
Collect. Math. 48, 4-6 (1997), 423–448

c© 1997 Universitat de Barcelona

Weak compactness criteria and convergences in L1
E(µ)

H. Benabdellah
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Abstract

New characterizations of conditionally weakly compact (resp. relatively weakly
compact) subsets in Banach spaceE andL1

E(µ) are presented. We discuss also
several types of convergence in L1

E(µ), in particular we generalize Szlenk’s
theorem on Cesàro norm-convergence of weakly null sequences in L1

R
(µ) to

the norm-summability with respect to a class of regular method of summability
of weakly null sequences in L1

H(µ) where H is a Hilbert space.

Introduction

Let (Ω,F , µ) be a complete probability space, E a Banach space, and L1
E(µ) the

Banach space of Bochner integrable functions equipped with its usual norm. We
discuss here the characterizations of conditionally weakly compact, i.e. sequentially
weakly precompact (resp. relative weakly compact) subsets in a Banach space E and
in L1

E(µ). We refer to [27] and [13] for recent results on the problem of characterizing
relatively weakly compact (r.w.c.) subsets of E and L1

E(µ). In section 1, new
characterizations of conditionally weakly compact (c.w.c.) (resp. r.w.c.) subsets
in Banach spaces via a class of regular method of summability (RMS) a = (apq)
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(cf. [15] p. 75) are presented. A subset K ⊂ E is c.w.c. (resp. r.w.c.) iff for
any sequence (xn) in K, there exists a subsequence (xnk

) such that the sequence
(sk) with sk =

∑∞
q=0 akqxnq

(k ∈ N) is well-defined and weakly Cauchy (resp.
weakly convergent). This characterization is equivalent to the following: for any
sequence (xn) in K, there exists a sequence (x̃n) with x̃n ∈ co {xm : m ≥ n},
such that (x̃n) is weakly Cauchy (resp. weakly convergent). In section 2, several
criteria for c.w.c. and r.w.c. subsets in L1

E(µ) are presented. In particular we show
that a bounded uniformly integrable and ball-conditionally weakly compact-tight
subset in L1

E(µ) is c.w.c. This paper also contains several types of convergence in
L1
E(µ) with applications to Mathematical Economics and Minimization problems.

In particular we discuss Banach-Saks property for weakly null sequences in L1
R
(µ).

This result is as follows: Let H be a Hilbert space, a = (apq) a RMS such that
limp→∞

∑∞
q=0 |apq|2 = 0 and (un) a weakly null sequence in L1

H(µ). Then there
exist ψ ∈ Si(N) such that

lim
p→∞

sup
ϕ∈Si(N)

∥∥∥∥∥
∞∑
q=0

apq uψ◦ϕ(q)

∥∥∥∥∥
1

= 0

(Si(N) denotes the set of strictly increasing mapping ϕ : N −→ N).

Most of our proofs are detailed and easy, except for some of them which rely
on deeper results due to Rosenthal [22] and Talagrand [26].

Notations and Preliminaries

We will use the following notions and notations. We denote by

– (Ω,F , µ) a complete probability space,

– E a Banach space,

– E′ the topological dual of E, E′
s (resp. E′

b) the vector space E′ equipped with the
σ(E′, E) (resp. norm) topology.

– BE (resp. BE′) is the closed ball of center 0 and radius 1 in E (resp. E′).

– Rwk(E) (resp. Rcwc(E)) the collection of borelian subsets of E such that its
intersection with any ball of E is relatively weakly (conditionally weakly) compact.

– δ∗(., A) is the support function of a subset A of E.

– L1
E(µ) is the space of Bochner integrable mapping u : Ω −→ E and L∞

E′(µ) is the
topological dual of L1

E(µ) (cf. A. and C. Ionescu Tulcea [18]).
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– If X is a topological space, B(X) is the Borel tribe of X.

– A multifunction Γ : Ω −→ B(X) is measurable if its graph Gr(Γ) belongs to
F ⊗ B(X).

– Si(N) is the set of strictly increasing mappings from N to N.

– A subset H of L1
E(µ) is Rwk(E) (resp. Rcwc(E))-tight if for every ε > 0, there

exists a measurable multifunction Γε : Ω −→ Rwk(E) (resp. Rcwc(E)) such that
∀u ∈ H, µ[{ω ∈ Ω : u(ω) �∈ Γε(ω)}] < ε.

– If (xn) is a sequence in E, w − Ls{xn} is defined by

w − Ls{xn} :=
∞⋂
n=1

{xk : k ≥ n}σ

where {.}σ denotes the closure for the σ(E,E′) topology.

§1. Weak compactness and conditionally weak compactness in Banach spaces

An infinite matrix (apq)(p,q)∈N×N is called a regular method of summability (RMS)
if

(1.1) supp∈N

∑∞
q=0 |apq| < +∞

(1.2) ∀q ∈ N, limp→∞ apq = 0

(1.3) limp→∞
∑∞
q=0 apq = 1.

It is easy to check that a = (apq) is a RMS iff for any sequence (xn) in a Banach
space E, converging to x ∈ E, then the sequence (x′

n) given by x′
n =

∑∞
q=0 anqxq,

converges to x. A sequence (xn) in a Banach space is called summable with respect
to a RMS a = (apq) if the sequence (x′

n) given by x′
n =

∑∞
q=0 anqxq is well-defined

and converges for the norm of E. A RMS a = (apq) is positive if, ∀p, q, apq ≥ 0.

Let us mention first an easy lemma before we state the main results.

Lemma 1.1

Let (apq) be a positive RMS and let (xn) be a sequence in R such that the series∑∞
q=0 apqxq are convergent. Then we have

(1) lim infp→∞ xp ≤ lim infp→∞
∑∞
q=0 apqxq

In particular, if x̃n ∈ co {xk : k ≥ n}, ∀n, then we have

(2) lim infn→∞ xn ≤ lim infn→∞ x̃n.
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Proof. (1) let (xn) ⊂ R such that the series up :=
∑∞
q=0 apqxq are convergent in R.

Let r < lim infn→∞ xn = supn infk≥n xk.
Then there exists a positive integer n0 such that k ≥ n0 implies r < xk. Hence

∀q ≥ n0, apqr ≤ apqxq. Therefore
( ∑∞

q=n0
apq

)
r ≤ ∑∞

q=n0
apqxq. Consequently we

get

(∗)
( ∑∞

q=0 apq
)
r −

( ∑n0−1
q=0 apq

)
r ≤ up −

∑n0−1
q=0 apqxq .

Since limp→∞
∑∞
q=0 apq = 1, and limp→∞

∑n0−1
q=0 apq = 0 by virtue of properties

(1.2) and (1.3) of the RMS and since limp→∞
∑n0−1
q=0 apqxq = 0, then by taking the

lim inf in (∗), we obtain

r ≤ lim inf
p→∞

(
up −

n0−1∑
q=0

apqxq

)
= lim inf

p→∞
up .

It follows that lim infn→∞ xn ≤ lim infn→∞
∑∞
q=0 anqxq.

(2) is easy consequence of (1). �

Now we are able to produce the main results of this section.

Theorem 1.2

Let K be a subset of a Banach space E and let a = (apq) be a positive RMS.

Then the following are equivalent:

(1) K is conditionally weakly compact.

(2) given any sequence (xn)n ⊂ K, there exists a subsequence (xnk
)k such that the

sequence (sk)k with sk =
∑∞
q=0 akqxnq (k ∈ N) is well-defined and weakly Cauchy.

(3) given any sequence (xn)n ⊂ K, there exists a sequence (x̃n)n with x̃n ∈ co {xm :
m ≥ n} such that (x̃n) is weakly Cauchy.

Proof. The implication (1) =⇒ (2) follows easily from properties of the RMS. Let
us prove (2) =⇒ (3).

Since K satisfies (2), K is bounded. Indeed it is enough to check that, ∀x′ ∈ E′,
we have δ∗(x′,K) = supx∈K〈x′, x〉 < +∞. Take a sequence (un) ⊂ K such that
limn→∞〈x′, un〉 = δ∗(x′,K). By (2), there exists a subsequence (unk

)k of (un)n such
that the sequence (vp)p with vp :=

∑∞
q=0 apqunq

is well-defined and weakly Cauchy.
Hence the sequence (〈x′, vp〉)p with 〈x′, vp〉 =

∑∞
q=0 apq〈x′, unq

〉 converge in R to a
point vx′ . Clearly by obvious properties of the RMS, we have
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δ∗(x′,K) = lim
p→∞

〈x′, unp
〉

= lim inf
p→∞

∞∑
q=0

apq〈x′, unq
〉 = vx′ < +∞.

Now set M := sup{‖x‖ : x ∈ K} and let us prove that K satisfies (3).
Let (xn) ⊂ K and let sk =

∑∞
q=0 akqxnq

given by (2). For each x′ ∈ E′, let
rx′ = limk→∞〈x′, sk〉. According to properties (1.1) and (1.2) of the RMS, it is easy
to construct two strictly increasing sequences of positive integers (Np) and (pk) such
that

(1.2.1) ∀p, ∀k ≥ 1,
∑
q>Np

apq ≤ 2−p and
k−1∑
q=0

apkq ≤ 2−k .

For every k ≥ 1, set λk :=
∑Npk

q=k apkq. Then by (1.2.1), we obtain

0 ≤
∞∑
q=0

apkq − λk ≤ 2−k + 2−pk .

Consequently by property (1.3) of the RMS, we deduce that limk→∞ λk = 1. Set

∀k, λkq :=
1
λk

apkq and x̃k :=
Npk∑
q=k

λkqxnq .

Then it is clear that x̃k ∈ co {xnq
: q ≥ k}. Moreover, for every k, we have

|〈x′, x̃k〉 − sx′ | =
∣∣∣ 1
λk

[
〈x′, spk〉 −

〈
x′,

k−1∑
q=0

apkq xnq
+

∑
q>Npk

apkq xnq

〉]
− sx′

∣∣∣
≤

∣∣∣ 1
λk
〈x′, spk〉 − sx′

∣∣∣ +
M‖x′‖
λk

(2−k + 2−pk) .

Hence it follows that limk→∞〈x′, x̃k〉 = sx′ . Whence (x̃k) is weakly Cauchy and
satisfies x̃k ∈ co {xm : m ≥ k}, ∀k.

Now it remains to prove (3) =⇒ (1). By using lemma 1.1, we can show similarly
as in the previous implication that K is bounded. Assume by contradiction that K
is not conditionally weakly compact. Then according to a result of H. P. Rosenthal
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(see [22]), there exist r ∈ R, δ > 0 and a sequence (xn)n ⊂ K such that the sequence
(An, Bn)n∈N defined by

An = {x′ ∈ BE′ : 〈x′, xn〉 ≥ r + δ} and Bn = {x′ ∈ BE′ : 〈x′, xn〉 ≤ r}

is independent. By (3), there exists x̃n ∈ co {xm : m ≥ n} (n ∈ N) such that (x̃n) is
weakly Cauchy. Each x̃n has the form x̃n =

∑mn

i=n λ
n
i xi with λni ≥ 0,

∑mn

i=n λ
n
i = 1,

mn ≥ n. Let n0 = 0, n1 = m0 + 1, . . . , nk+1 = mnk
+ 1. Then (nk) is a strictly

increasing sequence such that for all i �= j, [ni,mni ] ∩ [nj ,mnj ] = ∅.
Now let us consider the following sets

Ãk :=
mnk⋂
i=nk

Ai and B̃k :=
mnk⋂
i=nk

Bi .

Then (Ãk, B̃k) is a sequence of disjoint pairs of subsets in BE′ and is independent.
Indeed, let I and J be two finite, nonempty, disjoint subsets of N. Then we have

(1.2.2)
( ⋂
k∈I

Ãk

)
∩

( ⋂
k∈J

B̃k

)
=

( ⋂
i∈I′

Ai

)
∩

( ⋂
i∈J′

Bi

)

where I ′ :=
⋃
k∈I [nk,mnk

] and J ′ :=
⋃
k∈J [nk,mnk

] are disjoint. Consequently, the
intersection in (1.2.2) is nonempty. On the other hand, for every k, we have

x′ ∈ Ãk =⇒ 〈x′, x̃nk
〉 =

mnk∑
i=nk

λnk
i 〈x′, xi〉

≥
mnk∑
i=nk

λnk
i (r + δ) = r + δ

and x′ ∈ B̃k =⇒ 〈x′, x̃nk
〉 ≤ ∑mnk

i=nk
λnk
i r = r.

By invoking again Rosenthal [22], we conclude that (x̃nk
) is equivalent to the

unit vector basis of l1. This contradicts the fact that (x̃n) is weakly Cauchy, thus
proving the implication (3) =⇒ (1). �

Here is an analogous criterion for relative weakly compact subset in a Banach
space where equivalence (1) ⇐⇒ (3) was stated by Ülger [27] and Diestel-Ruess-
Schachermayer [13] by different methods.
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Theorem 1.3
Let K be a subset of a Banach space E and let a = (apq) be a positive RMS.

Then the following are equivalent:
(1) K is relatively weakly compact.
(2) given any sequence (xn)n in K, there exists a subsequence (xnk

)k such that
the sequence (sk)k with sk =

∑∞
q=0 akqxnq

(k ∈ N) is well-defined and weakly
convergent.
(3) given any sequence (xn)n in K, there exists a sequence (x̃n) with x̃n ∈ co {xm :
m ≥ n} such that (x̃n) is weakly convergent.
(4) given any sequence (xn)n in K there exists y such that, ∀x′ ∈ E′,

lim inf
n→∞

〈x′, xn〉 ≤ 〈x′, y〉.

Proof. The proofs of implications (1) =⇒ (2) =⇒ (3) follow from the arguments we
used in the proof of theorem 1.2.
(3) =⇒ (4) is an immediate consequence of lemma 1.1 applied to the sequences
(〈x′, xn〉) and (〈x′, x̃n〉).
(4) =⇒ (1) follows from a classical characterization of relatively sequentially weakly
compact subset in normed spaces (see e.g. Holmes [17] § 18.A). �
Remark. It would be interesting to address the following question: what happens
if one replace “weakly relatively compactness” by “norm relatively compactness” in
the statement of Theorem 1.3.

The following example shows that, in general, the statement of Theorem 1.3 is
not true if one replace “weakly” by “norm”. Let E = c0 and let K = {en : n ∈ N}
be the unit vector basis of c0. Then K is not relatively compact for the norm
topology since for n �= m, ‖en − em‖∞ = 1, although K satisfies the following
property: given any sequence (xn)n ⊂ K, there exists a sequence (x̃n) with x̃n ∈
co {xm : m ≥ n} (n ∈ N) such that (x̃n) converges for the norm topology. Indeed
set X = {xn : n ∈ N}. If X is finite, there exists m ∈ N and a subsequence
(xnk

)k of (xn)n such that, ∀k, xnk
= em, so that in this case, we can take, ∀k,

x̃k = xnk
= em. If X is infinite, there exist two subsequences (xpk)k and (eqk)k of

(xn)n and (en) respectively such that, ∀k, xpk = eqk . Set x̃k = 1
k+1

∑2k
i=k eqi , ∀k,

then x̃k ∈ co {eqi : i ≥ k} ⊂ co {xn : n ≥ k} and (x̃k)k converges to 0 for the norm
topology.

§2 - Weak compactness and convergence results in L1
E(µ)

Let (Ω,F , µ) be a complete probability space and E a Banach space. We aim to
present in this section some compactness and convergence results in L1

E(µ).
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We begin by recalling the following result due to Talagrand ([26], Theorem 1).

Theorem 2.1

Let (un) be a bounded sequence in L1
E(µ). Then there exists a sequence (ũn)

with ũn ∈ co {um : m ≥ n} and two sets A and B in F with µ(A∪B) = 1 such that

(a) for each ω in A, the sequence (ũn(ω)) is weakly Cauchy,

(b) for each ω in B, there exists an integer k such that the sequence (ũn(ω))n≥k is

equivalent to the vector unit basis of l1.

Remark. Although the thesis is more general than the one given in ([26], Theo-
rem 1), in which (un) is bounded in L∞

E (µ), Theorem 2.1 is an easy consequence
of Theorem 1 in ([26]). In the same vein, Diestel-Ruess-Schachermayer obtained a
refinement of Talagrand’s theorem by another method (see [13], lemma 2.5). Indeed
let vn = ‖un(.)‖, ∀n. Then (vn) is a bounded sequence in L1

R
(F). By ([9], Théorème

3.1 et Remarques, p. 60-61), there is a sequence (ṽn) with ṽn ∈ co {vm : m ≥ n}
such that (ṽn) converges almost everywhere to some v ∈ L1

R
(F). Each ṽn has the

form ṽn =
∑νn
k=n λ

n
kvk with 0 ≤ λnk ≤ 1 and

∑νn
k=n λ

n
k = 1. Extracting a subsequence

if necessary and modifying the vk , k ∈ N, on a negligible set we may suppose that
(ṽn(ω))n converges to v(ω) for all ω ∈ Ω. Set

∀ω ∈ Ω,M(ω) := 1 + sup
n

ṽn(ω) and hn(ω) :=
1

M(ω)

νn∑
k=n

λnk uk(ω).

Then we can apply Talagrand’s theorem to (hn). There is a sequence (h̃n) with
h̃n ∈ co {hm : m ≥ n} which satisfies conditions (a) and (b) in the thesis of Theorem
2.1. Now it is enough to set ũn(ω) = M(ω)h̃n(ω), ∀ω ∈ Ω.

Now we state our first result which is a direct application of Theorem 1.2. and
Talagrand’s results [26].

Theorem 2.2

Let H be a bounded subset of L1
E(µ). Then the following are equivalent:

(1) H is conditionally weakly compact.

(2) H is uniformly integrable and given any sequence (fn) ⊂ H, there exists a

sequence (f̃n) with f̃n ∈ co {fm : m ≥ n} such that (f̃n(ω))n is weakly Cauchy in E

for a.e. ω ∈ Ω.
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Proof. Let us prove (1) =⇒ (2). It is well-known that conditionally weakly compact
subsets of L1

E(µ) are uniformly integrable (see [14]). Now let (fn) be any sequence in
H. Then by Theorem 2.1, there exists a sequence (f̃n), with f̃n ∈ co {fm : m ≥ n},
and two sets, A, B in F with µ(A ∪B) = 1, such that

(a) for each ω in A, (f̃n(ω))n is weakly Cauchy in E,
(b) for each ω in B, there exists an integer k, such that the sequence (f̃n(ω))n≥k

is equivalent to the vector unit basis of l1.
Suppose that the measure of subset B of Ω is strictly positive. Then by Tala-

grand’s Lemma 4, [26], there exists k such that the sequence (f̃n)n≥k is equivalent
to the vector unit basis of l1. But this contradicts the fact that (f̃n) is c.w.c. since
(f̃n) lies in the set co(H), which is c.w.c. (see [23] or [7] Theorem 5.E). Therefore
µ(B) = 0, and for a.e. ω ∈ Ω, the sequence (f̃n(ω)) is weakly Cauchy.

Let us prove now (2) =⇒ (1). By Theorem 1.2, it is enough to check that given
(fn) ⊂ H and (f̃n) as in (2), the sequence (f̃n) is weakly Cauchy in L1

E(µ). Let
g ∈ L∞

E′ [E]. Since (f̃n(ω))n is weakly Cauchy in E for a.e. ω ∈ Ω, the sequence
(〈g(ω), f̃n(ω)〉)n converges a.e. Let

ϕ(ω) := lim
n→∞

〈g(ω), f̃n(ω)〉 for ω �∈ N

where N is a negligible set and ϕ(ω) = 0 for ω ∈ N . Then by Fatou’s lemma,
ϕ ∈ L1

R
(µ) and since (〈g, f̃n〉)n is uniformly integrable, by Vitali’s theorem, we get

lim
n→∞

∫
Ω

〈g, f̃n〉dµ =
∫

Ω

ϕdµ

thus proving that (2) =⇒ (1). �

Concerning r.w.c subsets in L1
E(µ) we recall the following which is essentially

due to Ülger [27] and relies on the equivalence (1) ⇐⇒ (3) in Theorem 1.3.

Theorem 2.3 (Ülger-Diestel-Ruess-Schachermayer).

Let E be a Banach space and H be a subset of L1
E(µ). Then the following are

equivalent:

(a) H is relatively weakly compact.

(b) H is uniformly integrable and given any sequence (un) in H, there is a sequence

(ũn) with ũn ∈ co {um : m ≥ n}, ∀n, such that (ũn(ω)) is weakly convergent in E

for almost all ω ∈ Ω.
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The following result is mentioned in Diestel ([12], p. 237). We provide the proof
here for the sake of completeness.

Proposition 2.4

Let E be an arbitrary Banach space, K a nonempty subset of E. Then the

following are equivalent:

(1) K is conditionally weakly compact.

(2) For every ε > 0, there exists a conditionally weakly compact set Kε such that

K ⊂ Kε + εBE .

Proof. (1) =⇒ (2) being obvious, let us prove (2) =⇒ (1). Let (εp) be a decreasing
sequence of strictly positive numbers with limp→∞ εp = 0, and (Kp) be a sequence
of conditionally weakly compact subsets in E such that

(2.3.1) ∀p, K ⊂ Kp + εp BE .

We have to show that, given any sequence (xn) ⊂ K, there exists a weakly Cauchy
subsequence. By (2.3.1), for every p, and every n, there exists ynp ∈ Kp such that
‖xn − ypn‖ ≤ εp.

Since each Kp is c.w.c., the sequence (ynp )n admits a weakly Cauchy subse-
quence. Then by induction we find a sequence (ϕn) in Si(N) such that

(2.3.2) ∀p, (ypϕ0◦...◦ϕp(n))n is weakly Cauchy in E.

Let us consider the diagonal sequence ψ(n) := ϕ0 ◦ . . . ◦ϕn(n), ∀n, and let us prove
that (xψ(n)) is weakly Cauchy. Let ε > 0 be fixed. Choose p such that εp < ε

4 . Then
for any x′ ∈ BE′ , and for m > k > p, we have

|〈x′, xψ(m) − xψ(k)〉| ≤ |〈x′, xψ(m) − ypψ(m)〉|+ |〈x
′, xψ(k) − ypψ(k)〉|

+ |〈x′, ypψ(m) − ypψ(k)〉|
≤ 2εp +

∣∣〈x′, ypψ(m) − ypψ(k)〉
∣∣ .

Since by (2.3.2), (ypϕ0◦...◦ϕp(n))n is weakly Cauchy, so is (ypψ(n))n. Therefore
limm→∞

k→∞
〈x′, ypψ(m) − ypψ(k)〉 = 0. Hence there exists pε > p such that m > k > pε

implies |〈x′, xψ(m)−xψ(k)〉| ≤ 2. ε4 + ε
2 = ε, proving that (xψ(n))n is weakly Cauchy. �

We need a couple of notions which are inspired by ([1] and [26]) before we state
our c.w.c. criteria in L1

E(µ). Let us recall that Rcwc(E) (resp. Rwk(E)) is the
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class of subsets K ∈ B(E) such that, their intersection with any ball is c.w.c. (resp.
r.w.c) in E. An element K ∈ Rcwc(E) (resp. Rwk(E)) is called ball-c.w.c. (resp.
ball-r.w.c). It is clear that Rcwc(E) and Rwk(E) are stable under finite unions and
that they contains the empty set ∅.

A subset H ⊂ L1
E(µ) is called Rcwc(E)-tight (resp. Rwk(E)-tight) if, for every

ε > 0, there exists a measurable multifunction Lε from Ω into Rcwc(E) (resp.
Rwk(E)) such that

∀u ∈ H, µ[{ω ∈ Ω : u(ω) �∈ Lε(ω)}] < ε .

A subset H ⊂ L1
E(µ) has the conditionally weak Talagrand property, shortly, condi-

tionally WTP, (resp. weak Talagrand property, shortly, WTP) if, for any sequence
(fn) ⊂ H, there exists a sequence (gn) with gn ∈ co {fm : m ≥ n}, ∀n, such that,
for a.e. ω ∈ Ω, (gn(ω))n is weakly Cauchy (resp. weakly convergent) in E.

There is a folklore Lemma which characterizes the above tightness notion.

Lemma 2.5

Let E be a separable Banach space. Let R be a class of borelian subsets of E

such that: ∅ ∈ R;A,B ∈ R =⇒ A ∪B ∈ R. Let H be a subset of L1
E(µ). Then the

following are equivalent:

(a) For any ε > 0, there exists a measurable multifunction Lε : Ω −→ R such that

∀u ∈ H, µ[{ω ∈ Ω : u(ω) �∈ Lε(ω)}] < ε .

(b) There exists a F ⊗B(E)-measurable integrand ϕ : Ω×E −→ [0,+∞] such that

for all ω ∈ Ω and all r ≥ 0, {x ∈ E : ϕ(ω, x) ≤ r} ∈ R and that

sup
u∈H

∫
Ω

ϕ(ω, u(ω))µ(dω) < +∞ .

(c) There exists a F ⊗B(E)-measurable integrand ϕ : Ω×E −→ [0,+∞] such that

for all ω ∈ Ω and all r ∈ R
+, {x ∈ E : ϕ(ω, x) ≤ r} ∈ R and that

lim
λ→+∞

sup
u∈H

µ[{ω ∈ Ω : ϕ(ω, u(ω)) ≥ λ}] = 0.

Proof. (a) =⇒ (b). Let εp = 3−p (p ∈ N). By (a) there exists a measurable
multifunction Lp : Ω −→ R such that

∀u ∈ H, µ[{ω ∈ Ω : u(ω) �∈ Lp(ω)}] < εp .



434 Benabdellah and Castaing

Let us consider the multifunctions Kn : Ω −→ B(E) (n ∈ N ∪ {∞}) given by:

∀ω ∈ Ω,K0(ω) = L0(ω),Kn(ω) = Ln(ω)\Kn−1(ω),∀n ≥ 1

and K∞(ω) = E \⋃
n∈N

Kn(ω) = E \⋃
n∈N

Ln(ω)

Then it is obvious that each Kn (n ∈ N∪{∞}) is measurable and the sequence
(Gr(Kn))n∈N∪{∞} is a F ⊗ B(E)-measurable partition of Ω× E. Set

ϕ(ω, x) =
{

2n if (ω, x) ∈ Gr(Kn), n ∈ N

+∞ if (ω, x) ∈ Gr(K∞) .

We claim that ϕ is F ⊗ B(E)-measurable integrand which satisfies condition (b).
Indeed, let r ≥ 0. If r < 1, {x ∈ E : ϕ(ω, x) ≤ r} is empty ; if r ≥ 1, let m be the
unique integer such that m ≤ log r

log 2 < m + 1. Then

{(ω, x) ∈ Ω× E : ϕ(ω, x) ≤ r} =
m⋃
n=0

Gr(Kn) ∈ F ⊗ B(E) .

Similarly for all ω ∈ Ω, we have

{x ∈ E : ϕ(ω, x) ≤ r} =
m⋃
n=0

Kn(ω) =
m⋃
n=0

Ln(ω) ∈ R .

It remains to check that supu∈H
∫
Ω
ϕ(ω, u(ω))µ(dω) < +∞.

For each u ∈ H and each n ∈ N ∪ {∞}, set

Ωun = {ω ∈ Ω : u(ω) ∈ Kn(ω)} .

Then (Ωun)n∈N∪{∞} is a F-measurable partition of Ω with µ(Ωun) < εn−1, ∀n ∈ N
∗

and µ(Ωu∞) = 0. Consequently we have∫
Ω

ϕ(ω, u(ω))µ(dω) =
∞∑
n=0

∫
Ωu

n

ϕ(ω, u(ω))µ(dω) =
∞∑
n=0

2nµ(Ωun)

≤ 1 +
∞∑
n=1

2n

3n−1
< +∞

thus proving the implication (a) =⇒ (b).

(b) =⇒ (c) follows immediately from Tchebyschev’s inequality. Let us prove (c) =⇒
(a). For every ε > 0, there exists λε > 0 such that supu∈H µ[{ω ∈ Ω : ϕ(ω, u(ω)) >
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λε}] < ε. Since ϕ is F ⊗ B(E)-measurable, the multifunction Lε(ω) := {x ∈ E :
ϕ(ω, x) ≤ λε}, ∀ω ∈ Ω, is measurable and takes it values in R by (c). Since we have

∀u ∈ H, µ[{ω ∈ Ω : u(ω) �∈ Lε(ω)}] = µ[{ω ∈ Ω : ϕ(ω, u(ω)) > λε}] < ε

(c) =⇒ (a) is proved. �

Now we are able to present our second conditionally weakly compact criterion
in L1

E(µ).

Theorem 2.6

Let E be a separable Banach space. Assume that H is uniformly integrable and

Rcwc(E)-tight subset of L1
E(µ). Then H is conditionally weakly compact in L1

E(µ).

Proof. Let ε > 0 be fixed. Since H is uniformly integrable, there exists δ > 0 and
α > 0 such that

sup
u∈H

∫
[|u|>α]

|u|dµ <
ε

2
and

∀B ∈ F , µ(B) ≤ δ =⇒ sup
u∈H

∫
B

|u|dµ <
ε

2
.

By our assumption there exists a measurable multifunction Lδ : Ω −→ Rcwc(E)
such that

∀u ∈ H, µ[{ω ∈ Ω : u(ω) �∈ Lδ(ω)}] < δ .

For each u ∈ H, set Au = [|u| ≤ α], Bu = {ω ∈ Ω : u(ω) ∈ Lδ(ω)} .
Then we have

u = 1Au∩Bu
u + 1Ac

u∩Bu
u + 1Bc

u
u

and
‖1Ac

u∩Bu
u + 1Bc

u
u‖1 ≤

ε

2
+

ε

2
= ε .

Set Hε = {1Au∩Bu
u : u ∈ H} . Then it is obvious that

H ⊂ Hε + ε BL1
E

(µ).

Now we claim that Hε is conditionally weakly compact in L1
E(µ). Let (un)n ⊂ H

and vn := 1Aun∩Bun
un, ∀n. Then

vn(ω) ∈ (Lδ(ω) ∪ {0}) ∩ η BE
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for all ω ∈ Ω. Moreover Gδ(ω) := (Lδ(ω) ∪ {0}) ∩ η BE is conditionally weakly
compact in E because Lδ(ω) ∈ Rcwc(E). By Talagrand’s theorem ([26], Theorem 1),
there exist A ∈ F and a sequence (ṽn) with ṽn ∈ co {vm : m ≥ n}, ∀n, such that

(a) ∀ω ∈ A, (ṽn(ω))n is weakly Cauchy in E

(b) for a.e. ω ∈ Ac, there exists k such that (ṽn(ω))n≥k is equivalent to the
unit vector basis of l1.

Now, ∀ω ∈ Ω, ṽn(ω) ∈ coGδ(ω) and co(Gδ(ω)) is conditionally weakly compact
(see [23], or [7] Theorem 5.E). Hence µ(Ac) = 0. So we conclude that (ṽn(ω))n
is weakly Cauchy for a.e. ω ∈ Ω. By virtue of Theorem 2.2., Hε is conditionally
weakly compact in L1

E(µ). Since H ⊂ Hε + εBL1
E

(µ), then by Proposition 2.3, H is
conditionally weakly compact too. This completes the proof of Theorem 2.4. �

Remark. Theorem 2.6 is a slight refinement of some results obtained by Pisier [21]
and Bourgain [6].

Similarly we have the following criterion for relatively weakly compact subsets
of L1

E(µ) (see [1], Théorème 6, p. 174 for proof).

Theorem 2.7

Let E be a separable Banach space. Let H be a uniformly integrable and

Rwk(E)-tight subset of L1
E(µ). Then H is relatively weakly compact in L1

E(µ).

The following result provides the connections between “tightness notions” and
“Talagrand’s properties”.

Theorem 2.8

Let E be a separable Banach space. IfH is a boundedRcwc(E) (resp. Rwk(E))-
tight subset of L1

E(µ), then H is conditionally WTP (resp. WTP) in L1
E(µ).

Proof. We have only to prove the thesis for the Rcwc(E)-tight case, since the proof
of Rwk(E)-tight case is similar by invoking Theorem 2.7.

Let (un) ⊂ H. By Slaby’s lemma [24], there exists an increasing sequence
(Ak) in F with limk→∞ µ(Ak) = 1 and a subsequence (unk

) such that (1Ak
unk

)
is uniformly integrable in L1

E(µ), and that (1Ac
k
unk

) converges to 0 a.e. Set K =
{1Ak

unk
: k ∈ N}.

We claim that K is Rcwc(E)-tight. Let ε > 0. By our assumption, there exists
a measurable multifunction Lε : Ω −→ Rcwc(E) such that

∀u ∈ H, µ[{ω ∈ Ω : u(ω) �∈ Lε(ω)}] < ε .
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Set Gε(ω) := Lε(ω) ∪ {0}, ∀ω ∈ Ω. Then Gε is a measurable multifunction from Ω
to Rcwc(E) such that

∀k ∈ N, µ[{ω ∈ Ω : (1Ak
unk

)(ω) �∈ Gε(ω)}] = µ[{ω ∈ Ak : unk
(ω) �∈ Lε(ω)}] < ε .

Hence K is Rcwc(E)-tight as desired. Since K is uniformly integrable, by Theorem
2.6, K is c.w.c. in L1

E(µ). By virtue of Theorem 2.2, there exists a sequence (vp) with
vp ∈ co {1Ak

unk
: k ≥ p}, ∀p, such that, for a.e. ω ∈ Ω, (vp(ω))p is weakly Cauchy

in E. Each vp has the form vp =
∑νp
k=p λ

p
k1Ak

unk
, with λpk ≥ 0,

∑νp
k=p λ

p
k = 1.

Set ũp =
∑νp
k=p λ

p
kunk

, ∀p. Then ũp = vp + wp, where wp :=
∑νp
k=p λ

p
k1Ac

k
unk

with
wp −→ 0 a.e. since 1Ac

k
unk

−→
k

0 a.e. We deduce that for a.e. ω ∈ Ω, the sequence

(ũp(ω)) is weakly Cauchy in E, thereby proving the Theorem. �

Theorem 2.9

Let H be a bounded subset of L1
E(µ). Then the following are equivalent:

(a) H has the weak Talagrand property (WTP).

(b) given any sequence (un) in H, there are an increasing sequence (Ak) in F with

limk→∞ µ(Ak) = 1 and a subsequence (unk
) of (un) such that (1Ak

unk
)k is relatively

weakly compact in L1
E(µ) and that (1Ac

k
unk

)k converges a.e. to zero.

(c) given any sequence (un) in H, there exists a sequence (ũn) with ũn ∈ co {um :
m ≥ n}, ∀n, and u∞ ∈ L1

E(µ) such that (ũn) converges a.e. to u∞ for the norm

topology of E.

Proof. (a) =⇒ (b). By Slaby’s decomposition [24], there exist an increasing sequence
(Ak) in F with limk→∞ µ(Ak) = 1 and a subsequence (unk

) of (un) such that
(1Ak

unk
)k is uniformly integrable in L1

E(µ) and that (1Ac
k
unk

)k converges to zero
a.e. Now we claim that the set K := {1Ak

unk
: k ∈ N} has the (WTP). Indeed,

by (a) there exists a subsequence (unkp
)p of (unk

) and a sequence (vp) with vp ∈
co {unkj

: j ≥ p}, ∀p, such that for a.e. ω ∈ Ω, (vp(ω))p converges weakly to
v(ω) in E. Each vp has the form vp =

∑νp
j=p λ

p
junkj

with λpj ≥ 0 and
∑νp
j=p λ

p
j =

1. Set wp =
∑νp
j=p λ

p
j1Akj

unkj
, ∀p. Then it is easily seen that wp(ω) −→ v(ω)

weakly a.e. in E. As wp ∈ co {1Akj
unkj

: j ≥ p}, ∀p, K has the (WTP). Since K
is uniformly integrable, by Ülger-Diestel-Ruess-Schachermayer Theorem (Theorem
2.3), one conclude that K is r.w.c. in L1

E(µ).

(b) =⇒ (c). Let (Ak) and (unk
) according to (b). By Mazur’s Lemma, we may

assume, by extracting a subsequence if necessary, that there exists a sequence (vk)
with vk ∈ co {1Amunm : m ≥ k}, ∀k, such that (vk)k converges a.e. to an element
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v∞ ∈ L1
E(µ). Each vk has the form vk =

∑νk
j=k λ

k
j 1Ajunj , with 0 ≤ λkj ≤ 1,∑νk

j=k λ
k
j = 1. Let ũk =

∑νk
j=k λ

k
junj

, ∀k. Then (ũk) has the desired properties.

(c) =⇒ (a) is obvious. �

Corollary 2.10

Let K be a convex bounded WTP set in L1
E(µ) which is closed for the topology of

the convergence in measure. Let J : K −→ [0,+∞[ be a convex lower semicontinuous

function for the topology of convergence in measure. Then J reaches its minimum

on K.

The preceding corollary generalizes a result due to Levin [19]. (See [9] for details
and references).

Let us mention the following consequence of Theorem 2.9.

Proposition 2.11

Let H be a bounded WTP set in L1
E(µ). Then the following are equivalent:

(a) ∀v ∈ L∞
E′

s
(µ), {〈v(.), u(.)〉 : u ∈ H} is uniformly integrable in L1

R
(µ).

(b) H is relatively weakly compact in L1
E(µ).

Proof. (b) =⇒ (a) being obvious, it is enough to prove that (a) =⇒ (b). We may
suppose that E is separable. Let (un) be a sequence in H. By Theorem 2.9, there
are u∞ ∈ L1

E(µ) and a sequence (ũn) with ũn ∈ co {um : m ≥ n}, such that (ũn)
converges a.e. to u∞ for the norm topology of E. By (a), ∀v ∈ L∞

E′
s
(µ), the sequence

(〈v, ũn〉)n is uniformly integrable, then,by Vitali’s theorem limn→∞
∫
Ω
〈v, ũn〉dµ =∫

Ω
〈v, u∞〉dµ. By virtue of Theorem 1.3, we conclude that H is relatively weakly

compact in L1
E(µ). �

Now we present some nice properties of bounded WTP sequences in L1
E(µ).

Theorem 2.12

Let (un) be a bounded WTP sequence in L1
E(µ). Then the following properties

hold:

(a) There exist an increasing sequence (Ap) in F with limp µ(Ap) = 1, a subsequence

(unk
) of (un), a sequence (ũn) with ũn ∈ co {unk

: k ≥ n} and u∞ ∈ L1
E(µ) such

that, ∀p, (unk|Ap
)k σ(L1, L∞) converges to u∞|Ap and that (ũn(ω)) converges in

norm to u∞(ω) for a.e. ω ∈ Ω.
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(b) If (vn) is a bounded sequence in L∞
E′

s
(µ) converging in measure to v∞ ∈ L∞

E′
s
(µ)

for the norm topology of the strong dual of E and if the sequence (〈vn, un〉−)n is

uniformly integrable in L1
R
(µ), then we have

lim inf
n→∞

∫
Ω

〈vn, un〉dµ ≥
∫

Ω

〈v∞, u∞〉dµ .

(c) If ϕ : Ω×E −→ [0,∞[ is an F ⊗B(E)-measurable integrand such that, ∀ω ∈ Ω,

ϕ(ω, .) is convex lower semicontinuous on E, then we have

lim inf
n→∞

∫
Ω

ϕ(ω, un(ω))µ(dω) ≥
∫

Ω

ϕ(ω, u∞(ω))µ(dω) .

Proof. (a) Repeating the Biting lemma ([9], [24]), we find an increasing sequence
(Ap) in F with limp→∞ µ(Ap) = 1 and a subsequence (u′

n) of (un) such that, for each
p, (u′

n|Ap
) is uniformly integrable. Since (un) is WTP, then (u′

n|Ap
)n is uniformly

integrable and WTP in L1
E(Ap). By virtue of Theorem 2.3, ∀p, (u′

n|Ap
)n is relatively

weakly compact. Consequently, by a straightforward diagonal procedure, there are
u∞ ∈ L1

E(µ) and a subsequence (unk
) such that, for every p, (unk|Ap

)k σ(L1, L∞)
converges to u∞|Ap

.
Since (unk

)k is WTP, by Theorem 2.9 there exist v∞ ∈ L1
E(µ) and (ũn) with

ũn ∈ co {unk
: k ≥ n} such that (ũn) converges a.e. to v∞ for the norm topology of

E.
For any fixed p, and B ∈ F ∩Ap and any x′ ∈ E′, we have∫

B

〈x′, v∞〉dµ = lim
n→∞

∫
B

〈x′, ũn〉 = lim
k→∞

∫
B

〈x′, unk
〉dµ

=
∫
B

〈x′, u∞〉dµ .

Hence 〈x′, v∞〉 = 〈x′, u∞〉 a.e. on Ap, so (ũn(ω)) converges in norm to u∞(ω) for
a.e. ω ∈ Ω. This proves Assertion (a).

Assertion (b) follows from the arguments given in [8]. Let us check (c).
We may suppose that a := lim infn

∫
Ω
ϕ(ω, un(ω))µ(dω) is finite and by extracting

a subsequence that a = limn→∞
∫
Ω
ϕ(ω, un(ω))µ(dω) . Let (ũn) and u∞ ∈ L1

E(µ)
given by Assertion (a). Each ũn has the form ũn(ω) =

∑νn
j=n λ

n
j unj

(ω) with
0 ≤ λnj ≤ 1 and

∑νn
j=n λ

n
j = 1. By convexity, we have

∀ω, ∀n, ϕ(ω, ũn(ω)) ≤
νn∑
j=n

λnj ϕ(ω, unj
(ω)) .
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Hence
lim sup

n

∫
Ω

ϕ(ω, ũn(ω))µ(dω) ≤ a .

By lower semicontinuity of ϕ(ω, .) and by Fatou’s lemma, we get

lim inf
n→∞

∫
Ω

ϕ(ω, ũn(ω))µ(dω) ≥
∫

Ω

ϕ(ω, u∞(ω))µ(dω) .

Hence
lim inf
n→∞

∫
Ω

ϕ(ω, un(ω))µ(dω) ≥
∫

Ω

ϕ(ω, u∞(ω))µ(dω). �

Remarks. (1) Properties (a) and (b) yield a version of Fatou’s lemma in Mathe-
matical Economics. See [9] for a complete bibliography of this subject.

(2) Property (c) is a lower semicontinuity result. It turns out that (c) allows
to state a minimization problem as in the corollary of Theorem 2.9. The details are
left to the reader.

(3) If E is separable and if (un) is bounded and Rwk(E)-tight, then one can
check that u∞(ω) ∈ co w−Ls{un(ω)} a.e. We refer the reader to Amrani-Castaing-
Valadier ([1], Théorème 8) for details.

There is a variant of Theorem 2.12.

Theorem 2.13

Assume that E′
b is separable. Let (un) be a bounded sequence in L1

E(µ) such

that

(i) ∀A ∈ F , HA :=
⋃
n

{ ∫
A
undµ

}
is relatively weakly compact.

(ii) Any vector measure m : F −→ E with bounded variation such that, ∀A ∈ F ,

m(A) ∈ co(HA), admits a density in L1
E(µ).

Then properties (a), (b), (c) in the thesis of Theorem 2.12 hold.

Proof. We sketch only the proof. It is enough to repeat the arguments of the proof
of Theorem 2.12 by noting that, for each p, (u′

n|Ap
) is relatively σ(L1, L∞) compact.

See ([10], Theorem 3.1). �

To end this paper we will discuss some Banach-Saks properties with respect to
a RMS (apq).

Let E be a Banach space. Let a = (apq) be a RMS. The Banach space E has
the Banach-Saks (resp. weak Banach-Saks) property with respect to the RMS (apq)
if any bounded (resp. weakly null) sequence in E, has a summable subsequence
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with respect to (apq) (see [15], p. 75 for reference, cf. also [16], p. 232). Analyz-
ing Theorem 1.2 and 1.3 reveals that theses properties characterize relative weakly
compact and conditionally weakly compact subsets in E. Hence it is noteworthy to
study theses properties and their implications on convergence problems for bounded
sequences in L1

E(µ).
We need first a lemma.

Lemma 2.14
Let H be a Hilbert space and (apq) be a RMS such that

(∗) lim
p→∞

∞∑
q=0

|apq|2 = 0 .

If (xn) is a weakly null sequence in H, then there exists ϕ ∈ Si(N) such that

lim
p→∞

sup
ψ∈Si(N)

∥∥ ∞∑
q=0

apqxϕ◦ψ(q)

∥∥ = 0 .

Proof. W.l.o.g., we may suppose that ‖xn‖ ≤ 1 for all n. Let (εn)n≥1 be a decreasing
sequence in R

+∗ such that
∑∞
n=1 ε

2
n < +∞. Set M = supp

∑∞
q=0 |apq| < +∞ and

n0 = 0. Choose n1 > n0 such that

|〈xn0 , xn1〉| <
ε1

M
.

Take n2 > n1 such that

|〈xn0 , xn2〉| <
ε2

M
and |〈xn1 , xn2〉| <

ε2

M
.

Then by induction, there exists a finite sequence with nk > nk−1 > . . . > n0 such
that

∀j < k, |〈xnj , xnk
〉| < εk

M
.

Take ϕ(k) := nk, ∀k. We shall show that ϕ has the desired property. Let ψ ∈ Si (N).
For every k ∈ N, we have∥∥ ∞∑

i=0

akixϕ◦ψ(i)

∥∥2 =
∞∑
i=0

|aki|2‖xϕ◦ψ(i)‖2

+ 2
∑
j<l

akjakl〈xϕ◦ψ(j), xϕ◦ψ(l)〉

≤
∞∑
i=0

|aki|2 + 2
∑
j<l

|akjakl|
εϕ◦ψ(l)

M

≤
∞∑
i=0

|aki|2 +
2
M

∞∑
l=1

l−1∑
j=0

|akjakl|.εl
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since εϕ◦ψ(l) ≤ εl, ∀l. On the other hand by Hölder inequality

∞∑
l=1

l−1∑
j=0

|akjakl|εl =
∞∑
l=1

|akl|εl
( l−1∑
j=0

|akj |
)

≤
∞∑
l=1

|akl|εlM

≤M

√√√√ ∞∑
l=1

ε2
l

√√√√ ∞∑
l=1

|akl|2 .

Set L :=
∑∞
l=1 ε

2
l . Then we obtain∥∥∥∥∥

∞∑
i=0

akixϕ◦ψ(i)

∥∥∥∥∥
2

≤
∞∑
i=0

|aki|2 + 2
√
L

√√√√ ∞∑
l=1

|akl|2 .

Since by our assumption limp→∞
∑∞
q=0 |apq|2 = 0, the assertion we are after follows

from the preceding inequality. �
Remark 2.15. Let us consider the two following (RMS):

apq =

{
1
p+1 if 0 ≤ q ≤ p

0 if q > p

bpq =

{
2p−q if q > p

0 if q ≤ p .

It is easy to check that (apq) and (bpq) are (RMS). Moreover, for all p, we have

∞∑
q=0

|apq|2 =
1

p + 1
∞∑
q=0

|bpq|2 =
∑
q>p

4p−q =
1
3
> 0 .

Then (apq) satisfies the condition

(∗) lim
p→∞

∞∑
q=0

|apq|2 = 0

whereas (bpq) does not satisfy (∗).
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Now it is worth to observe that the (RMS) which satisfy the condition (∗) are
those for which the spaces L1(S,Σ, ν), where (S,Σ, ν) is a Probability space, have
the weak Banach-Saks property. Indeed let a = (apq) be a RMS that does not satisfy
(∗).

Let Ω = [0, 1] and µ be the Lebesgue measure on Ω. Let us consider the
sequence (rn) of Rademacher functions on [0, 1]. It is well-known that (rn) is an
orthonormal system in the Hilbert space L2([0, 1]) and rn −→ 0 for σ(L1, L∞)
topology. Suppose by contradiction that there exists a subsequence (rnk

) of (rn)
which is summable with respect to the RMS (apq) in L1([0, 1]). Then the sequence
(sp) with sp :=

∑∞
q=0 apqrnq

converges to 0 for the norm of L1, hence converges to
0 in measure. Since (sp) is uniformly integrable in L2([0, 1]), sp −→ 0 for the norm
of L2([0, 1]). As (rn) is an orthonormal system in L2([0, 1]), we deduce that

‖sp‖22 =
∥∥∥ ∞∑
q=0

apqrnq

∥∥∥2

2
=

∞∑
q=0

|apq|2 .

This contradicts the fact that a = (apq) does not satisfy (∗). Hence L1([0, 1]) does
not satisfy the weak Banach-Saks property with respect to the RMS (apq).

Now we are able to produce the following result which generalizes the Szlenk’s
one to (apq)-summability in L1

H where H is a Hilbert space.

Theorem 2.16

Let H be a Hilbert space. Let a = (apq) be a RMS.

(1) If (apq) satisfies the property

(∗) lim
p→∞

∞∑
q=0

|apq|2 = 0 ,

then, for any weakly null sequence (un) in L1
H(µ), there exists ψ ∈ Si(N) such that

lim
p→∞

sup
ϕ∈Si(N)

∥∥∥∥∥
∞∑
q=0

apquψ◦ϕ(q)

∥∥∥∥∥
1

= 0 .

(2) Conversely, if all the spaces L1
R
(S,Σ, ν) have the weak Banach-Saks property

with respect to the RMS a = (apq), then a satisfies

(∗) lim
p→∞

∞∑
q=0

|apq|2 = 0 .
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The assertion (2) follows from the above Remark 2.15.

Proof. We shall divide the proof in two steps.

Step 1. Claim: For any ε > 0, there exists ψ ∈ Si(N) such that

lim sup
p→∞

sup
ϕ∈Si(N)

∥∥∥∥∥
∞∑
q=0

apquψ◦ϕ(q)

∥∥∥∥∥
1

≤ ε .

W.l.o.g. we may suppose that ‖un‖1 ≤ 1 for all n. Let M > max(1, supp
∑∞
q=0 |apq|)

and let ε > 0. As (un) is uniformly integrable, there is α > 0 such that

sup
n

∫
[‖un‖≥α]

‖un‖dµ ≤
ε

3M
.

Set An := [‖un‖ ≥ α], u′
n := 1Anun and u′′

n := 1Ac
n
un. Since ‖u′′

n‖ ≤ α a.e., there
exists v ∈ L∞

H (µ) such that ‖v‖ ≤ α a.e. and a subsequence (u′′
ψ(k)), ψ ∈ Si(N),

such that (u′′
ψ(k))σ(L∞

H , L1
H) converges to v. Hence u′

ψ(k) = uψ(k)−u′′
ψ(k) σ(L1

H , L
∞
H )

converges to −v. Moreover it is obvious that, ∀k, ‖u′
ψ(k)‖1 ≤ ε

3M , hence ‖v‖1 ≤ ε
3M .

As (u′′
ψ(k)−v) σ(L2

H , L
2
H) converges to 0, then in view of lemma 2.14, we may suppose

that

lim
p→∞

sup
σ∈Si(N)

∥∥∥∥∥
∞∑
q=0

apq(u′′
ψ◦σ(q) − v)

∥∥∥∥∥
2

= 0 .

There is pε ∈ N such that p ≥ pε implies

sup
σ∈Si(N)

∥∥∥∥∥
∞∑
q=0

apq(u′′
ψ◦σ(q) − v)

∥∥∥∥∥
2

≤ ε

3
.

Then for all p ≥ pε and ϕ ∈ Si(N), we have∥∥∥∥∥
∞∑
q=0

apquψ◦ϕ(q)

∥∥∥∥∥
1

≤
∥∥∥∥∥

∞∑
q=0

apqu
′
ψ◦ϕ(q)

∥∥∥∥∥
1

+

∥∥∥∥∥
∞∑
q=0

apq(u′′
ψ◦ϕ(q) − v)

∥∥∥∥∥
1

+

∥∥∥∥∥(
∞∑
q=0

apq)v

∥∥∥∥∥
1

≤
∞∑
q=0

|apq|.
ε

3M
+

∣∣ ∞∑
q=0

apq
∣∣.‖v‖1 +

∥∥∥∥∥
∞∑
q=0

apq(u′′
ψ◦ϕ(q) − v)

∥∥∥∥∥
2

≤M.
ε

3M
+ M.

ε

3M
+

ε

3
= ε

thus proving our claim.
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Second Step. Let (un) be a weakly null sequence in L1
H(µ) with ‖un‖1 ≤ 1, ∀n.

According to the first step, we find, by induction, ϕ0, . . . , ϕk in Si(N) such that

(2.16.1) lim sup
p→∞

sup
σ∈Si(N)

∥∥∥∥∥
∞∑
q=0

apquψk◦σ(q)

∥∥∥∥∥
1

≤ 2−k

with ψk := ϕ0 ◦ . . . ◦ ϕk. Let us consider the diagonal sequence ψ(k) := ψk(k), ∀k
and let us show that ψ(.) has the required property of the thesis of Theorem 2.16.
Let θ ∈ Si(N) and k ∈ N be fixed. Define

ϕ(n) :=
{
n if n ≤ k
ϕk+1 ◦ . . . ◦ ϕθ(n)(θ(n)) if n ≥ k + 1 .

Then ϕ ∈ Si(N) and, ∀q ≥ k + 1, ψ ◦ θ(q) = ψk ◦ ϕ(q). Moreover we have

(2.16.2)

∥∥∥ ∞∑
q=0

apquψ◦θ(q)

∥∥∥
1
≤

∥∥∥ k∑
q=0

apquψ(θ(q))

∥∥∥
1

+
∥∥∥ ∞∑
q=k+1

apquψk◦θ(q)

∥∥∥
1

≤
k∑
q=0

|apq|+
∥∥∥ ∞∑
q=0

apquψk◦ϕ(q) −
k∑
q=0

apquψk◦ϕ(q)

∥∥∥
1

≤ 2
k∑
q=0

|apq|+ sup
σ∈Si(N)

∥∥∥ ∞∑
q=0

apquψk◦σ(q)

∥∥∥
1
.

By (2.16.1) and (2.16.2), it follows that

(2.16.3) lim sup
p→∞

sup
θ∈Si(N)

∥∥∥ ∞∑
q=0

apquψ◦θ(q)

∥∥∥
1
≤ 2 lim

p→∞

k∑
q=0

|apq|+ 2−k = 2−k .

Since k is arbitrary, assertion (1) follows immediately from (2.16.3). �

Corollary 2.17

Let H be a Hilbert space and a = (apq) be a RMS which satisfies property

(∗). Let (un) be a bounded sequence in L1
H(µ). Then there exist ψ ∈ Si(N) and

u ∈ L1
H(µ) such that, for all ϕ ∈ Si(N), the sequence

( ∑∞
q=0 apquψ◦ϕ(q))

)
p

converges

in measure to u.
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Proof. By Theorem 2.9, we may suppose that there exists an increasing sequence
(An) in F with limn→∞ µ(Acn) = 0 such that (1Anun) σ(L1, L∞)-converges to u ∈
L1
H(µ) and (1Ac

n
un) converges µ-a.e. to 0. Now we apply Theorem 2.16 to the weakly

null sequence vn = 1An
un − u. Then there exists ψ ∈ Si(N) such that, ∀ϕ ∈ Si(N),

the sequence
( ∑∞

q=0 apqvψ◦ϕ(q)

)
p

converges in L1
H(µ) to 0. Let ϕ ∈ Si(N) be fixed

and set θ = ψ ◦ ϕ. Then

∞∑
q=0

apquθ(q) =
∞∑
q=0

apq1Aθ(q)uθ(q) +
∞∑
q=0

apq1Ac
θ(q)

uθ(q)

=
( ∞∑
q=0

apq

)
u +

∞∑
q=0

apqvθ(q) +
∞∑
q=0

apq1Ac
θ(q)

uθ(q) .

As (apq) is a RMS, the sequence
(( ∑∞

q=0 apq
)
u
)
p

pointwisely converges
to u and the sequence

( ∑∞
q=0 apq1Ac

θ(q)
uθ(q)

)
p

converges µ-a.e. to 0. Hence( ∑∞
q=0 apquθ(q)

)
p

converges in measure to u. �
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Addendum. Most results in this paper were presented without proofs in C.R.
Acad. Sci., t.321, Série I, p. 165-170, 1995. While reviewing the present paper
we received from Prof. Santiago Dı́az, Departamento de Matemática Aplicada II,
Universidad de Sevilla, his article: Weak compactness in L1(µ,X), To appear in

Proc. Amer. Math. Soc. in which he obtains several related results.
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