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ABSTRACT
New characterizations of conditionally weakly compact (resp. relatively weakly
compact) subsets in Banach space F and L}; (1) are presented. We discuss also
several types of convergence in L}E( {t), in particular we generalize Szlenk’s
theorem on Cesaro norm-convergence of weakly null sequences in L]}R (1) to
the norm-summability with respect to a class of regular method of summability
of weakly null sequences in L}J (1) where H is a Hilbert space.

Introduction

Let (2, F, 1) be a complete probability space, E a Banach space, and Lk (u) the
Banach space of Bochner integrable functions equipped with its usual norm. We
discuss here the characterizations of conditionally weakly compact, i.e. sequentially
weakly precompact (resp. relative weakly compact) subsets in a Banach space E and
in L1 (11). We refer to [27] and [13] for recent results on the problem of characterizing
relatively weakly compact (r.w.c.) subsets of E and LL(u). In section 1, new
characterizations of conditionally weakly compact (c.w.c.) (resp. r.w.c.) subsets
in Banach spaces via a class of regular method of summability (RMS) a = (a,,)
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(cf. [15] p. 75) are presented. A subset K C E is c.w.c. (resp. r.w.c.) iff for
any sequence (z,) in K, there exists a subsequence (z,, ) such that the sequence
(sk) with s, = Z;io agqTn, (k € N) is well-defined and weakly Cauchy (resp.
weakly convergent). This characterization is equivalent to the following: for any
sequence (x,) in K, there exists a sequence (Z,) with Z, € co{z, : m > n},
such that (Z,) is weakly Cauchy (resp. weakly convergent). In section 2, several
criteria for c.w.c. and r.w.c. subsets in LL(u) are presented. In particular we show
that a bounded uniformly integrable and ball-conditionally weakly compact-tight
subset in L () is c.w.c. This paper also contains several types of convergence in
L1, () with applications to Mathematical Economics and Minimization problems.
In particular we discuss Banach-Saks property for weakly null sequences in L (u).
This result is as follows: Let H be a Hilbert space, a = (a,,) a RMS such that
lim,, o0 Z;O:o lapg|? = 0 and (u,) a weakly null sequence in L};(u). Then there
exist ¢ € Si(N) such that

=0
1

0
Z Apgq Upop(q)
q=0

lim sup
P e Si(N)

(Si(N) denotes the set of strictly increasing mapping ¢ : N — N).

Most of our proofs are detailed and easy, except for some of them which rely
on deeper results due to Rosenthal [22] and Talagrand [26].

Notations and Preliminaries

We will use the following notions and notations. We denote by
— (92, F, ) a complete probability space,
— E a Banach space,

— E' the topological dual of E, E! (resp. Ej) the vector space E’ equipped with the
o(E', E) (resp. norm) topology.
— Bg (resp. Bg) is the closed ball of center 0 and radius 1 in E (resp. E').

— Ruwk(E) (resp. Rewe(E)) the collection of borelian subsets of E such that its
intersection with any ball of E is relatively weakly (conditionally weakly) compact.

— 6*(., A) is the support function of a subset A of E.

— L(p) is the space of Bochner integrable mapping u : @ — E and L%, (u) is the
topological dual of LL(u) (cf. A. and C. Ionescu Tulcea [18]).
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—If X is a topological space, B(X) is the Borel tribe of X.

— A multifunction T' : @ — B(X) is measurable if its graph Gr(I') belongs to
F @ B(X).

— Si(N) is the set of strictly increasing mappings from N to N.

— A subset H of L (i) is Ryk(E) (resp. Rewe(E))-tight if for every e > 0, there
exists a measurable multifunction I'; : Q@ — Rk (E) (resp. Rewe(E)) such that
VueH, u{w € Q:u(w) € Te(w)}] <e.

—If (x,,) is a sequence in E, w — Ls{z,} is defined by

o0

w— Ls{z,}:= ﬂ {zx: k> n}

n=1

where ﬁa denotes the closure for the o(F, E’) topology.

§1. Weak compactness and conditionally weak compactness in Banach spaces

An infinite matrix (apq)(p,q)enxn is called a regular method of summability (RMS)
if

(1.1) sup,en Z;io |apq| < +00

(1.2) Yg € N, lim,, oo apg =0

(1.3) limpy oo 2210 apg = 1.

It is easy to check that a = (a,q) is a RMS iff for any sequence (x,,) in a Banach

space E, converging to x € E, then the sequence (z!,) given by z/ = Z;io AnqTqs
converges to x. A sequence (x,) in a Banach space is called summable with respect

to a RMS a = (ay,) if the sequence (z,) given by x], = Z;io anqq is well-defined

and converges for the norm of E. A RMS a = (ay,,) is positive if, Vp, ¢, a,q > 0.

Let us mention first an easy lemma before we state the main results.

Lemma 1.1

Let (apq) be a positive RMS and let (x,,) be a sequence in R such that the series
Zcqio apqexq are convergent. Then we have

(1) liminf, o 2, <liminf, o Z;io ApgTq
In particular, if Z,, € co{xy : k > n}, ¥n, then we have

(2) liminf,,_, o z, < liminf, . Z,.
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Proof. (1) let (x,) C R such that the series u, := >~ apgz, are convergent in R.
Let r < liminf, . , = sup,, infy>, xx.
Then there exists a positive integer ng such that k£ > ng implies r < xj. Hence
Vg > ng, apgr < apqxy. Therefore (z;’ino Apq)T < > aen, @pgTq- Consequently we
get
-1 -1
(*) (Z;io apq)r - (Zgio apq)r < Uup — Zgio ApqZq -

Since limy, oo Y 0" apg = 1, and lim,_o Z;ﬁgl apq = 0 by virtue of properties

(1.2) and (1.3) of the RMS and since lim,_, Zgigl apqtq = 0, then by taking the
lim inf in (%), we obtain

TL()fl
r < liminf (up - E apqxq> = liminf u, .
q:

It follows that liminf, o 2, < liminf, Z:;O:o AngTq-

(2) is easy consequence of (1). O

Now we are able to produce the main results of this section.

Theorem 1.2

Let K be a subset of a Banach space E and let a = (a,q) be a positive RMS.
Then the following are equivalent:

(1) K is conditionally weakly compact.

(2) given any sequence (), C K, there exists a subsequence (., )i such that the
sequence (sy)r with s, = Zzio arqTn, (k € N) is well-defined and weakly Cauchy.
(3) given any sequence (x,), C K, there exists a sequence (Z,,), with &, € co{x, :
m > n} such that (Z,) is weakly Cauchy.

Proof. The implication (1) = (2) follows easily from properties of the RMS. Let
us prove (2) = (3).

Since K satisfies (2), K is bounded. Indeed it is enough to check that, Va' € E,
we have 0* (2, K) = sup,cg(2',x) < +oo. Take a sequence (u,) C K such that
limy, 00 (@', up) = 6*(2', K). By (2), there exists a subsequence (uy, ) of (uy), such
that the sequence (vp), with v, := Z;io Apqln, is well-defined and weakly Cauchy.
Hence the sequence ((z',v,)), with (z/,v,) = Z;io apq(T’, Upn,) converge in R to a
point v,. Clearly by obvious properties of the RMS, we have
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6" (¢, K) = lim (', up,)

p—0o0

o0
. . /
= lim inf g Apg (T’ Un,) = Vg < +00.
p—oo £~
q:

Now set M :=sup{||z|| : = € K} and let us prove that K satisfies (3).

Let (z,) C K and let s = > % akey, given by (2). For each 2’ € E', let
rer = limg_ oo (@', sk). According to properties (1.1) and (1.2) of the RMS, it is easy
to construct two strictly increasing sequences of positive integers (NN,,) and (py) such
that

k—1
(1.2.1) Vp, VE>1, Y apg <277 and > ap, <27F.
q>Np q=0

For every k > 1, set A\ := Zf]v:p’,; ap,.q- Then by (1.2.1), we obtain

0<> apg— e S27F 4277+,
q=0

Consequently by property (1.3) of the RMS, we deduce that limj_,o A = 1. Set

Np,

1 -
vk, AZ = )\—kapkq and Ty := z;g)\san .
q:

Then it is clear that ) € co{w,, : ¢ > k}. Moreover, for every k, we have

k-1
B 1
(2", &) — s | = ‘)\_ [<x/,sm> - <x” PILEIE IS apkqx”f‘>] oo
k q=0 Q>Npk
M /
n M(g*’“ +27Pr).,
Ak

1
< |5 @m0

Hence it follows that limy_,o (2, Z) = s,. Whence (%) is weakly Cauchy and
satisfies T, € co{x,, : m > k}, VEk.

Now it remains to prove (3) = (1). By using lemma 1.1, we can show similarly
as in the previous implication that K is bounded. Assume by contradiction that K
is not conditionally weakly compact. Then according to a result of H. P. Rosenthal
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(see [22]), there exist r € R, § > 0 and a sequence (z,,), C K such that the sequence
(A, Bp)nen defined by

A, ={2' € Bg : (z/,x,) >r+6} and B, = {2’ € Bp : (2/,z,,) <r}

is independent. By (3), there exists Z,, € co{z,, : m > n} (n € N) such that (Z,,) is
weakly Cauchy. Each &, has the form &, = Y ;" Al'z; with A7 >0, Y7 AP =
m, > n. Let ng =0, ny =mo+1,...,n541 = my, +1. Then (ng) is a strlctly
increasing sequence such that for all i 75 s s, mp, ] O [, mp, ] = 0.

Now let us consider the following sets

ﬁk A; and Bk ﬁk B;.
1=np =Nk

Then (Ek, Ek) is a sequence of disjoint pairs of subsets in B and is independent.
Indeed, let I and J be two finite, nonempty, disjoint subsets of N. Then we have

(1.2.2) (Qlk) N (QJ Ek) - (Q Ai) N (Q Bz-)

where I' := ;¢ /[, My, ] and J' := ;¢ ;[nk, My, ] are disjoint. Consequently, the
intersection in (1.2.2) is nonempty. On the other hand, for every k, we have

:ceAk:>mxnk Z/\"kx x;)

Mny
> A (r+ ) =r+6
1=ng
and 2’ € B, = (2/,&p,) < Zzn’:fk AEr =,
By invoking again Rosenthal [22], we conclude that (Z,, ) is equivalent to the
unit vector basis of I*. This contradicts the fact that (Z,) is weakly Cauchy, thus
proving the implication (3) = (1). O

Here is an analogous criterion for relative weakly compact subset in a Banach
space where equivalence (1) <= (3) was stated by Ulger [27] and Diestel-Ruess-
Schachermayer [13] by different methods.
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Theorem 1.3

Let K be a subset of a Banach space E and let a = (a,q) be a positive RMS.
Then the following are equivalent:
(1) K is relatively weakly compact.
(2) given any sequence (x,), in K, there exists a subsequence (z, )i such that
the sequence (sy)r with s, = 32 ake®n, (k € N) is well-defined and weakly
convergent.
(3) given any sequence (xy,), in K, there exists a sequence (&,,) with &, € co{x, :
m > n} such that (Z,) is weakly convergent.
(4) given any sequence (z,,)y, in K there exists y such that, Vz' € E’,

linnlgéf@:’, xn) < (2, y).

Proof. The proofs of implications (1) = (2) = (3) follow from the arguments we
used in the proof of theorem 1.2.

(3) = (4) is an immediate consequence of lemma 1.1 applied to the sequences
(2, 20)) and (@, n)).

(4) = (1) follows from a classical characterization of relatively sequentially weakly
compact subset in normed spaces (see e.g. Holmes [17] § 18.A). O

Remark. It would be interesting to address the following question: what happens
if one replace “weakly relatively compactness” by “norm relatively compactness” in
the statement of Theorem 1.3.

The following example shows that, in general, the statement of Theorem 1.3 is
not true if one replace “weakly” by “norm”. Let F = ¢y and let K = {e,, : n € N}
be the unit vector basis of ¢g. Then K is not relatively compact for the norm
topology since for n # m, |le, — em|loc = 1, although K satisfies the following
property: given any sequence (x,), C K, there exists a sequence (Z,) with Z,, €
co{z,, : m > n} (n € N) such that (&,) converges for the norm topology. Indeed
set X = {z, : n € N}. If X is finite, there exists m € N and a subsequence
(xn, )k of (zn)n such that, Vk, z,, = e, so that in this case, we can take, Vk,
Ty = Tp, = en,. If X is infinite, there exist two subsequences (zp, )i and (eg, ) of
(xn)n and (ey) respectively such that, Vk, z,, = e, . Set & = k%rl Zfﬁk eq;» Vk,
then & € co{eq, : i >k} C co{z, : n > k} and (Zx)x converges to 0 for the norm
topology.

§2 - Weak compactness and convergence results in LL (u)

Let (Q,F, 1) be a complete probability space and E a Banach space. We aim to
present in this section some compactness and convergence results in L (u).
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We begin by recalling the following result due to Talagrand ([26], Theorem 1).

Theorem 2.1

Let (uy,) be a bounded sequence in Lk (11). Then there exists a sequence (i, )
with U, € co{u,, : m > n} and two sets A and B in F with u(AU B) = 1 such that
(a) for each w in A, the sequence (i, (w)) is weakly Cauchy,

(b) for each w in B, there exists an integer k such that the sequence (ty(w))n> is
equivalent to the vector unit basis of .

Remark.  Although the thesis is more general than the one given in ([26], Theo-
rem 1), in which (u,) is bounded in L (1), Theorem 2.1 is an easy consequence
of Theorem 1 in ([26]). In the same vein, Diestel-Ruess-Schachermayer obtained a
refinement of Talagrand’s theorem by another method (see [13], lemma 2.5). Indeed
let v, = ||un(.)||, Vn. Then (v,) is a bounded sequence in L (F). By ([9], Théoreme
3.1 et Remarques, p. 60-61), there is a sequence (0,,) with o, € co{v,, : m > n}
such that (9,) converges almost everywhere to some v € L}(F). Each ©,, has the
form 0, = Y ;*  Afv, with0 < AP <land) ,* AP = 1. Extracting a subsequence
if necessary and modifying the v , £ € N, on a negligible set we may suppose that
(U, (w))n converges to v(w) for all w € . Set

Vw e O, M(w) :=1+supt,(w) and hy,( Z A ug(w

Then we can apply Talagrand’s theorem to (h,). There is a sequence (h,,) with
By, € co{hm : m > n} which satisfies conditions (a) and (b) in the thesis of Theorem
2.1. Now it is enough to set i, (w) = M (w)hn(w), Yw € Q.

Now we state our first result which is a direct application of Theorem 1.2. and
Talagrand’s results [26].

Theorem 2.2

Let ‘H be a bounded subset of L (). Then the following are equivalent:
(1) ‘H is conditionally weakly compact.
(2) 'H is uniformly integrable and given any sequence (f,) C H, there exists a
sequence (f,) with f, € co{fm : m > n} such that (f,(w)), is weakly Cauchy in E
for a.e. w e Q.
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Proof. Let us prove (1) = (2). It is well-known that conditionally weakly compact
subsets of L, (1) are uniformly integrable (see [14]). Now let (f,,) be any sequence in
H. Then by Theorem 2.1, there exists a sequence (f,,), with f, € co{fm : m > n},
and two sets, A, B in F with u(AU B) = 1, such that

(a) for each w in A, (f,(w))y is weakly Cauchy in E,

(b) for each w in B, there exists an integer k, such that the sequence (f,(w))n>k
is equivalent to the vector unit basis of I'.

Suppose that the measure of subset B of () is strictly positive. Then by Tala-
grand’s Lemma 4, [26], there exists k such that the sequence (f,)n> is equivalent
to the vector unit basis of I'. But this contradicts the fact that (f,) is c.w.c. since
(fy) lies in the set co(H), which is c.w.c. (see [23] or [7] Theorem 5.E). Therefore
w(B) = 0, and for a.e. w € Q, the sequence (f,(w)) is weakly Cauchy.

Let us prove now (2) = (1). By Theorem 1.2, it is enough to check that given
(fn) € H and (f,) as in (2), the sequence (f,) is weakly Cauchy in LL(u). Let
g € LS[E]. Since (fn(w)), is weakly Cauchy in E for a.e. w € Q, the sequence

({(9(w), fn(w)))n converges a.e. Let

o) i= lim (g(w), Fa(w)) forwg N
where N is a negligible set and ¢(w) = 0 for w € N. Then by Fatou’s lemma,
¢ € L(p) and since ({g, fn))n is uniformly integrable, by Vitali’s theorem, we get

n—oo

lim (g,fn>du=/<ﬂdu
Q Q

thus proving that (2) = (1). O

Concerning r.w.c subsets in L (1) we recall the following which is essentially
due to Ulger [27] and relies on the equivalence (1) <= (3) in Theorem 1.3.

Theorem 2.3 (Ulger-Diestel-Ruess-Schachermayer).

Let E be a Banach space and ‘H be a subset of L,(11). Then the following are
equivalent:
(a) H is relatively weakly compact.
(b) H is uniformly integrable and given any sequence (u,,) in H, there is a sequence
(Up,) with U, € co{umy, : m > n}, Vn, such that (i, (w)) is weakly convergent in E
for almost all w € €.
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The following result is mentioned in Diestel ([12], p. 237). We provide the proof
here for the sake of completeness.

Proposition 2.4

Let E be an arbitrary Banach space, K a nonempty subset of E. Then the
following are equivalent:
(1) K is conditionally weakly compact.
(2) For every € > 0, there exists a conditionally weakly compact set K. such that

KCKE—F&EE.

Let (gp) be a decreasing

Proof. (1) = (2) being obvious, let us prove (2) = (1).
=0, and (K,) be a sequence

sequence of strictly positive numbers with lim, . &,
of conditionally weakly compact subsets in £ such that

(2.3.1) Vp, KCK,+¢, Bg.

We have to show that, given any sequence (z,) C K, there exists a weakly Cauchy
subsequence. By (2.3.1), for every p, and every n, there exists y, € K, such that
on — 21 < ep.

Since each K, is c.w.c., the sequence (y;})n admits a weakly Cauchy subse-
quence. Then by induction we find a sequence (¢y,,) in Si(N) such that

(2.3.2) Vp, (yioo...ogop(n))" is weakly Cauchy in E.

Let us consider the diagonal sequence 1(n) := pgo...o0p,(n), ¥n, and let us prove
that (zy(,)) is weakly Cauchy. Let € > 0 be fixed. Choose p such that €, < 7. Then
for any «’ € By, and for m > k > p, we have

‘(33,, Lop(m) — 'Ti/)(k)>| < |<x,7xw(m) - yi(m)” + |<$,, Lop(k) — yi(k)”
+ (=, yZ(m) - yi(k)H
< 25 + (@ Yy — Vi) |-

. P
Since by (2.3.2), (y%o...ogo,,(n)

. p p _ .
hm’}jj&? (x’,yw(m) — yu)(k)> = 0. Hence there exists p. > p such that m > k > p.

Jn is weakly Cauchy, so is (yy, )n- Therefore

implies |(2', Ty (m) —Tyk))| < 2.5+ 5 = €, proving that (zy,))n is weakly Cauchy. [J

We need a couple of notions which are inspired by ([1] and [26]) before we state
our c.w.c. criteria in Lk(u). Let us recall that Rewe(E) (resp. Ruyk(E)) is the
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class of subsets K € B(E) such that, their intersection with any ball is c.w.c. (resp.
r.w.c) in E. An element K € R.ye(F) (resp. Ryi(E)) is called ball-c.w.c. (resp.
ball-r.w.c). It is clear that R.y.(E) and R, (F) are stable under finite unions and
that they contains the empty set ().

A subset H C LL(p) is called Rewe(E)-tight (resp. Rk (E)-tight) if, for every
e > 0, there exists a measurable multifunction L. from Q into R.y.(E) (resp.
Ruwk(E)) such that

VueH, p{w e Q:u(w) € L.(w)}] < €.

A subset H C L}, (u) has the conditionally weak Talagrand property, shortly, condi-
tionally WTP, (resp. weak Talagrand property, shortly, WTP) if, for any sequence
(fn) C H, there exists a sequence (g,) with g, € co{f,, : m > n}, Vn, such that,
for a.e. w € Q, (gn(w))y is weakly Cauchy (resp. weakly convergent) in E.

There is a folklore Lemma which characterizes the above tightness notion.

Lemma 2.5

Let E be a separable Banach space. Let R be a class of borelian subsets of E
such that: ) € R;A,B € R= AUB € R. Let H be a subset of L},(u). Then the
following are equivalent:

(a) For any € > 0, there exists a measurable multifunction L. : Q@ — R such that

VueH, p{w e Q:u(w) € L.(w)}] < €.

(b) There exists a F ® B(E)-measurable integrand ¢ : Q x E — [0, 400] such that
forallw e Q and allr > 0, {x € E: p(w,x) <r} € R and that

5161711/9<p(w,U(w))u(dw) < +00.

(c) There exists a F @ B(E)-measurable integrand ¢ : Q@ x E — [0, 400] such that
forallw € Q and allT € RT, {x € E: p(w,z) <r} € R and that

lim sup p[{w € Q: p(w,u(w)) > A} = 0.
A—+o0 yeH

Proof. (a) = (b). Let ¢, = 37?7 (p € N). By (a) there exists a measurable
multifunction L, : 4 — R such that

VueH, p{w € Q:u(w) & Ly(w)}] < ep.



434 BENABDELLAH AND CASTAING

Let us consider the multifunctions K, : @ — B(E) (n € NU {c0}) given by:
VYw € Q, Ko(w) = Lo(w), Kp(w) = Lp(w)\Kn-1(w),¥n > 1
and Koo(w) = E\Upen Kn(Ww) = E\U,en Ln(w)

Then it is obvious that each K, (n € NU{oo}) is measurable and the sequence
(Gr(Ky))nenu{so} is @ F ® B(E)-measurable partition of Q2 x E. Set

_J2r if (w,z) € Gr(K,),neN
o, o) = {+oo if (w,z) € Gr(K) -

We claim that ¢ is F ® B(FE)-measurable integrand which satisfies condition (b).
Indeed, let » > 0. If r < 1, {x € E: p(w,x) < r}is empty ; if » > 1, let m be the
}ggg <m+ 1. Then

unique integer such that m <

{(w,2) e AX E: p(w,z) <r}= O Gr(K,) e FRB(E).

n=0
Similarly for all w € 2, we have
{re B pwar)<r}= ] Knw)= ] Lalw) eR
n=0 n=0

It remains to check that sup, ¢y [o, @(w, u(w))p(dw) < +o0.
For each v € H and each n € NU {00}, set

M ={we:uw) e Ky(w)}.

Then (Q2;)nenu{sc} 18 @ F-measurable partition of Q with u(€2;) < e,—1, Vn € N*
and p(Q% ) = 0. Consequently we have

/ (w0, u@)(dw) = 3 / o, u(w))p(do) = 3 2 (@)
Q n=0 " n=0

n

<14) < 400

n=1

3n—1

thus proving the implication (a) = (b).
(b) = (c) follows immediately from Tchebyschev’s inequality. Let us prove (¢) =
(a). For every € > 0, there exists A\ > 0 such that sup, cy p[{w € Q: p(w,u(w)) >
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Ae}] < e. Since ¢ is F ® B(E)-measurable, the multifunction L.(w) := {z € E :
o(w,z) < A}, Vw € Q, is measurable and takes it values in R by (c). Since we have

Vu € Hyu[{w € Q:u(w) € Le(w)}] = pl{iw € Q: p(w,u(w)) > A} <e

(¢) = (a) is proved. O

Now we are able to present our second conditionally weakly compact criterion
in Lp(p).

Theorem 2.6

Let E be a separable Banach space. Assume that H is uniformly integrable and
Rewe(E)-tight subset of Ly (u). Then H is conditionally weakly compact in L, (u1).

Proof. Let € > 0 be fixed. Since H is uniformly integrable, there exists 6 > 0 and

a > 0 such that
sup/ luldp < ° and
ueH Jlju|>al 2

VB e F,u(B) <(5:>sup/|u|d,u<—
ueHr

By our assumption there exists a measurable multifunction Ls : Q@ — Reye(E)
such that
Vu e H, pl{w € N :u(w) & Ls(w)}] < 6.

For each v € H, set A, = [Ju| < a], B, ={w € Q:u(w) € Ls(w)} .
Then we have
u = 1AumBuu + lA;:LmBuu + 1BZU

and

1 4c 1ge Z =
||AmBU+ BUH1_2+2

Set He = {la,nB,u:u € H}. Then it is obvious that
H C Hg +eée EL};(M)

Now we claim that H. is conditionally weakly compact in Lk (). Let (un)n, C H
and vy, := 14, nB,, Un, Yn. Then

vn(w) € (Ls(w) U{0}) Nn Bg
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for all w € Q. Moreover Gs(w) := (Ls(w) U {0}) N'n Bg is conditionally weakly
compact in F because Ls(w) € Rewe(E). By Talagrand’s theorem ([26], Theorem 1),
there exist A € F and a sequence (0,,) with @,, € co{v,, : m > n}, Vn, such that

(a) Vw € A, (0 (w))n is weakly Cauchy in E

(b) for a.e. w € A°, there exists k such that (0, (w)),>k is equivalent to the
unit vector basis of I*.

Now, Yw € Q, 0, (w) € coGs(w) and co(Gs(w)) is conditionally weakly compact
(see [23], or [7] Theorem 5.E). Hence pu(A°) = 0. So we conclude that (0,(w)),
is weakly Cauchy for a.e. w € ). By virtue of Theorem 2.2., H,. is conditionally
weakly compact in L (u). Since H C He + EFL}E(M), then by Proposition 2.3, H is
conditionally weakly compact too. This completes the proof of Theorem 2.4. [J

Remark. Theorem 2.6 is a slight refinement of some results obtained by Pisier [21]
and Bourgain [6].

Similarly we have the following criterion for relatively weakly compact subsets
of LL () (see [1], Théoréme 6, p. 174 for proof).

Theorem 2.7

Let E be a separable Banach space. Let H be a uniformly integrable and
Rk (E)-tight subset of Ly (). Then ‘H is relatively weakly compact in L (p).

The following result provides the connections between “tightness notions” and
“Talagrand’s properties”.

Theorem 2.8

Let E be a separable Banach space. If H is a bounded Rcye(E) (resp. Ryk(E))-
tight subset of L (p), then ‘H is conditionally WTP (resp. WTP) in L, (u).

Proof. We have only to prove the thesis for the R..(E)-tight case, since the proof
of Ry (E)-tight case is similar by invoking Theorem 2.7.

Let (un) C H. By Slaby’s lemma [24], there exists an increasing sequence
(Ag) in F with limg_,oo p(Ax) = 1 and a subsequence (u,, ) such that (14, un,)
is uniformly integrable in L} (u), and that (Lagun,) converges to 0 a.e. Set K =
{1Akunk ke N}

We claim that K is Reye(E)-tight. Let € > 0. By our assumption, there exists
a measurable multifunction L. : Q@ — R.yc(E) such that

Vu € H,pl{w e Q:u(w) € L.(w)}] <e.
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Set G.(w) := L.(w) U{0}, Vw € Q. Then G, is a measurable multifunction from
t0 Rewe(F) such that

VE € N, u[{w € @ (La,un,) (W) & Ge(W)}] = pl{w € Ak up, (@) & Le(w)}] <e.

Hence K is Rewe(E)-tight as desired. Since K is uniformly integrable, by Theorem
2.6, K is c.w.c. in L} (u). By virtue of Theorem 2.2, there exists a sequence (v,) with
vp € co{la, Uy, : k> p}, Vp, such that, for a.e. w € Q, (vy(w)), is weakly Cauchy
in E. Each v, has the form v, = Y77 A1a,up,, with A} > 0, Y37 A} = 1.
Set @y = Y, " Notin,,, ¥p. Then 4, = v, + wy, where wy, == Y77 N 1acu,, with
wp — 0 a.e. since 1A;‘,Unk 70 a.e. We deduce that for a.e. w € 2, the sequence

(tp(w)) is weakly Cauchy in E, thereby proving the Theorem. [J

Theorem 2.9

Let ‘H be a bounded subset of L (). Then the following are equivalent:
(a) H has the weak Talagrand property (WTP).
(b) given any sequence (uy) in H, there are an increasing sequence (Ay) in F with
limy_, oo t(Ax) = 1 and a subsequence (uy, ) of (uy) such that (14, un, ) is relatively
weakly compact in Ly (j1) and that (1acun, )x converges a.e. to zero.
(c) given any sequence (uy,,) in H, there exists a sequence (Uy,) with @, € co{uy, :
m > n}, Vn, and us € Ly (u) such that (a@,) converges a.e. to u. for the norm
topology of E.

Proof. (a) = (b). By Slaby’s decomposition [24], there exist an increasing sequence
(Ag) in F with limg o p(Ax) = 1 and a subsequence (uy, ) of (uy) such that
(14, un, )k is uniformly integrable in Li(x) and that (1 AclUn, ) converges to zero
a.e. Now we claim that the set K := {14, u,, : k € N} has the (WTP). Indeed,
by (a) there exists a subsequence (un, )p of (un,) and a sequence (v,) with v, €
co {unkj : j > p}, ¥p, such that for ae. w € Q, (v,(w)), converges weakly to
v(w) in E. Each v, has the form v, = 77 A?unkj with A > 0 and Y377 N =
1. Set w, = Z;’p:p )\flAkJ_ Un,,, Vp. Then it is easily seen that wp(w) — v(w)
weakly a.e. in E. As w, € co{lAkj Un,, :J 2 p}, Vp, K has the (WTP). Since K
is uniformly integrable, by Ulger-Diestel-Ruess-Schachermayer Theorem (Theorem
2.3), one conclude that K is r.w.c. in LL(u).

(b) = (c). Let (Ax) and (uy,) according to (b). By Mazur’s Lemma, we may
assume, by extracting a subsequence if necessary, that there exists a sequence (vy)
with v, € co{la, un, : m > k}, Vk, such that (vy)r converges a.e. to an element
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Voo € Ly(u). Each vy has the form v, = >t ALA Up,, with 0 < MY <1,
SR AT =1 Let ap = 3278, Mup,, Vk. Then (uy) has the desired properties.

(c) = (a) is obvious. J

Corollary 2.10

Let K be a convex bounded WTP set in L} () which is closed for the topology of
the convergence in measure. Let J : K — [0, +00o[ be a convex lower semicontinuous
function for the topology of convergence in measure. Then J reaches its minimum
on K.

The preceding corollary generalizes a result due to Levin [19]. (See [9] for details
and references).
Let us mention the following consequence of Theorem 2.9.

Proposition 2.11

Let H be a bounded WTP set in L (u). Then the following are equivalent:
(a) Vv € LSS (1), {(v(.),u(.)) : uw € H} is uniformly integrable in L} (p).
(b) H is relatively weakly compact in L},(p).

Proof. (b) = (a) being obvious, it is enough to prove that (a) = (b). We may
suppose that F is separable. Let (u,) be a sequence in H. By Theorem 2.9, there
are U, € Lk(p) and a sequence (i) with @, € co{u,, : m > n}, such that (a,)
converges a.e. to U for the norm topology of E. By (a), Vv € L%, (1), the sequence
((v,Up))yn is uniformly integrable, then,by Vitali’s theorem limnioo Jo (v, ) dp =
Jo (v, use)dp. By virtue of Theorem 1.3, we conclude that H is relatively weakly
compact in L (p). O

Now we present some nice properties of bounded WTP sequences in L (u).

Theorem 2.12

Let (uy) be a bounded WTP sequence in L,(11). Then the following properties
hold:
(a) There exist an increasing sequence (Ap) in F with lim,, 1(A,) = 1, a subsequence
(tn,,) of (uy), a sequence (@,) with @, € co{u,, : k > n} and us € Lk(u) such
that, Vp, (tun,a,)x o(L', L) converges to uss|A, and that (u,(w)) converges in
norm to us (w) for a.e. w € Q.
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(b) If (v,,) is a bounded sequence in L5, () converging in measure to v € L5 (1)
for the norm topology of the strong dual of E and if the sequence ({(vy,upn)™ )y Is
uniformly integrable in L (u), then we have

liminf/ (Up, Up)dp > / (Voo Uoo )1t .
(c) If o : Q2 x E — [0,00[ is an F ® B(F)-measurable integrand such that, Yw € €,
©(w,.) Is convex lower semicontinuous on E, then we have

timinf | (e, (@)i(d) > [ oot @)n(d).
Proof. (a) Repeating the Biting lemma ([9], [24]), we find an increasing sequence
(Ap) in F with lim,, ., p(A,) = 1 and a subsequence (u},) of (u,) such that, for each
ps (uy, 4,) 1s uniformly integrable. Since (un) is WTP, then (up A, )n is uniformly
integrable and WTP in L}, (A,). By virtue of Theorem 2.3, Vp, (u;” Ap)n is relatively
weakly compact. Consequently, by a straightforward diagonal procedure, there are
Uso € Li(p) and a subsequence (up, ) such that, for every p, (un,|a,)x o(L', L>)
converges t0 Uso|4, -

Since (un, )r is WTP, by Theorem 2.9 there exist vo, € LL () and (@) with
Uy, € co{Uy, : k> n} such that (4,) converges a.e. to v for the norm topology of
E.

For any fixed p, and B € F N A4, and any 2’ € E’, we have

/(x',voo)du: lim [ (z/,a,)= lim [ (2 up, )du
B

n—oo |p k—oco B

= /B<:C’,uoo>d,u.

Hence (2/,v) = (2, uso) a.e. on Ay, so (U,(w)) converges in norm to s (w) for
a.e. w € (). This proves Assertion (a).

Assertion (b) follows from the arguments given in [8]. Let us check (c).
We may suppose that a := liminf, [, ¢(w,u,(w))u(dw) is finite and by extracting
a subsequence that a = limy, .« [, @(w, un(w))pu(dw) . Let (G,) and us € L (1)
given by Assertion (a). Each @, has the form @,(w) = Y™ Alup,(w) with

j=n"\j
0 <A} <1and S 2 A} = 1. By convexity, we have

Yw, Vn, p(w, Ty, (w Z)\” (W, Un; (w)) .
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Hence
limsup/ o(w, Uy (w))pu(dw) < a.
Q

n

By lower semicontinuity of ¢(w,.) and by Fatou’s lemma, we get

mmgéﬂ%%wmmm>/wwﬂﬁmm@w

n—oo Q

Hence
mmﬁkﬂ%%@mmmz/¢wwﬂmqum

n—oo [¢)

Remarks. (1) Properties (a) and (b) yield a version of Fatou’s lemma in Mathe-
matical Economics. See [9] for a complete bibliography of this subject.

(2) Property (c) is a lower semicontinuity result. It turns out that (c) allows
to state a minimization problem as in the corollary of Theorem 2.9. The details are
left to the reader.

(3) If E is separable and if (u,) is bounded and R, (FE)-tight, then one can
check that ue(w) € €0 w— Ls{u,(w)} a.e. We refer the reader to Amrani-Castaing-
Valadier ([1], Théoreme 8) for details.

There is a variant of Theorem 2.12.

Theorem 2.13

Assume that Ej is separable. Let (u,) be a bounded sequence in L,(11) such
that

(i)VAe F, Ha:=U, { [, undu} is relatively weakly compact.
(ii) Any vector measure m : F — FE with bounded variation such that, VA € F,
m(A) € e6(Ha), admits a density in LL(p).

Then properties (a), (b), (c) in the thesis of Theorem 2.12 hold.

Proof. We sketch only the proof. It is enough to repeat the arguments of the proof
of Theorem 2.12 by noting that, for each p, (u/, | Ap) is relatively o (L', L>°) compact.
See ([10], Theorem 3.1). O

To end this paper we will discuss some Banach-Saks properties with respect to
a RMS (apq).

Let E be a Banach space. Let a = (ap,) be a RMS. The Banach space E has
the Banach-Saks (resp. weak Banach-Saks) property with respect to the RMS (apq)
if any bounded (resp. weakly null) sequence in E, has a summable subsequence
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with respect to (ap,) (see [15], p. 75 for reference, cf. also [16], p. 232). Analyz-
ing Theorem 1.2 and 1.3 reveals that theses properties characterize relative weakly
compact and conditionally weakly compact subsets in £. Hence it is noteworthy to
study theses properties and their implications on convergence problems for bounded
sequences in L (u).

We need first a lemma.

Lemma 2.14
Let H be a Hilbert space and (ap,) be a RMS such that
li =0
(%) e q:z;) [

If (x,,) is a weakly null sequence in H, then there exists ¢ € Si(N) such that

lim  sup ” Z%q%om)!! =0.
p—oo
PeSI(N) g0
Proof. W .l.o.g., we may suppose that ||z, | < 1 for all n. Let (¢,),>1 be a decreasing
sequence in R** such that Y ° | &2 < +o0. Set M = sup, Z;io lapg| < 400 and
ng = 0. Choose n; > ng such that
€1
|<l‘n07$n1>‘ < M .
Take no > nq such that
£9 3
‘<In0,xn2>‘ < M and |<‘/L‘n17$n2>| < M :

Then by induction, there exists a finite sequence with ng > ng_1 > ... > ng such

that
€k

M’
Take (k) := nk, Vk. We shall show that ¢ has the desired property. Let ¢ € Si(N).
For every k € N, we have

I Z i oy | Z |akil* 2 g0 12

Vi <k, (&n;on)| <=

1=0
+2) arjan(@pop(s)s Tpou)
i<l
> Epor(l
Z|akz +22|ak3ak1| atll
=0 i<l
oo [—1

< Z lari|? + — ZZ lagjar|.€

lle
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since €,04(1) < €1, VI. On the other hand by Hélder inequality

oo -1 o -1
> lajauler =Y lawler (Y law)
I=135=0 =1 j=0

o0
< Z lakile;M
=1

o0

o0
M| D ety D lawl.
=1

=1 =

IN

Set L := "2, 7. Then we obtain

o0
Z ki ooy (i)
i=0

Since by our assumption lim,_, E;io lape|? = 0, the assertion we are after follows
from the preceding inequality. [

2 o0 o
SZ\GM\Q-F?\/Z Z\CLMP-
i=0 1=1

Remark 2.15. Let us consider the two following (RMS):

1 .
_{p—ﬂ if0<q<p
Qpg =

0 ifg>p

2P~7 ifg>p
bpq = .

0 ifg<p.

It is easy to check that (a,q) and (b,,) are (RMS). Moreover, for all p, we have
- 1
Z |apq’2 =0
q=0 pt1
i|b P=) 4= oo
= pq 3

q>p

Then (a,q) satisfies the condition
o0
. 2
(+) plgngozolapql =0
q:

whereas (b,q) does not satisfy (x).
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Now it is worth to observe that the (RMS) which satisfy the condition (x) are
those for which the spaces L'(S,Y,v), where (S, ¥, v) is a Probability space, have
the weak Banach-Saks property. Indeed let a = (a,4) be a RMS that does not satisfy

Let © = [0,1] and p be the Lebesgue measure on 2. Let us consider the
sequence (r,) of Rademacher functions on [0,1]. It is well-known that (r,) is an
orthonormal system in the Hilbert space L2([0,1]) and 7, — 0 for o(L!, L*)
topology. Suppose by contradiction that there exists a subsequence (ry,, ) of (ry,)
which is summable with respect to the RMS (a,,) in L*([0,1]). Then the sequence
(sp) with s) := Z;o:o pqTn, converges to 0 for the norm of L', hence converges to
0 in measure. Since (s,) is uniformly integrable in L*([0,1]), s, — 0 for the norm
of L?([0,1]). As (r,,) is an orthonormal system in L?(]0,1]), we deduce that

2 = 2 - 2
lspll3 = || D= aparn|, = D lapal*-
q=0 q=0

This contradicts the fact that a = (ap,) does not satisfy (). Hence L'([0,1]) does
not satisfy the weak Banach-Saks property with respect to the RMS (a,q).

Now we are able to produce the following result which generalizes the Szlenk’s
one to (a,,)-summability in L}, where H is a Hilbert space.

Theorem 2.16
Let H be a Hilbert space. Let a = (a,q) be a RMS.
(1) If (apq) satisfies the property

. 2
(+) Jim 3 Jaygl* =0,
q=0
then, for any weakly null sequence (u,) in L, (1), there exists 1 € Si(N) such that

oo
Z ApqUipop(q)
q=0

lim sup =0.

P00 LeSi(v)

1

(2) Conversely, if all the spaces L (S,3,v) have the weak Banach-Saks property
with respect to the RMS a = (ay,q), then a satisfies

(*) plilg‘)zo |apq|* = 0.
q:
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The assertion (2) follows from the above Remark 2.15.
Proof. We shall divide the proof in two steps.
Step 1. Claim: For any € > 0, there exists ¢ € Si(N) such that

Z apquwow(Q)

q=0

limsup sup <e.

P00 ,eSi(N)

W.lo.g. we may suppose that |[u,[[; <1 for all n. Let M > max(1,sup, > = |ap,|)
and let € > 0. As (uy,,) is uniformly integrable, there is a > 0 such that

supJ/ Jumlldp < ==
n Junl>al 3M

Set A, = [[Jun|l > @, uj, := 14, u, and u;, := 1gcuy. Since ||uy|| < a a.e., there

exists v € L3} (u) such that [[v]| < a a.e. and a subsequence (uj,,), ¥ € Si(N),
such that (uy,,)o (L%",L}{)‘ converges to v. Hence “}p(k) = u¢(k) Uy (k) (L}qu?)
converges to —v. Moreover it is obvious that, VE, [luj,,,[l1 < 357, hence [jv]ly < 357
As (uy), ) —v) o (L%, L%) converges to 0, then in view of lemma 2.14, we may suppose
that

=0.
2

Zam Unhoo(q) — V)

q=0

lim sup
P00 5 eSi(v)

There is p. € N such that p > p. implies

Z g ( u1f’00(¢1) )

q=0

sup
oeSi(N)

Wl ™

Then for all p > p. and ¢ € Si(N), we have

[ee] oo
/
Z ApqUipop(q)|| < Z UpqUypop(q)|| T
q=0 1 q=0 1

o0
Z apq(u;',w(q) —v)
q=0 1

1
SZMM%HZ%WM%
= q=0

g
< M.+ £
s 3M+3 c

oo
Z aPCI(u;//Jow(q) —v)
q=0 2

thus proving our claim.
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Second Step. Let (u,) be a weakly null sequence in Lk (n) with ||u,l1 < 1, Vn.
According to the first step, we find, by induction, ¢y, ..., ¢ in Si(N) such that

<27k

(2.16.1) limsup sup
P—o0 ;eSi(N)

Z GpqUypyo0(q)

q=0

with ¥ := @ o...0pg. Let us consider the diagonal sequence ¥ (k) := ¢ (k), Vk
and let us show that 1(.) has the required property of the thesis of Theorem 2.16.
Let 6 € Si(N) and k € N be fixed. Define

(n)_{n ifn<k
PIVZ  prsr 00 ppmy(0(n) ifn>k+1.

Then ¢ € Si(N) and, Vg > k + 1, ¢ 0 0(q) = ¥, o ¢(q). Moreover we have

oo k o]
H Zapqu¢09(Q) ‘1 < H Z%q“w(e(q» ‘1 + H Z ApqUapy06(q) Hl
q=0 q=0 q=k+1
k [e'e) k
(2.16.2) < Z |apq| + H Z ApqUsypyop(q) — Z apqumow(q)‘ L

<zz|apq|+ o Hzamuwwu

ceSi(N)

By (2.16.1) and (2.16.2), it follows that

k
(2.16.3) limsup sup H Zapquwog(q)H <2 lim Z |apy| +27F =27F.
P—=%  9eSi(N) P =0

Since k is arbitrary, assertion (1) follows immediately from (2.16.3). O

Corollary 2.17

Let H be a Hilbert space and a = (a,q) be a RMS which satisfies property
(x). Let (u,) be a bounded sequence in Li;(u). Then there exist ¢ € Si(N) and
u € L}, (u) such that, for all ¢ € Si(N), the sequence (Z;O:o apquwocp(q)))p converges
in measure to u.
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Proof. By Theorem 2.9, we may suppose that there exists an increasing sequence
(A,) in F with lim, . u(AS) = 0 such that (14, u,) o(L', L°)-converges to u €
L1 (p) and (14c uy) converges p-a.e. to 0. Now we apply Theorem 2.16 to the weakly
null sequence v, = 14, u,, —u. Then there exists 1) € Si(N) such that, V¢ € Si(N),
the sequence (Zg’;o apqvq/,w(q))p converges in Li (u) to 0. Let ¢ € Si(N) be fixed
and set 6 = 1 o . Then

o0 o0 o0
E ApqUo(q) = § :apqlAe@)u@(q) + E :apqlA(?(q)u@(q)
q=0 q=0 q=0

o0

= <Z apq)“ + Zo ApqVg(q) + Zo apqlAZ;(q)u@(Q) :
q= q=

q=0

As (apq) is a RMS, the sequence ((ZZOZO apq)u)p pointwisely converges

to u and the sequence (Z;io apqlA?)(q)u@(q))p converges p-a.e. to 0. Hence

(> ). converges in measure t O
g—0 Upqo(q) ), CONVerges easure to u.
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Addendum. Most results in this paper were presented without proofs in C.R.
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Universidad de Sevilla, his article: Weak compactness in L'(u, X), To appear in
Proc. Amer. Math. Soc. in which he obtains several related results.
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