Collect. Math. **48**, 4-6 (1997), 449–458 © 1997 Universitat de Barcelona

Dual action of asymptotically isometric copies of $l_p(1 \le p < \infty)$ and c_0

Shutao Chen* and Bor-Luh Lin

Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA

Abstract

P.N. Dowling and C.J. Lennard proved that if a Banach space contains an asymptotically isometric copy of l_1 , then it fails the fixed point property. In this paper, necessary and sufficient conditions for a Banach space to contain an asymptotically isometric copy of $l_p (1 \le p < \infty)$ or c_0 are given by the dual action. In particular, it is shown that a Banach space contains an asymptotically isometric copy of l_1 if its dual space contains an isometric copy of l_{∞} , and if a Banach space contains an asymptotically isometric copy of l_1 if its dual space contains an isometric copy of c_0 , then its dual space contains an asymptotically isometric copy of l_1 .

§1. Preliminaries

A Banach space X is said to have an asymptotically isometric copy of l_1 [2], if for every sequence (ϵ_n) $(0 < \epsilon_n < 1)$ decreasing to 0, there exists a norm-one sequence (x_n) in X such that

$$\sum_{n} (1 - \epsilon_n) |\alpha_n| \le \left\| \sum_{n} \alpha_n x_n \right\|, \qquad (\alpha_n) \in l_1.$$
(1)

P.N. Dowling and C.J. Lennard [2] have shown that if a Banach space contains an asymptotically isometric copy of l_1 , then it fails to have the fixed point property, i.e., there exists a nonexpansive self-mapping on a bounded closed convex subset of X which has no fixed point.

^{*} The work of this author was supported in part by The National Science Foundation of China.

Chen and Lin

A natural question is that: what does the dual space X^* behave if a Banach space X contains an asymptotically isometric copy of l_1 ? The following theorem answers this question.

Theorem 1

A Banach space X contains an asymptotically isometric copy of l_1 if and only if for any sequence $\delta_n \downarrow 0$ ($0 < \delta_n \leq 1$), there exists a subspace X_0 in X such that X_0^* contains a norm-one sequence (x_m^*) satisfying

$$\left\|\sum_{m} \pm (1 - \delta_m) x_m^*\right\|_{X_0^*} \le 1.$$
 (2)

Proof. Necessity. Let $\delta_n \downarrow 0$ $(0 < \delta_n \leq 1)$. By assumption, there exists a sequence (x_n) in S(X), the unit sphere of X, such that

$$\sum_{n} (1 - \delta_n) |\alpha_n| \le \left\| \sum_{n} \alpha_n x_n \right\|, \qquad (\alpha_n) \in l_1.$$
(3)

Let $X_0 = \text{span} \{x_n\}$. For each fixed $m \in \mathbb{N} = \{1, 2, ...\}$ and for any $(\alpha_n) \in l_1$ with $\alpha_m = -1$, by (3),

$$\left\|x_m - \sum_{n \neq m} \alpha_n x_n\right\| = \left\|\sum_{n=1}^{\infty} \alpha_n x_n\right\| \ge \sum_{n=1}^{\infty} (1 - \delta_n) |\alpha_n| \ge 1 - \delta_m.$$

Since for any $x \in X_0$, x has the form $x = \sum_n \alpha_n x_n$, the above inequality in fact implies that $dist(x_m, \text{ span } \{x_n\}_{n \neq m}) \ge 1 - \delta_m$ for all $m \in \mathbb{N}$. Whence by Hahn-Banach Theorem, for each $m \in \mathbb{N}$, there exists $x_m^* \in S(X_0^*)$ such that

$$\langle x_m^*, x_m \rangle \ge 1 - \delta_m \text{ and } \langle x_m^*, x_n \rangle = 0, \ (n \neq m).$$

Therefore, for any $x = \sum_{n} \alpha_n x_n \in X_0$, by (3),

$$\left\langle \sum_{m} \pm (1-\delta_{m})x_{m}^{*}, \sum_{n} \alpha_{n}x_{n} \right\rangle = \sum_{n} \pm (1-\delta_{n})\alpha_{n} < x_{n}^{*}, x_{n} >$$
$$\leq \sum_{n} (1-\delta_{n})|\alpha_{n}| \leq \left\| \sum_{n} \alpha_{n}x_{n} \right\| = \|x\|.$$

This implies that

$$\left\|\sum_{m} \pm (1-\delta_m) x_m^*\right\|_{X_0^*} \le 1.$$

Sufficiency. For any $\epsilon_n \downarrow 0$ $(0 < \epsilon_n < 1)$, let $0 < \delta_m < 1$ satisfy $1 - \epsilon_m = 2(1 - \delta_m)^2 - 1$, $(\delta_m = 1 - \sqrt{1 - \epsilon_m/2})$. By assumption, X has a subspace X_0 such that $S(X_0^*)$ contains a sequence (x_m^*) satisfying (2). For every $m \in \mathbb{N}$, pick $x_m \in S(X_0)$ such that $< x_m^*, x_m >> 1 - \delta_m$. We shall show that (x_n) satisfies (1). For each fixed $n \in \mathbb{N}$, let $\sigma_m = \text{sign} < x_m^*, x_n > (m \in \mathbb{N})$. By (2),

$$\sum_{m \neq n} (1 - \delta_m) | < x_m^*, x_n > | = \sum_{m \neq n} \sigma_m (1 - \delta_m) < x_m^*, x_n >$$
$$= \left\langle \sum_{m=1}^{\infty} \sigma_m (1 - \delta_m) x_m^*, x_n \right\rangle - \sigma_n (1 - \delta_n) < x_n^*, x_n >$$
$$\leq ||x_n|| - (1 - \delta_n)^2 = 1 - (1 - \delta_n)^2 .$$

Whence, for any $(\alpha_n) \in l_1$, if we set $\sigma_m = \operatorname{sign} \alpha_m$, then

$$\left\|\sum_{n} \alpha_{n} x_{n}\right\| \geq \left\langle \sum_{m} \sigma_{m} (1-\delta_{m}) x_{m}^{*}, \sum_{n} \alpha_{n} x_{n} \right\rangle$$
$$= \sum_{n} \left[(1-\delta_{n}) |\alpha_{n}| < x_{n}^{*}, x_{n} > + \sum_{m \neq n} \sigma_{m} (1-\delta_{m}) \alpha_{n} < x_{m}^{*}, x_{n} > \right]$$
$$\geq \sum_{n} \left[(1-\delta_{n})^{2} |\alpha_{n}| - |\alpha_{n}| \sum_{m \neq n} (1-\delta_{m})| < x_{m}^{*}, x_{n} > | \right]$$
$$\geq \sum_{n} \left[(1-\delta_{n})^{2} |\alpha_{n}| - |\alpha_{n}| (1-(1-\delta_{n})^{2}) \right]$$
$$= \sum_{n} (1-\epsilon_{n}) |\alpha_{n}|.$$

Therefore, (1) holds. The proof is completed. \Box

Corollary 2

(i) A Banach space X contains no asymptotically isometric copies of l_1 , if for any infinite dimensional subspace X_0 , there exists a positive integer n and a positive constant δ such that for any $x_1^*, x_2^*, ..., x_n^* \in S(X_0^*)$, there exist $\epsilon_i = \pm 1, i = 1, 2, ..., n$ satisfying

$$\left\| \sum_{i=1}^n \epsilon_i x_i^* \right\|_{X_0^*} \ge 1 + \delta \,.$$

Especially, if for any infinite dimensional subspace X_0 , X_0^* is uniformly non-square (i.e., above condition holds for n = 2), then X contains no asymptotically isometric copies of l_1 .

(ii) A Banach space contains an asymptotically isometric copy of l_1 , if its dual space contains an isometric copy of l_{∞} .

Proof. We only need to show (i) since (ii) follows directly from the proof of Theorem 1.

Pick natural numbers $1 = k_1 < k_2 < k_3 < \dots$ such that $k_{j+1} - k_j \uparrow \infty$ as $j \uparrow \infty$. Define $\delta_m = 1/k_{j+1}$ for $k_j \leq m < k_{j+1}, j = 1, 2, \dots$. If X contains an asymptotically isometric copy of l_1 , then by Theorem 1, for the sequence $\{\delta_m\}$, X has a subspace X_0 such that X_0^* contains a norm-one sequence (x_m^*) satisfying (2). For any $n \in \mathbb{N}$ and $\delta > 0$, pick $t \geq 1$ such that $k_{t+1} - k_t \geq n$ and that $k_{t+1}/(k_{t+1} - 1) < 1 + \delta$.

Observe that $||x \pm y|| \le 1$ implies

$$\|x\| = \left\|\frac{(x+y) + (x-y)}{2}\right\| \le \frac{\|x+y\| + \|x-y\|}{2} \le 1$$

it follows from (2) that

$$1 \ge \left\| \sum_{m=k_t+1}^{k_t+n} \pm (1-\delta_m) x_m^* \right\|_{X_0^*} = \left\| \sum_{m=k_t+1}^{k_t+n} \pm (1-1/k_{t+1}) x_m^* \right\|_{X_0^*}$$

Therefore, by the choice of t,

$$\left\|\sum_{m=k_t+1}^{k_t+n} \pm x_m^*\right\|_{X_0^*} \le \frac{1}{1-1/k_{t+1}} = \frac{k_{t+1}}{k_{t+1}-1} < 1+\delta.$$

This proves (i).

Next, we investigate the dual action of asymptotically isometric copy of c_0 . \Box

DEFINITION 3. We say that a Banach space X contains an asymptotically isometric copy of c_0 , if for any $\delta_n \downarrow 0$ ($0 < \delta_n \leq 1$), X contains a norm-one sequence (x_n) such that

$$\sup_{n} (1 - \delta_n) |\beta_n| \le \left\| \sum_{n} \beta_n x_n \right\| \le \sup_{n} (1 + \delta_n) |\beta_n|, \ (\beta_n) \in c_0.$$
(4)

Theorem 4

A Banach space X contains an asymptotically isometric copy of c_0 if and only if for any $\epsilon_n \downarrow 0$ ($0 < \epsilon_n < 1$), there exists a norm-one shrinking basic sequence (x_n) in X such that the coefficient functionals $\{x_n^*\}$ on $X_0 = \operatorname{span}\{x_n\}$ have the properties that $\|x_n^*\|_{X_0^*} \leq 1 + \epsilon_n$ and

$$\sum_{n} (1 - \epsilon_n) |\alpha_n| \le \left\| \sum_{n} \alpha_n x_n^* \right\|_{X_0^*}, \quad \text{for all} \quad \sum_{n} \alpha_n x_n^* \in X_0^*.$$
(5)

Proof. Sufficiency. For any $\delta_n \downarrow 0 \ (0 < \delta_n \leq 1)$, let $\epsilon_n \downarrow 0 \ (0 < \epsilon_n < 1)$ satisfy

$$(1-\delta_n)(1+\epsilon_n) \le 1 \le (1+\delta_n)(1-\epsilon_n).$$

By assumption, X has a norm-one shrinking basic sequence (x_n) such that the coefficient functionals $\{x_n^*\}$ on $X_0 = \operatorname{span}\{x_n\}$ satisfy (5) and $||x_n^*||_{X_0^*} \leq 1 + \epsilon_n$ for all $n \in \mathbb{N}$. We shall prove that (x_n) satisfies (4).

Since (x_n) is shrinking, $\{x_n^*\}$ is a basis of X_0^* . Whence, for any $x^* \in X_0^*$, x^* has the form $x^* = \sum_n \alpha_n x_n^*$, and (5) indicates that $(\alpha_n) \in l_1$. Therefore, for any $(\beta_n) \in c_0$, by (5) and the choice of (δ_n) ,

$$\left\langle x^*, \sum_n \beta_n x_n \right\rangle = \left\langle \sum_n \alpha_n x_n^*, \sum_n \beta_n x_n \right\rangle = \sum_n \alpha_n \beta_n$$
$$= \sum_n \frac{1}{1 - \epsilon_n} \beta_n (1 - \epsilon_n) \alpha_n \le \sup_n \frac{1}{1 - \epsilon_n} |\beta_n| \sum_n (1 - \epsilon_n) |\alpha_n|$$
$$\le \sup_n (1 + \delta_n) |\beta_n| \left\| \sum_n \alpha_n x_n^* \right\|_{X_0^*} = \sup_n (1 + \delta_n) |\beta_n| \|x^*\|_{X_0^*}.$$

Since $x^* \in X_0^*$ is arbitrary, this inequality implies $\sum_n \beta_n x_n \in X_0$ and

$$\left\|\sum_{n}\beta_{n}x_{n}\right\|\leq\sup_{n}\left(1+\delta_{n}\right)|\beta_{n}|.$$

Next, we prove the other part of (4). For any $m \in \mathbb{N}$, by the choice of (δ_m) and $\|x_m^*\|_{X_0^*} \leq 1 + \epsilon_m$,

$$\left\|\sum_{n} \beta_{n} x_{n}\right\| \geq \left|\left\langle \Sigma_{n} \beta_{n} x_{n}, \frac{x_{m}^{*}}{\|x_{m}^{*}\|_{X_{0}^{*}}}\right\rangle\right| = \frac{|\beta_{m}|}{\|x_{m}^{*}\|_{X_{0}^{*}}} \geq \frac{|\beta_{m}|}{1 + \epsilon_{m}} \geq (1 - \delta_{m})|\beta_{m}|.$$

Since $m \in \mathbb{N}$ is arbitrary, this implies

$$\left\|\sum_{n}\beta_{n}x_{n}\right\| \geq \sup_{n}\left(1-\delta_{n}\right)\left|\beta_{n}\right|.$$

Necessity. For any $\epsilon_n \downarrow 0$ ($0 < \epsilon_n < 1$), let $\delta_n \downarrow 0$ ($0 < \delta_n \leq 1$) satisfy

$$(1 - \epsilon_n)(1 + \delta_n) \le 1 \le (1 + \epsilon_n)(1 - \delta_n)$$

By Definition 3, X contains a norm-one sequence (x_n) satisfying (4). Let $\{e_n\}$ be the natural basis of c_0 . Then by (4), the mapping: $e_n \mapsto x_n$ induces an isomorphism from c_0 to $X_0 = \text{span} \{x_n\}$. Therefore, $\sum_n \beta_n x_n \in X_0$ if and only if $(\beta_n) \in c_0$. Moreover, since $\{e_n\}$ is shrinking, so is $\{x_n\}$.

Let $\{x_m^*\}$ be the coefficient functionals on X_0 . Then for any $m \in \mathbb{N}$ and any $\sum_n \beta_n x_n \in X_0$, by the choice of (δ_n) and (4),

$$\left| \left\langle x_m^*, \sum_n \beta_n x_n \right\rangle \right| = |\beta_m| = \frac{1}{1 - \delta_m} (1 - \delta_m) |\beta_m|$$
$$\leq (1 + \epsilon_m) \sup_n (1 - \delta_n) |\beta_n| \leq (1 + \epsilon_m) \left\| \sum_n \beta_n x_n \right\|.$$

This implies $||x_m^*||_{X_0^*} \leq 1 + \epsilon_m$. To prove (5), for any $\sum_n \alpha_n x_n^* \in X_0^*$, we set $\beta_n = (1 + \delta_n)^{-1} \operatorname{sign} \alpha_n \ (n \in \mathbb{N})$. For any $m \in \mathbb{N}$, by (4),

$$\left\|\sum_{n=1}^{m}\beta_{n}x_{n}\right\| \leq \sup_{n}\left(1+\delta_{n}\right)\left|\beta_{n}\right| = 1.$$

Whence, by the choice of (β_n) and (δ_n) ,

$$\left\|\sum_{n} \alpha_{n} x_{n}^{*}\right\|_{X_{0}^{*}} \geq \left\langle \sum_{n} \alpha_{n} x_{n}^{*}, \sum_{n=1}^{m} \beta_{n} x_{n} \right\rangle = \sum_{n=1}^{m} \alpha_{n} \beta_{n}$$
$$= \sum_{n=1}^{m} \frac{1}{1+\delta_{n}} |\alpha_{n}| \geq \sum_{n=1}^{m} (1-\epsilon_{n}) |\alpha_{n}|$$

which implies (5) since $m \in \mathbb{N}$ is arbitrary. \Box

Theorem 5

1

If a Banach space X contains an asymptotically isometric copy of c_0 , then X^* contains an asymptotically isometric copy of l_1 .

Proof. For any $\epsilon_n \downarrow 0$ $(0 < \epsilon_n < 1)$, let (δ_n) satisfy $\frac{1-\delta_n}{1+\delta_n} = 1 - \epsilon_n$. Then $\delta_n \downarrow 0$ $(0 < \delta_n \leq 1)$. By Definition 3, there exists a norm-one sequence (x_n) in X satisfying (4). By (4), $\sum_n \alpha_n x_n \in X_0 = \operatorname{span}\{x_n\}$ if and only if $(\alpha_n) \in c_0$. For each $m \in \mathbb{N}$ and any $(\alpha_n) \in c_0$ with $\alpha_m = -1$, by (4),

$$\left\|x_m - \sum_{n \neq m} \alpha_n x_n\right\| = \left\|\sum_{n=1}^{\infty} \alpha_n x_n\right\| \ge (1 - \delta_m)|\alpha_m| = 1 - \delta_m$$

which implies that $dist(x_m, \operatorname{span}\{x_n\}_{n \neq m}) \geq 1 - \delta_m$. Whence by Hahn-Banach Theorem, for each $m \in \mathbb{N}$, there exists $x_m^* \in S(X^*)$ such that

$$< x_m^*, x_m > \ge 1 - \delta_m$$
 and $< x_m^*, x_n > = 0, (n \neq m).$

For any $(\beta_n) \in l_1$, let $\alpha_n = (1 + \delta_n)^{-1} \operatorname{sign} \beta_n$ $(n \in \mathbb{N})$. Then for any $m \in \mathbb{N}$, by (4),

$$\left\|\sum_{n=1}^{m} \alpha_n x_n\right\| \le \sup_n |\alpha_n|(1+\delta_n) = 1.$$

Whence,

$$\left\|\sum_{n} \beta_{n} x_{n}^{*}\right\| \geq \left\langle \sum_{n} \beta_{n} x_{n}^{*}, \sum_{n=1}^{m} \alpha_{n} x_{n} \right\rangle = \sum_{n=1}^{m} \beta_{n} \alpha_{n} \langle x_{n}^{*}, x_{n} \rangle$$
$$\geq \left\langle \sum_{n=1}^{m} |\beta_{n}| \frac{1}{1+\delta_{n}} (1-\delta_{n}) \right\rangle = \sum_{n=1}^{m} (1-\epsilon_{n}) |\beta_{n}|.$$

Since $m \in \mathbb{N}$ is arbitrary, we have

$$\left\|\sum_{n}\beta_{n}x_{n}^{*}\right\| \geq \sum_{n=1}^{\infty}(1-\epsilon_{n})|\beta_{n}|$$

which shows that X^* has an asymptotically isometric copy of l_1 . \Box

Finally, we discuss the dual action of asymptotically isometric copy of l_p (1 < $p < \infty$).

DEFINITION 6. We say that a Banach space X contains an asymptotically isometric copy of $l_p (1 , if for any <math>\delta_n \downarrow 0$ $(0 < \delta_n \leq 1)$, X contains a norm-one sequence (x_n) such that

$$\left(\sum_{n} \left(1-\delta_{n}\right)^{p} |\alpha_{n}|^{p}\right)^{1/p} \leq \left\|\sum_{n} \alpha_{n} x_{n}\right\|$$
$$\leq \left(\sum_{n} \left(1+\delta_{n}\right)^{p} |\alpha_{n}|^{p}\right)^{1/p}, \ (\alpha_{n}) \in l_{p}.$$
(6)

CHEN AND LIN

Theorem 7

A Banach space X contains an asymptotically isometric copy of $l_p (1$ $if and only if for any <math>\epsilon_n \downarrow 0$ ($0 < \epsilon_n < 1$), X contains a subspace X_0 such that X_0^* has a normalized basis $\{x_n^*\}$ satisfying

$$\left(\sum_{n}(1-\epsilon_{n})^{q}|\beta_{n}|^{q}\right)^{1/q} \leq \left\|\sum_{n}\beta_{n}x_{n}^{*}\right\|_{X_{0}^{*}} \leq \left(\sum_{n}(1+\epsilon_{n})^{q}|\beta_{n}|^{q}\right)^{1/q}, \quad (\beta_{n}) \in l_{q}$$
(7)

where 1/p + 1/q = 1.

Proof. Necessity. Let $\epsilon_n \downarrow 0 \ (0 < \epsilon_n < 1)$. Set

$$\delta_n = \frac{(1-\epsilon_1)^{q-1}\epsilon_n}{1+2^{p-1}} \le \frac{\epsilon_n}{1+\epsilon_n} \,.$$

Then $\delta_n \downarrow 0$ ($0 < \delta_n \leq 1$). By Definition 6, X contains a norm-one sequence (x_n) satisfying (6). Let $X_0 = \operatorname{span}\{x_n\}$. By (6), X_0 is isomorphic to l_p with the mapping induced by $x_n \longmapsto e_n$ (n = 1, 2, ...), where $\{e_n\}$ is the natural basis of l_p . Therefore, X_0 is reflexive and $\sum_n \alpha_n x_n \in X_0$ if and only if $(\alpha_n) \in l_p$. For any fixed $m \in \mathbb{N}$ and any $(\alpha_n) \in l_p$ with $\alpha_m = -1$, by (6),

$$\left\|x_m - \sum_{n \neq m} \alpha_n x_n\right\| = \left\|\sum_{n=1}^{\infty} \alpha_n x_n\right\| \ge \left(\sum_n (1-\delta_n)^p |\alpha_n|^p\right)^{1/p} \ge 1-\delta_m.$$

This implies that $dist(x_m, \operatorname{span}\{x_n\}_{n \neq m}) \geq 1 - \delta_m$. By Hahn-Banach Theorem, for each $m \in \mathbb{N}$, there exists $x_m^* \in S(X^*)$ such that

$$\langle x_m^*, x_m \rangle \ge 1 - \delta_m$$
 and $\langle x_m^*, x_n \rangle = 0, \ (n \neq m)$

Since $\{x_m^*\}$ is orthogonal to $\{x_n\}$ and the reflexivity of X_0 implies that $\{x_n\}$ is a shrinking basis, $\{x_m^*\}$ in fact is a basis of X_0^* . Let $(\beta_n) \in l_q$, it remains to show (7).

First, for any $(\alpha_n) \in l_p$, by (6) and the choice of (δ_n) ,

$$\left\langle \sum_{n} \beta_{n} x_{n}^{*}, \sum_{n} \alpha_{n} x_{n} \right\rangle = \sum_{n} \alpha_{n} \beta_{n} \langle x_{n}^{*}, x_{n} \rangle \leq \sum_{n} |\alpha_{n} \beta_{n}|$$
$$= \sum_{n} (1 - \delta_{n}) |\alpha_{n}| \frac{1}{1 - \delta_{n}} |\beta_{n}|$$
$$\leq \left(\sum_{n} (1 - \delta_{n})^{p} |\alpha_{n}|^{p} \right)^{1/p} \left(\sum_{n} \left(\frac{1}{1 - \delta_{n}} \right)^{q} |\beta_{n}|^{q} \right)^{1/q}$$
$$\leq \left\| \sum_{n} \alpha_{n} x_{n} \right\| \left(\sum_{n} (1 + \epsilon_{n})^{q} |\beta_{n}|^{q} \right)^{1/q}$$

Dual action of asymptotically isometric copies of $l_p (1 \le p < \infty)$ and c_0 457

which implies

$$\left\|\sum_{n}\beta_{n}x_{n}^{*}\right\|_{X_{0}^{*}} \leq \left(\sum_{n}(1+\epsilon_{n})^{q}|\beta_{n}|^{q}\right)^{1/q}.$$

To prove the other part of (7), we denote $\alpha_n = |\beta_n|^{q-1} \operatorname{sign} \beta_n$. Then,

$$\left\langle \sum_{n} \beta_n x_n^*, \sum_{n} \alpha_n x_n \right\rangle = \sum_{n} |\beta_n| |\beta_n|^{q-1} < x_n^*, x_n > \ge \sum_{n} |\beta_n|^q (1-\delta_n).$$

We shall show that

$$\sum_{n} |\beta_n|^q (1-\delta_n) \ge \left(\sum_{n} (1+\delta_n)^p |\alpha_n|^p\right)^{1/p} \left(\sum_{n} (1-\epsilon_n)^q |\beta_n|^q\right)^{1/q}.$$
 (8)

Then by (6),

$$\left\langle \sum_{n} \beta_{n} x_{n}^{*}, \sum_{n} \alpha_{n} x_{n} \right\rangle \geq \left\| \sum_{n} \alpha_{n} x_{n} \right\| \left(\sum_{n} (1 - \epsilon_{n})^{q} |\beta_{n}|^{q} \right)^{1/q}$$

which implies

$$\left\|\sum_{n} \beta_n x_n^*\right\|_{X_0^*} \ge \left(\sum_{n} (1-\epsilon_n)^q |\beta_n|^q\right)^{1/q}$$

completing the proof of the necessity.

Since $(\alpha_n) \in l_p$ and $(\beta_n) \in l_q$, to show (8), it suffices to show that

$$\sum_{n=1}^{k} |\beta_n|^q (1-\delta_n) \ge \left(\sum_{n=1}^{k} (1+\delta_n)^p |\alpha_n|^p\right)^{1/p} \left(\sum_{n=1}^{k} (1-\epsilon_n)^q |\beta_n|^q\right)^{1/q}$$
(9)

holds for each $k \in \mathbb{N}$.

Denote $d_{kn} = |\beta_n|^q / \sum_{m=1}^k |\beta_m|^q$, then $d_{kn} \ge 0$ and $\sum_{n=1}^k d_{kn} = 1$. Notice that $|\alpha_n|^p = |\beta_n|^{(q-1)p} = |\beta_n|^q$, divided by $\sum_{m=1}^k |\beta_m|^q$, (9) becomes

$$1 - \sum_{n=1}^{k} d_{kn} \delta_n \ge \left(\sum_{n=1}^{k} (1+\delta_n)^p d_{kn}\right)^{1/p} \left(\sum_{n=1}^{k} (1-\epsilon_n)^q d_{kn}\right)^{1/q} := D_k.$$
(10)

By mean value theorem,

$$(1+\delta_n)^p = 1+\xi_n\delta_n$$
 and $(1-\epsilon_n)^q = 1-\eta_n\epsilon_n$

where

$$\xi_n = p(1+x')^{p-1} \le p2^{p-1}$$
 and $-\eta_n = -q(1-x'')^{q-1} \le -q(1-\epsilon_1)^{q-1}$

for some $x' \in (0, 1)$ and $x'' \in (0, \epsilon_1)$. Whence,

$$D_{k} = \left(\sum_{n=1}^{k} (1+\xi_{n}\delta_{n})d_{kn}\right)^{1/p} \left(\sum_{n=1}^{k} (1-\eta_{n}\epsilon_{n})d_{kn}\right)^{1/q}$$
$$= \left(1+\sum_{n=1}^{k} \xi_{n}d_{kn}\delta_{n}\right)^{1/p} \left(1-\sum_{n=1}^{k} \eta_{n}d_{kn}\epsilon_{n}\right)^{1/q}$$
$$\leq \left(1+\frac{1}{p}\sum_{n=1}^{k} \xi_{n}d_{kn}\delta_{n}\right) \left(1-\frac{1}{q}\sum_{n=1}^{k} \eta_{n}d_{kn}\epsilon_{n}\right)$$
$$\leq 1+\frac{1}{p}\sum_{n=1}^{k} \xi_{n}d_{kn}\delta_{n} - \frac{1}{q}\sum_{n=1}^{k} \eta_{n}d_{kn}\epsilon_{n}.$$

Whence,

$$D_k - \left(1 - \sum_{n=1}^k d_{kn}\delta_n\right) \le \sum_{n=1}^k \left[\left(\frac{1}{p}\xi_n + 1\right)\delta_n - \frac{1}{q}\eta_n\epsilon_n\right]d_{kn}$$
$$\le \sum_{n=1}^k \left[(2^{p-1} + 1)\delta_n - (1 - \epsilon_1)^{q-1}\epsilon_n\right]d_{kn} = 0$$

This verifies (10).

Sufficiency. For any $\delta_n \downarrow 0$ ($0 < \delta_n \leq 1$), let $\epsilon_n = \frac{(1-\delta_1)^{p-1}\delta_n}{1+2^{q-1}}$. Then $\epsilon_n \downarrow 0$ ($0 < \epsilon_n < 1$). By assumption, X contains a subspace X_0 such that X_0^* has a normalized basis $\{x_n^*\}$ satisfying (7). Therefore, X_0^* is reflexive and hence so is X_0 . Exactly as in the proof of the necessary part, we can find a normalized basis $\{x_n\}$ of $X_0^{**} = X_0$ such that (6) holds for all $(\alpha_n) \in l_p$. \Box

References

- 1. J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, 1992.
- 2. P.N. Dowling and C.J. Lennard, New fixed point free nonexpansive maps in l_1 imply that every nonreflexive subspace of $L_1[0, 1]$ fails the fixed point property, *Proc. Amer. Math. Soc.* (in press).