| ∇u |∇uk
ρdx

≤ c

1 − δ

∫
B4ρ

aF ′(| ∇u |)(M(| ∇uk
ρ |))1−δdx.

3. Proof of Theorem 1.1

We will proceed as follows: first we prove it suffices to show that there exists r0 < p

such that for every k > 0, r0 < r < p there exists a sequence (ρh)h∈N such that

(3.1) lim
h→∞

‖uk‖LFr(Ωρh
)

ρh
= 0

where uk for k > 0 is defined by

uk(x) =




u if | u(x) |≤ k
k if u(x) ≥ k
−k if u(x) ≤ −k

and Ωρ = B2ρ −Bρ ∀ρ > 0.
Then we will prove (3.1) by considering the following three cases:

Case 1: lim inf
t→0

tF ′(t)
F (t)

> n.

Case 2: lim sup
t→0

tF ′(t)
F (t)

≤ n and lim sup
t→∞

tF ′(t)
F (t)

≤ n.

Case 3: lim sup
t→0

tF ′(t)
F (t)

≤ n and lim sup
t→∞

tF ′(t)
F (t)

> n.
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To show that (3.1) is sufficient to prove Theorem 1.1, we begin by noticing that

‖∇uk
ρ −∇uk‖LFr (Rn) = ‖(∇uk)(φρ − 1) + uk∇φρ‖LFr (Rn)

≤ ‖(∇uk)(φρ − 1)‖LFr (Rn) + ‖uk∇φρ‖LFr (Rn).

The first term on the right hand side goes to 0 as ρ → ∞ because of the Lebesgue
Dominated Convergence Theorem and

‖uk∇φρ‖LFr (Rn) ≤
‖uk‖LFr(Ωρ)

ρ
.

By using (3.1) we get that there exists a sequence (ρh)h∈N such that ∇uk
ρh

→ ∇uk

in LFr (R
n). Now let us pass to the limit in the second term on the left hand side of

(2.1). We will call H(x) a function in LFr
(Rn) that majorizes a subsequence of ∇uk

ρh

and we will denote, for simplicity of notations, by ρh again, the relative subsequence
of indices. We have

∣∣∣ ∫
E(λρh

)

aF ′(| ∇u |) ∇u

| ∇u |∇uk
ρh

(
M(| ∇uk

ρh
|)

)−δ
dx

∣∣∣
=

∣∣∣ ∫
E(λρh

)∩Ωρh

aF ′(| ∇u |) ∇u

| ∇u |∇uk
ρh

(
M(| ∇uk

ρh
|)

)−δ
dx

∣∣∣
≤

∫
Ωρh

aF ′(| ∇u |)
(
M(| ∇uk

ρh
|)

)1−δ
dx

≤
∫

Ωρh

aF ′(| ∇u |)
(
M(H)

)1−δ
dx → 0

because the last integrand is in L1(Rn) by virtue of Lemma 2.3 of [4].
At this point we can conclude the proof by using Lemma 2.4 exactly as in [4],

one has only to remember that the δ in Step 4 has to be chosen also such that
0 < δ < p− r0.

Now we prove (3.1).

Case 1: lim inf
t→0

tF ′(t)
F (t)

> n.

Since
tF ′

r(t)
Fr(t)

=
tF ′(t)
F (t)

− (p− r),
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let 1 < r0 < p be such that for every r0 < r < p

lim inf
t→0

tF ′
r(t)

Fr(t)
> n

and let (th)h∈N any decreasing sequence such that th → 0, and therefore, by Re-
mark 2.1, such that

lim
h→∞

Fr(th)
tnh

= 0 .

Set cn = [(2n − 1)ωn]−1 where ωn denotes the measure of the unit ball in R
n, and

ρh =
(

cn
Fr(th)

)1/n

.

We have

‖uk‖LFr(Ωρh
)

ρh
≤

k‖1‖LFr(Ωρh
)

ρh
=

k

ρhF
−1
r (cnρ−n

h )
= k

(
Fr(th)
cn

)1/n 1
th

→ 0

as h → ∞ and therefore in this case the proof is complete.

Case 2: lim sup
t→0

tF ′(t)
F (t)

≤ n and lim sup
t→∞

tF ′(t)
F (t)

≤ n.

Since the inverse I(F ) of the upper Boyd index of F is such that (see [5])

I(F ) ≤ max
{

lim sup
t→0

tF ′(t)
F (t)

, lim sup
t→∞

tF ′(t)
F (t)

}
,

we have I(F ) ≤ n and therefore (see [5]) I(Fr) ≤ n−(p−r) < n, so we may assume,
eventually considering a function equivalent to Fr, that

(3.2) prFr(t) ≤ tF ′
r(t) ≤ qrFr(t) ∀t ≥ 0

for some 1 < pr, qr < n. Just to simplify the notations, let us drop the index r in
all the symbols of (3.2), until the end of the proof of this case: no confusion arise,
because we never need to consider the function F .

The proof of (3.1) easily follows from the following inequality

(3.3) ‖v‖LF (Ωρ) ≤ c(n)ρ‖v‖LF∗ (Ωρ) ∀v ∈ LF∗(Rn), ∀ρ > 0
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where F ∗ is the Sobolev-conjugate function of F , in fact, after (3.3), we have

0 ≤ lim
ρ→∞

‖uk‖LFr(Ωρ)

ρh
≤ c(n) lim

ρ→∞
‖uk‖LF∗ (Ωρ) = 0

because we may assume, without loss of generality, that uk ∈ LF∗(Rn) by virtue of
Theorem 2.2.

In the case of powers, i.e. F (t) = tr with r ∈]1, n[, inequality (3.3) follows from
Hölder inequality:

(3.4) ‖v‖Lr(Ωρ) ≤ ‖v‖Lr∗ (Ωρ) | Ωρ |(1−r/r∗)1/r= c(n)ρ‖v‖Lr∗ (Ωρ)

where c(n) = [(2n − 1)ωn]1/n and r∗ = nr
n− r is the Sobolev-conjugate exponent

of r.
If F is not a power, we will proceed by the following interpolation argument.

By (3.2) we have

1
q
F−1(t) ≤ t

(
F−1(t)

)′ ≤ 1
p
F−1(t) ∀t > 0,

with 1
n < 1

q ≤ 1
p < 1. Therefore F−1 may be written as follows

F−1(t) = t1/q1η
(
t1/p1−1/q1

)
∀t ≥ 0

with η as in Theorem 2.3 and 1
n < 1

q1
< 1

q ≤ 1
p < 1

p1
< 1. Let p∗1, q

∗
1 be the Sobolev-

conjugate exponents of p1, q1 and let T be the identity operator. We can apply
Theorem 2.3 with Ω = Ωρ because (3.4) shows that

‖T‖p∗
1 ,p1 ≤ c(n)ρ, ‖T‖q∗1 ,q1 ≤ c(n)ρ.

Then we have
‖v‖LB(Ωρ) ≤ c(n)ρ‖v‖LA(Ωρ)

with B(t) = F (t) and A(t) given by

A−1(t) = t1/q
∗
1 η

(
t1/p

∗
1−1/q∗1

)
∀t ≥ 0.

But LA(Ωρ) = LF∗(Ωρ) because the function A−1 is equivalent to F−1
∗ , in fact

F−1
∗ (t) =

∫ t

0

F−1(τ)
τ1+1/n

dτ =
∫ t

0

τ1/q1η
(
τ1/p1−1/q1

)
τ1+1/n

dτ

=
∫ t

0

τ1/q∗1 η
(
τ1/p∗

1−1/q∗1
)

τ
dτ =

∫ t

0

A−1(τ)
τ

dτ.
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Therefore we obtain (3.3) and Theorem 1.1 is proved also in this case.

Case 3: lim sup
t→0

tF ′(t)
F (t)

≤ n and lim sup
t→∞

tF ′(t)
F (t)

> n.

Roughly speaking, this case will be treated by noticing that the behavior of Fr

on big values of t does not influence substantially the norm of uk in LFr (Ωρ), and
therefore this case can be reduced to the previous one. Now let us see the proof in
details.

Since
tF ′

r(t)
Fr(t)

=
tF ′(t)
F (t)

− (p− r),

let 1 < r0 < p be such that for every r0 < r < p

lim sup
t→0

tF ′
r(t)

Fr(t)
< n and lim sup

t→∞

tF ′
r(t)

Fr(t)
> n

and let t̄ > 0 be such that

rFr(t) ≤ tF ′
r(t) ≤ q̄Fr(t) ∀t ∈ [0, t̄ ]

for some r < q̄ < n. Define

G(t) =




Fr(t) if t ∈ [0, t̄ ]

Fr(t̄ )
t̄
r tr if t ∈]t̄,∞[

so that G is convex, increasing and such that

(3.5) G(t) ≤ Fr(t) ∀t ≥ 0

and

1 < r ≤ tG′(t)
G(t)

≤ q̄ < n ∀t > 0.

We may assume that
lim sup
ρ→∞

‖uk‖LFr (Ωρ) > 0,

otherwise the proof is trivial, and therefore there exists (ρh)h∈N such that

‖uk‖LFr (Ωρh
) > ε̄ ∀h ∈ N
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for some 0 < ε̄ < k
t̄
. By (3.5) we have

G(t) ≤ Fr(t) ≤ G(t)
Fr

(
k
ε̄

)
G(t̄ )

∀t ∈
[
0,

k

ε̄

]

and therefore

‖uk‖LFr (Ωρh
) = inf

{
λ > 0 :

∫
Ωρh

Fr

(
uk

λ

)
dx ≤ 1

}

= inf
{
λ > ε̄ :

∫
Ωρh

Fr

(
uk

λ

)
dx ≤ 1

}
≤ c(t̄, k, ε̄)‖uk‖LG(Ωρh

)

from which, by the Case 2 applied to G, we have the assertion. �
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