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Abstract

The talk presented a survey of results most of which have been obtained over the
last several years in collaboration with M. Florencio and P. J. Paúl (Seville). The
results concern the question of barrelledness of locally convex spaces equipped
with suitable Boolean algebras or rings of projections. They are particularly
applicable to various spaces of measurable vector valued functions. Some of the
results are provided with proofs that are much simpler than the original ones.

I. Introduction

If E and F are (Hausdorff) locally convex spaces, T ⊂ L(E,F ) and

(eqc) = T is equicontinuous
(sb) = T is strongly bounded, i.e., (uniformly) bounded on bounded subsets of E
(pb) = T is pointwise bounded

then
(eqc) =⇒ (sb) =⇒ (pb) .

A locally convex space E is

1. quasi-barrelled if (sb) =⇒ (eqc)
2. Banach-Mackey if (pb) =⇒ (sb)
3. barrelled if (pb) =⇒ (eqc) (Banach-Steinhaus Property)

holds for all locally convex spaces F and all T ⊂ L(E,F ), or equivalently, for all
T ⊂ E′.
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In connection with 2. recall the Banach-Mackey Theorem: Sequentially complete
locally convex spaces are Banach-Mackey. Trivially,

barrelled = quasi-barrelled + Banach-Mackey

Also,
E Banach (or Fréchet) =⇒ E Baire =⇒ E barrelled.

Basic Facts. Let E be a locally convex space.

(F1) E metrizable =⇒ E quasi-barrelled.

(F2) M ⊂ E′ is bounded on every null sequence in E =⇒M is strongly bounded.

(F3) E is barrelled iff closed-graph operators from E to Banach spaces are con-

tinuous.

(F4) E is barrelled iff E is quasi-barrelled and E′ is sequentially σ(E′, E)-complete.

Elementary examples of natural non-complete normed barrelled spaces

1. m0 = the subspace in 	∞ consisting of elements x = (ξn) with finite range.

More generally: If R is a ring of subsets of a set S, and m0(S, R) is the space of
R-simple scalar functions on S equipped with the sup norm, then

m0(S, R) is barrelled ⇐⇒ R has the Nikodym Property.

We recall that ‘R has the Nikodym Property’ means that every pointwise
bounded family M of bounded finitely additive scalar measures on R is uniformly
bounded.

That is, if supµ∈M |µ(A)| <∞ for all A ∈ R, then supA∈R supµ∈M |µ(A)| < ∞.

2. (	p, ‖·‖1) for 0 < p < 1, where ‖·‖1 denotes the standard 	1-norm.

More generally: If E is an F-space with total dual E′, then E equipped with its
Mackey topology µ(E,E′) is barrelled. (Recall that µ(E,E′) is the strongest locally
convex topology on E that is weaker than its original topology.)

3. Z(	1) := {x ∈ 	1 : suppx ∈ Z}, where Z denotes the ideal of sets A of
density zero in N, i.e. such that limn n

−1|A ∩ {1, . . . , n}| = 0.

This result (due to Köthe) is easy using (F4) and amounts to verifying that a
scalar sequence (ηn) is bounded provided all its zero-density subsequences (ηn)n∈A

are bounded, which is trivial.
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It is less obvious that also for 1 < p < ∞ the subspace Z(	p) := {x ∈ 	p :
suppx ∈ Z} is barrelled. However, one can verify this easily using (F4) and a result
due to Auerbach (1930): If (ηn) is a scalar sequence and

∑
n∈A |ηn| < ∞ for all

A ∈ Z, then
∑∞

n=1 |ηn| < ∞. (See [9] and [10] for more information.) The question
of whether Z(	∞) is barrelled turned out to be much harder; it has been answered
in the positive in [7], see Theorem 8 below.

Throughout
(S,Σ, µ) is a positive measure space.

II. Barrelledness of Lp(µ,X)(1 ≤ p <∞) and P(µ,X)

Theorems 1 and 2 presented in this section are taken from [3]. The proof of Theo-
rem 1 given below was our original proof of that result; it ‘disappeared’ in the course
of analyzing and extending its ideas that culminated in Theorem 3 of Section III-a
below.

Theorem 1

Let the measure space (S,Σ, µ) be finite and nonatomic. Then, for every normed

space X and 1 ≤ p <∞, the Bochner space E = Lp(µ,X) is barrelled.

Proof. We make use of (F3). Consider a closed-graph linear map T : E → F ,
where F is a Banach space. Observe that for every f ∈ E,

Ef :=
{
ϕf ∈ E : ϕ ∈ L0(µ)

}

is a norm complete subspace of E. (In fact, Ef
∼= Lp(ν), where ν :=

∫
‖f(·)‖p dµ.)

Hence, by the closed graph theorem, T |Ef is continuous. In particular, since the
norm of E is absolutely continuous (that is, lim ‖fχA‖ = 0 as µ(A) → 0), we have

(∗) lim
µ(A)→0

‖T (fχA)‖ = 0, ∀ f ∈ E .

Now we show that every linear map T : E → F satisfying (∗), where now F can be
any normed space, is continuous. If it is not, then there is a sequence (fn) in E with
‖fn‖ → 0 and ‖Tfn‖ unbounded.

Step 1. Choose n1 so that ‖Tfn1‖ > 1. By (∗), there is δ > 0 such that
‖T (fn1χC)‖ < ‖Tfn1‖ − 1 whenever µ(C) < δ. Since µ is atomless, we can write
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S as a finite union of disjoint measurable sets of µ measure < δ. For one of these
sets, say S1, the sequence (‖T (fnχS1)‖) must be unbounded. Set A1 = S \ S1; then,
clearly, ‖T (fn1χA1)‖ > 1.

Step 2. Choose n2 > n1 so that ‖T (fn2χS1)‖ > 2. Proceeding as above, we find a
set S2 ⊂ S1 for which the sequence (‖T (fnχS2)‖) is unbounded, and such that for
A2 = S1 \ S2 we have ‖T (fn2χA2)‖ > 2.

Continuing in this manner, we construct a sequence n1 < n2 < . . . in N and a
disjoint sequence (Ak) in Σ such that, denoting gk = fnk

χAk
, we have ‖Tgk‖ > k for

every k. Now, if we take a subsequence (gkj ) with
∑∞

j=1 ‖gkj‖ < ∞ then, as easily
seen, the pointwise sum g =

∑∞
j=1 gkj will be in E. Since ‖T (gχAkj

)‖ = ‖T (gkj )‖ >
kj → ∞ as j → ∞, we have arrived at a contradiction with (∗). �

The same proof works for the more general spaces L(X), where L = (L, ‖·‖L)
is a solid Banach lattice contained in L0(µ) and having absolutely continuous norm,
and L(X) consists of those f in L0(µ,X) for which ‖f(·)‖ ∈ L, and is equipped with
the norm defined by ‖f‖L(X) = ‖ ‖f(·)‖ ‖L. Somewhat modified, it also yields the
following result.

Theorem 2

Let the measure space (S,Σ, µ) be finite and nonatomic. Then, for every Banach

space X, the space P(µ,X) of all Pettis µ-integrable functions f : S → X (with its

usual norm) is barrelled.

Similar results can be proved for other spaces of weakly measurable functions.

Remark. For µ as above and X of infinite dimension, the space P(µ,X) is never com-
plete (Pettis; Thomas; Janicka and Kalton); nor is it Baire or has Property (K) [11].

III-a. Barrelledness and Boolean algebras of projections

Having proved Theorems 1 and 2, it was tempting to look for a general unified
approach that would cover possibly wide range of spaces of measurable vector func-
tions and would be independent of the type of measurability involved. On analyzing
the arguments and, especially, the role played by the ‘characteristic’ projections
PA(f) = fχA, we arrived in [3] at the idea of (S,Σ, µ)-Boolean algebras of projec-
tions. (Of course, the general concept of Boolean algebras of projections had been
used long since before.)
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An (S,Σ, µ)-Boolean algebra of projections in a topological vector space E is a
map PΣ that assigns to every A ∈ Σ a continuous linear projection PA in E so that

(a) PS = idE ,
PA∩B = PA◦PB ,
PA∪B = PA + PB if A ∩B = ∅.

(b) PA = 0 if µ(A) = 0.

It is said to be countably additive if

(c) for every x ∈ E the vector measure px : Σ → E ; A → PA(x) is countably
additive,

and disjointly K-complete if

(d) whenever (An) is a disjoint sequence in Σ and (xn) is a null sequence in E
such that

PAn
(xn) = xn, n = 1, 2, . . .

then there exist n1 < n2 < . . . in N and x ∈ E with

PAnk
(x) = xnk

, k = 1, 2, . . .

Remarks.

1. In view of (b), condition (c) is equivalent to: limPA(x) = 0 as µ(A) → 0.
2. If PΣ is countably additive, then the requirement in (d) can be expressed as

follows: there exist n1 < n2 . . . for which the series
∑∞

k=1 xnk
converges in E.

3. Let us recall that a space E is said to have Property (K) if every null sequence
(xn) in E has a subsequence (xnk

) for which the series
∑

k xnk
is convergent. Thus

condition (d) can indeed be viewed as a ‘disjoint’ version of Property (K). Other
variants of this property have been considered in [5] for spaces with Schauder type
decompositions.

Obviously, if a space E of (strongly or weakly) measurable vector functions
over a measure space (S,Σ, µ) is such that fχA ∈ E whenever f ∈ E and A ∈ Σ,
then it will be considered with its natural (S,Σ, µ)-Boolean algebra of projection
PΣ = {PA : A ∈ Σ}, where PA(f) := fχA.

Theorem 3

Let the measure space (S,Σ, µ) be finite and nonatomic. Assume that E is

a locally convex space with an equicontinuous and countably additive (S,Σ, µ)-
Boolean algebra of projections PΣ. If PΣ is disjointly K-complete, then E is Banach-

Mackey.
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Sketch of the Proof. Let M ⊂ E′ be pointwise bounded. We have to show that M
is strongly bounded. By (F2) it is enough to show that M is (uniformly) bounded
on null sequences in E. Suppose it is not so. Then there is a null sequence (xn)
in E on which M is not bounded. Using µ-continuity of the scalar measures u◦px
(u ∈ E′, x ∈ E), and proceeding as in the proof of Theorem 1, we find nk ↑ in N,
uk ∈M , and disjoint sets Ak ∈ Σ so that

∣∣〈uk, PAk
(xnk

)〉
∣∣ → ∞ as k → ∞ .

Since PΣ is equicontinuous, yk = PAk
(xnk

) → 0 as k → ∞. Also, PAk
(yk) = yk for

all k. Let y ∈ E be provided by (d) for a suitable subsequence of (yk), still denoted
by (yk).

Clearly, the family of scalar measures {u◦py : u ∈ M} is pointwise bounded on
Σ. Therefore, by the Nikodym theorem, it is uniformly bounded on Σ. In particular,
the sequence 〈uk, py(Ak)〉 = 〈uk, PAk

(xnk
)〉, k = 1, 2, . . ., must be bounded. A

contradiction. �

Remark. The analogy between Property (K) and the disjoint K-completeness is
further supported by the following consequence of a result due to Antosik that has
been noted in [5]: A locally convex space with Property (K) is Banach-Mackey.

It is easy to see that Theorem 3 remains valid for nonatomic σ-finite measures
µ. (Simply replace µ by a finite measure ν having the same null sets.) In fact, by
modifying slightly the proof of Theorem 3 so as to have µ(An) <∞, it is enough to
assume that PΣ is disjointly K-complete in a somewhat weaker sense, viz.,

(d) whenever (An) is a disjoint sequence in Σ of sets of finite µ measure and
(xn) is a null sequence in E such that

PAn(xn) = xn, n = 1, 2, . . .

then there exist n1 < n2 < . . . in N and x ∈ E with

PAnk
(x) = xnk

, k = 1, 2, . . . .

Let us also observe that, by (F2), if every null sequence in a locally convex space E
is contained in a Banach-Mackey subspace of E, then E itself is Banach-Mackey.

In consequence, we quickly arrive at the following extension of Theorem 3 proved
in [6].



Barrelled spaces with Boolean rings of projections 473

Theorem 4

Let the measure space (S,Σ, µ) have no atoms of finite measure. Assume that

E is a locally convex space with an equicontinuous and countably additive (S,Σ, µ)-
Boolean algebra of projections PΣ. If PΣ is disjointly K-complete and

(e) PΣ is σ-finite (relative to µ), that is, for every x ∈ E there is a set B ∈ Σ
of σ-finite µ measure such that PBx = x,

then E is Banach-Mackey.

An even more general result holds in which condition (e) is replaced by the following:

(e′) For every x ∈ E the measure px ‘vanishes at infinity’, that is, for every
neighborhood U of zero in E there exists A ∈ Σ with µ(A) <∞ such that
PS \A(x) ∈ U.

Finally, in quasi-barrelled spaces the assumption that PΣ is equicontinuous can
be omitted (see [3]):

Lemma

Every countably additive (S,Σ, µ)-Boolean algebra of projections in a quasi-

barrelled space is equicontinuous.

Corollary

If the space E in Theorems 3 or 4 (or in Theorem 6 below) is quasi-barrelled,

then it is barrelled.

From this corollary it is easy to deduce both Theorems 1 and 2, as well as
similar results for other spaces of measurable vector functions (see [3] and [6]).

IV. Barrelledness of L∞(µ,X)

It was essential in the proof of Theorem 1 that the norm in Lp(µ,X) was absolutely
continuous and, in the proof of Theorem 3, that the vector measures px were
countably additive. Thus the case of the spaces L∞(µ,X) was covered neither by
Theorem 1 nor Theorem 3. Its treatment required a new idea, and was carried out
in [1].

Theorem 5

Let the measure space (S,Σ, µ) be σ-finite and nonatomic. Then, for every

normed space X, the space E = L∞(µ,X) is barrelled.
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Proof. Without loss of generality we may assume that µ is finite. Let M ⊂ E′ be
pointwise bounded but not norm bounded. Note that if, for some A ∈ Σ, the setM is
not norm bounded on PA(E) = L∞(A,µ,X), and if A = A′∪A′′, where A′, A′′ ∈ Σ,
A′∩A′′ = ∅, then M is not norm bounded on at least one of the subspaces PA′(E) or
PA′′(E). Using this observation with µ(A′) = µ(A′′) = 1

2µ(A), we easily construct a
sequence An ↓ ∅ in Σ such that M is not norm bounded on PAn

(E) = L∞(An, µ,X)
for each n. Thus we can choose un ∈M and fn ∈ L∞(µ,X) with ‖fn‖ = 1 (or even
‖fn‖ → 0) and supp fn ⊂ An so that

∣∣〈un, fn〉∣∣ > n .

Now we may define a continuous linear operator

T : 	1 → L∞(µ,X) by T (an) =
∞∑

n=1

anfn (pointwise sum) .

Then the functionals u◦T , u ∈ M , are pointwise bounded on 	1, hence norm
bounded, by the Banach-Steinhaus theorem. But

∣∣〈un◦T, en〉
∣∣ =

∣∣〈un, fn〉∣∣ > n, ∀n ∈ N ;

a contradiction. �

III-b. Barrelledness and Boolean algebras of projections

As was the case with Theorem 1, an analysis of the proof of Theorem 5 lead to the
following general result [2].

Theorem 6

Let the measure space (S,Σ, µ) be σ-finite and nonatomic. Assume that E is a

locally convex space with an equicontinuous (S,Σ, µ)-Boolean algebra of projections

PΣ such that

(d′) whenever An ↓ ∅ in Σ and (xn) is a null sequence in E with PAn
(xn) = xn,

then there is an operator T : 	1 → E such that Ten = xn.

Then E is Banach-Mackey.



Barrelled spaces with Boolean rings of projections 475

Proof. Follow the ideas of the proof of Theorem 4 modified in the spirit of the proof
of Theorem 3. �

Thus, in consequence, if µ is σ-finite and nonatomic and L = (L, ‖·‖L) is a solid
Banach lattice ⊂ L0(µ), then for every normed space X the space L(X) is barrelled.

Remark. Theorem 6 holds also for an arbitrary measure space (S,Σ, µ) without
atoms of finite measure provided that PΣ is σ-finite. In view of Theorem 7 below,
it is unlikely that this latter assumption could be substantially weakened.

It is also worth noting that Theorem 6 can be applied in all particular cases
where Theorem 4 has been previously used. In general, however, these two results
seem to be incomparable.

V. Barrelledness of 	∞(S,X)

We recall that a set T , or its cardinal number |T |, is said to be (Ulam) measurable
if there exists a countably additive measure µ : P(T ) → {0, 1} such that µ(T ) = 1
and µ({t}) = 0 for all t ∈ T .

The following is a particular case of a result established in [8].

Theorem 7

Let S be a set and X a barrelled normed space. If |S| or |X| is non-measurable,

then the space 	∞(S,X) is barrelled.

Sketch of the Proof. For the case where |S| is non-measurable. Let M be a pointwise
bounded set in the dual of 	∞(S,X), and define a submeasure η : P(S) → R+ by

η(A) = sup
{
|u(f)| : u ∈M, ‖f‖ ≤ 1, supp f ⊂ A

}
.

Suppose M is not norm bounded; in other words, η(S) = ∞. Using the fact that
	∞(S,X) satisfies condition (d′) from Theorem 6, it is shown that

(1) whenever An ↓ A and η(An) = ∞ for all n, then also η(A) = ∞.
Moreover, it is shown that

(2) every disjoint family of sets A with η(A) > 0 is countable.
From (1) and (2) it is deduced that there is a set S′ ⊂ S with η(S′) < ∞ such

that η assumes only the values 0 and ∞ on subsets of S′′ = S\S′. Using (1) it is
then easy to show that there is S0 ⊂ S′′ such that for every A ⊂ S0 one of the
values η(A) and η(S0\A) is 0 and the other is ∞. Appealing to (1) one more time
it is clear that U := {A ⊂ S0 : η(A) = ∞} is an ultrafilter on S0 which is closed
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under countable intersections. Moreover, {s} /∈ U for all s ∈ S0; indeed, since E
is barrelled, η({s}) = 0. It follows that S0 is measurable, and so is S. A contra-
diction. �

VI. Barrelledness of Z(	∞) and similar spaces

In a somewhat different way, Boolean rings of projections entered the scene also in
our extensions of the results mentioned in group 3 of examples in the Introduction.
We first present some results from [7].

Let R be a ring of subsets of a set S. An R-ring of projections in a locally convex
space E is a map PR that assigns to every A ∈ R a continuous linear projection PA

in E so that PA∩B = PA◦PB for all A,B ∈ R, and PA∪B = PA + PB for all disjoint
A,B ∈ R. Given PR, we are interested in the following subspace of E:

R(E) :=
{
x ∈ E : PA(x) = x for some A ∈ R

}
.

Recall that Z denotes the ideal of sets of density zero in N.

Theorem 8

Assume that E is a locally convex space with an equicontinuous ring of projec-

tions PZ. If E is barrelled, so is Z(E). In particular, Z(	∞) is barrelled.

A crucial point in establishing Theorem 8 was proving the following.

Theorem 9

Z has the Nikodym Property.

In fact, a result more general than Theorem 8 was shown to hold.

Theorem 10

Assume that E is a locally convex space with an equicontinuous ring of projec-

tions PR.

(a) If E is quasi-barrelled, so is R(E).
(b) If R has the Nikodym Property and E is Banach-Mackey or barrelled, so is R(E).
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Motivated by the above results, we investigated in [9] conditions assuring that a
ring of sets has the Nikodym Property. In particular, we showed that the Nikodym
Property of Z is an easy consequence of another remarkable property of Z.

Theorem 11

Every finite submeasure η on Z is bounded: sup {η(A) : A ∈ Z} <∞.

In [9], an application of Theorem 11 to results of the type of Theorem 8 was
also indicated.

Theorem 12

For every solid Banach sequence space E, the subspace

Z(E) :=
{
x ∈ E : suppx ∈ Z

}

of E is barrelled.

Proof. Consider a closed-graph linear operator T : Z(E) → F , where F is a Banach
space. Note that, for each A ∈ Z, the subspace

EA :=
{
x ∈ E : suppx ⊂ A

}
⊂ Z(E)

is complete, and TA := T |EA has a closed graph. By the closed graph theorem, TA is
continuous, so τ(A) := ‖TA‖ <∞. Clearly, τ is a submeasure on Z. By Theorem 11,
τ is bounded on Z. Thus, ‖T‖ = supA∈Z τ(A) <∞. By (F3), Z(E) is barrelled. �

The assumption in Theorem 10(b) that R has the Nikodym Property is essential:

Theorem 13

Let R be an ideal of subsets of N such that R(	∞) is barrelled. Then R has the

Nikodym Property.

Proof. In view of [9, Prop. 2.1], it is enough to show that every finitely additive
measure µ : R → R+ is bounded. To this aim, define for every A ∈ R a measure µA

on P(N) by µA(E) = µ(A ∩ E), and let x∗A be the continuous linear functional on
R(	∞) determined by µA. Thus x∗A(x) =

∫
N
x dµA for every x ∈ R(	∞) and, as easily

seen, ‖x∗A‖ = µ(A).
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Now, if x ∈ R(	∞), then B := suppx ∈ R and, for every A ∈ R,

|x∗A(x)| =
∣∣∣∣
∫

N

x dµA

∣∣∣∣ =
∣∣∣∣
∫

N

xχB dµA

∣∣∣∣ =
∣∣∣∣
∫

N

x dµA∩B

∣∣∣∣
≤ µA∩B(N) · ‖x‖∞ ≤ µ(B) ‖x‖∞.

In consequence, the family {x∗A : A ∈ R} is pointwise bounded on R(	∞). Since
R(	∞) is barrelled, it follows that

sup
A∈R

µ(A) = sup
A∈R

‖x∗A‖ <∞,

i.e., µ is bounded. �
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4. L. Drewnowski, M. Florencio and P.J. Paúl, Barrelled function spaces, Progress in Functional
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