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Abstract

We give results about embeddings, approximation and convergence theorems
for a class of general nonlinear operators of “integral type” in abstract modular
function spaces. Thus we extend some previous result on the matter.

1. Introduction

In [5] there was investigated the problem of approximation of functions f : G →
R = [−∞,+∞] over an abelian, locally compact topological group, belonging to
some modular function spaces, by means of nonlinear integral operators

(
Twf

)
(t) =

∫
G

Kw

(
s, f(s+ t)

)
ds, w ∈ W,

in the sense of modular convergence, where the kernel functions Kw satisfy the
Lipschitz condition. The integration here was meant in the sense of Haar measure

∗ This paper was written when this author was a visiting Professor at the Dipartimento di Matem-
atica, Universitá di Perugia, Italy.
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on G. This problem was treated in [1], in case of modulars in generalized Orlicz
spaces, but applying a generalized Lipschitz condition to the family (Kw)w∈W .

Recently, we defined general moduli of continuity in case when G does not need
to be a group, but it is closed under some operation, (see [2]). Going further in
this direction, we shall give here results concerning embeddings, approximation and
convergence at this degree of generality (see also [6]), and we shall show some new
examples. In particular, our results generalize those of [4, 5].

2. Nonlinear operators of integral type

First, we recall some notation from [2]. We take a non empty set G with an ope-
ration “ · ” : G×G→G and we suppose U to be a filter of subsets of G with a
basis Uo. Moreover let µ be a σ-additive and σ-finite measure on a σ-algebra Σ of
subsets of G. By L0(G) we denote the space of extended real valued functions on G,
Σ-measurable and finite µ-a.e. with equality µ-a.e., and by M0(G) we denote the
space of all Σ-measurable, extended real functions on G. Let

Al
t =

{
s ∈ G : ts ∈ A, s 
∈ A or ts 
∈ A, s ∈ A

}

Ar
t =

{
s ∈ G : st ∈ A, s 
∈ A, or st 
∈ A, s ∈ A

}
,

for any A ⊂ G and t ∈ G. The system G = {G,U ,Σ, µ} is called left-correctly
filtered [resp. right-correctly filtered], if the following conditions are satisfied:

1. U contains a basis Uo⊂Σ;
2. if A ∈ Σ and µ(A) < +∞ then Al

t ∈ Σ, [resp. Ar
t ∈ Σ] for every

t ∈ G and µ(Al
t)

U−→ 0
[
resp. µ

(
Ar

t
U−→ 0

)]
;

3. if f ∈ L0(G) then f(t·) ∈L0(G) and f(·t) ∈ L0(G), for all t ∈ G.

Now, let χA be the characteristic function of a set A⊂G. We say that a linear
subspace F ⊂ L0(G) is a correct subspace of L0(G) if:

1. A ∈ Σ and µ(A) < +∞ imply χA ∈ F ;
2. f ∈ F and A ∈ Σ imply fχA ∈ F .

It is easily seen that if F⊂L0(G) and f ∈ F then |f | ∈ F . Moreover, L0(G) is
always a correct subspace of itself.

A linear subspace F⊂L0(G) will be called left-translation invariant (l-τ -
invariant) [resp. right-translation invariant (r-τ -invariant)] if f ∈ F implies
f(t·) ∈ F [resp. f ∈ F implies f(·t) ∈ F ] for every t ∈ G. If F is both l-τ -invariant
and r-τ -invariant, it will be called translation invariant (τ -invariant).
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Suppose that F is a correct translation invariant subspace of L0(G). Let ‖ ‖ be
a monotone extended seminorm on F , i.e. for all f, g ∈ F and c ∈ R there
holds: 0 ≤ ‖f‖ ≤ +∞, ‖f + g‖ ≤ ‖f‖ + ‖g‖, ‖cf‖ = |c| ‖f‖, |f | ≤ |g| implies
‖f‖ ≤ ‖g‖. Then {F , ‖ ‖} will be called a seminormed subspace of L0(G). Let
S : F→R be such that for all f, g ∈ F and c ∈ R there holds: S (f + g) ≤
Sf + Sg, |S(cf)| = |c| |Sf | and |f | ≤ |g| implies S|f | ≤ S|g|. The functional S will
be called then a functional of integral type on F . Let us remark that we have
S|f | ≥ 0 and |Sf | ≤ S|f | for all f ∈ F .

A functional S of integral type on a seminormed subspace {F , ‖ ‖} of L0(G) is
called continuous at f = 0 if the following property holds: for every ε > 0 there is
a δ > 0 such that for every f ∈ F with ‖f‖ < δ there holds |Sf | < ε; it is easily
seen that this condition implies also the continuity at every f ∈ F , i.e. for every
ε > 0 there is a δ > 0 such that for every g ∈ F with ‖f − g‖ < δ there holds
|Sf − Sg| < ε. It is also easily seen that for a continuous functional S of integral
type, the set {|Sf | : f ∈ F , ‖f‖ = 1} is bounded. The norm of S will be defined
then by

‖S‖ = sup
{
|Sf | : f ∈ F , ‖f‖ = 1

}
.

Obviously we have also

‖S‖ = sup
{ |Sf |
‖f‖ : f ∈ F , f 
= 0

}
, and |Sf | ≤ ‖S‖ ‖f‖ .

We recall now the notion of an (L,ψ)-Lipschitz kernel.
Let {F , ‖ ‖} be a seminormed subspace of L0(G) and let L : G→R

+
0 = [0,+∞[

be such that L ∈ F and 0 < ‖L‖ < +∞. We shall use also the notation p(t) =
L(t)/‖L‖; evidently, ‖p‖ = 1. Moreover let ψ : G× R

+
0 →R

+
0 be a function such

that ψ(·, u) is a Σ-measurable function for all u ≥ 0 and ψ(t, 0) = 0, ψ(t, u) > 0 for
u > 0, ψ(t, u) is a nondecreasing and continuous function of u ≥ 0, for every t ∈ G.
The class of all such functions ψ will be denoted by Ψ.

A function K : G×R→R is called a kernel function if K(·, u) ∈ F with
‖K(·, u)‖ < +∞, for all u ≥ 0 and K(t, 0) = 0 for each t ∈ G. A kernel function is
called (L,ψ)-Lipschitz if

∣∣K(t, u) −K(t, v)
∣∣ ≤ L(t) ψ(t, |u− v|)

for all t ∈ G and u, v ∈ R. Taking v = 0 we get the inequality |K(t, u)| ≤ L(t) ψ(t, |u|)
for all t ∈ G, u ∈ R. It is easily seen that if F is a correct left-translation in-
variant [resp. right-translation invariant] subspace of L0(G), f ∈ F and K is an
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(L,ψ)-Lipschitz kernel, then for every t ∈ G the function K
(
·, f(t·)

)
: G→R [resp.

the function K
(
·, f(·t)

)
: G→R] is Σ-measurable and belongs to L0(G) (see [1]).

Let {F , ‖ ‖} be a seminormed correct, left-translation invariant [resp. right-
translation invariant] subspace of L0(G) and let S : F→R be a functional of integral
type on F . Let K be a kernel function. We define operators T l : DomT l→M0(G)
and T r : DomT r→M0(G) by formulae

(
T lf

)
(t) = SK

(
·, f(t·)

)
,

(
T rf

)
(t) = SK

(
·, f(·t)

)
(1)

for µ a.e. t ∈ G, where DomT l [resp. Dom T r] is the set of functions f ∈L0(G)
such that K

(
·, f(t·)

)
∈ F [resp. K

(
·, f(·t)

)
∈ F ] and that the function T lf : G→R

[resp. T rf : G→R] is Σ-measurable. If all constant functions on G belong to DomT l

[resp. DomT r], we call T l [resp. T r] a nonlinear operator of integral type. In
the following T ◦ will mean always any of the operators T l and T r.

Example: Let T ◦ be a nonlinear operator of integral type. Suppose f to be a
constant function, i.e. f(s) = C for all s ∈ G. Then f ∈ DomT ◦ and

(
T ◦C

)
(t) = SK

(
·, C

)

for t ∈ G. In particular taking f ∈ DomT ◦ arbitrarily and choosing a fixed to ∈ G

such that |f(to)| < +∞, we have (T ◦f(to))(t) = SK
(
·, f(to)

)
for t ∈ G. Taking

t = to, we get (
T ◦f(to)

)
(to) = SK

(
·, f(to)

)
. (2)

Thus, if f ∈ DomT ◦ ∩L0(G) then (2) holds for µ-a.e. t ∈ G.

3. Embedding theorem

In order to study problems of embeddings and of approximation by means of non-
linear operators of integral type, we have to recall some notions concerning modulars
and modular spaces in a correct subspace F of L0(G) (see [2, 5]).

A modular η : F→R
+
0 = [0,+∞] is a functional satisfying 1◦ η(f) = 0 iff

f = 0, 2◦ η(−f) = η(f), 3◦ η(αf + βg) ≤ η(f) + η(g), for α, β ≥ 0, α+ β = 1,
f, g ∈ F . A modular space generated by η is defined by Fη = {f ∈ F : η(λf)→0
as λ→0+} . η is called monotone if f, g ∈ F and |f | ≤ |g| imply η(f) ≤ η(g);
η is called finite if A ∈ Σ and µ(A) < +∞ imply χA ∈ Fη; η is called absolutely
finite if it is finite and if for every ε > 0 and every λo > 0 there exists a δ > 0 such
that every set B ∈ Σ with µ(B) < δ satisfies η(λo χB) < ε; η is called absolutely
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continuous if there exists an α > 0 such that for any f ∈ F with η(f) < +∞,

there hold the following conditions: 1. for every ε > 0 there exists a set A ∈ Σ with
µ(A) < +∞ such that η(αfχG\A) < ε, 2. for every ε > 0 there exists δ > 0 such
that for every B ∈ Σ with µ(B) < δ, then η(αfχB) < ε.

Supposing F to be left-translation invariant [resp. right-translation invariant]
we say that η is left-τ -bounded [resp. right-τ -bounded] if there exist a number
c ≥ 1 and h : G→R

+
0 such that h ∈ M0(G), with h(t) U−→0 such that for every

f ∈ F with η(f) < +∞ there holds the inequality η(f(t·)) ≤ η(cf) + h(t) [resp.
η(f(·t)) ≤ η(cf)+h(t)] for all t ∈ G. Let η and ρ be two monotone modulars on F ,
and let the function ψ : G× R

+
0 →R

+
0 be defined as before. We say that the triple

{ρ, ψ, η} is properly directed, if there is a set Go ∈ Σ with µ(G \ Go) = 0 such
that for every λ ∈ ]0, 1] there exists a Cλ ∈ ]0, 1] such that

ρ[Cλ ψ(t, f(:))] ≤ η[λ f(:)]

for all t ∈ Go and f ∈L0(G). Here “ : ” means the variable concerning the modulars.
If (Ft(:))t∈G is a family of functions Ft ∈ L0(G), then the above condition implies the
inequality ρ

[
Cλ ψ(t, Ft(:))

]
≤ η

[
λ Ft(:)

]
for every t ∈ Go. One may always suppose

Cλ to be a nondecreasing function of λ ∈ ]0, 1]. As regard the above relation, see [1].
Let ‖ ‖ be a monotone, extended seminorm on L0(G). We shall say that

a modular ρ on L0(G) is norm convex, if for every Σ-measurable function
p : G→R

+
0 such that p ∈ L0(G) and ‖p‖ = 1 and for every function F : G×G→R

measurable on G×G, there holds the inequality

ρ
[
‖p(·) F (·, :)‖

]
≤

∥∥p(·) ρ(F (·, :))
∥∥;

here “ · ” means the variable concerning the seminorm ‖ ‖ and as before “ : ” denotes
the variable concerning the modular ρ.

Now, we are able to formulate the following embedding theorem:

Theorem 1

Let Uo⊂ Σ a basis of U , let the space L0(G) be translation invariant and let

‖ ‖ be a monotone, extended seminorm on L0(G). Let ψ ∈ Ψ and let η, ρ be two

monotone modulars on L0(G) such that η is right-τ -bounded [resp. left-τ -bounded],

ρ is norm convex and the triple {ρ, ψ, η} is properly directed. Let K : G×R→R

be an (L,ψ)-Lipschitz kernel function and denote p(t) = L(t)/‖L‖ for t ∈ G. Let S
be a functional of integral type with ‖S‖ 
= 0 and let T l [resp. T r] be a nonlinear

operator of integral type defined by (1). Then, supposing the function h from the
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definition of τ -boundedness of η to be bounded by a constant ho < +∞ on G, the

following conditions are satisfied:

(a) for every ε > 0 there exists a U ∈ U ∩Σ such that

ρ

(
Cλ

‖L‖ ‖S‖T
◦f

)
≤ η(cλf) + ho ‖pχG\U‖ + ε ,

(b) ρ
(

Cλ

‖L‖ ‖S‖T
◦f

)
≤ η(cλf)+ho, for sufficiently small λ ∈]0, 1[ and f ∈ DomT ◦∩

(L0(G))η,
(c) if moreover ρ is a convex modular or if η is such that η(f(: t)) = η(f) [resp.

η(f(t :)) = η(f)] for all f ∈ L0(G) with η(f) < +∞ and all t ∈ G, then

T ◦ : DomT ◦ ∩ (L0(G))η→(L0(G))ρ .

Proof. (In case of T l).

(a) Let f ∈ DomT l∩(L0(G))η, then K
(
·, f(t·)

)
∈L0(G) for µ-a.e. t ∈ G. Applying

properties of S and the (L,ψ)-Lipschitz condition for K, we easily obtain
∣∣∣∣ Cλ

‖L‖ ‖S‖ (T lf)(t)
∣∣∣∣ ≤

∥∥p(·)Cλψ(·, f(t·))
∥∥

for all λ ∈]0, 1[ and µ-a.e. t ∈ G. Now, we apply monotony and norm convexity
of ρ and after that, monotony of η and the fact that {ρ, ψ, η} is properly directed.
This leads to the inequality

ρ

(
Cλ

‖L‖ ‖S‖ (T lf)(:)
)

≤
∥∥p(·) η(λf(: ·))

∥∥ ; (3)

as before, ‖ ‖ acts on the variable “ · ” and ρ, η on the variable “ : ”. Now, let
λo ∈]0, 1[ be so small that η (λof) < +∞ and let λ ∈]0, λo[. Then we have, by
right-τ -boundedness of η, the inequality η (λf(: t)) ≤ η (cλf) + h(t) for µ-a.e.
t ∈ G. Hence, by monotony of ‖ ‖ and other its properties, we get for any
U ∈ U ∩ Σ

‖p(·) η(λf(: ·))‖ ≤ η(cλf) + ‖p hχU‖ + ho ‖pχG\U‖ . (4)

But h(t) U−→0, so for any ε > 0 there is U ∈ U such that h(t) < ε for
t ∈ U. Hence, by monotony of ‖ ‖, ‖phχU‖ ≤ ε ‖p‖ = ε. Thus, by (3)
and (4), we obtain (a).
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(b) follows from (a) immediately estimating ‖p χG\U‖ by ‖p‖ = 1, and then taking
ε→0+ at the right-hand side of the inequality in (a).

(c) Suppose ρ to be convex and let ε > 0 be so small that ε < 2 ho. We choose
λ1 ∈]0, λo[ so small that η (cλ1f) < ε/2 and that (b) holds. We may take Cλ

in such a manner that Cλ ↘ 0 as λ ↘ 0. Then we obtain

ρ

(
ε

2ho
Cλ

‖L‖ ‖S‖ T lf

)
≤ ε

2ho
ρ

(
Cλ

‖L‖ ‖S‖ T lf

)
≤ η(cλf) +

ε

2

for λ ∈]0, λ1[. But λ↘ 0 is equivalent to Cλ ↘ 0, and since f ∈ (L0(G))η, we
may deduce that ρ(δ T lf)→0 as δ→0+. Hence T lf ∈ (L0(G))ρ.

Supposing η to satisfy the condition η(f(: t)) = η(f) for f ∈ L0(G) with η(f) <
+∞ and for t ∈ G, we may take in the definition of left-τ -boundedness of η, c = 1
and h(t) = 0 identically in G. Thus we get on the right-hand side of the inequality
in (b), only the term η(λf). This shows that T lf ∈ (L0(G))ρ. �

4. Approximation theorem

We shall estimate the ρ-error of approximation of f by T ◦, i.e. ρ[a(T ◦f − f)], for
f ∈ DomT ◦ ∩ (L0(G))η+ρ and sufficiently small a > 0. The following auxiliary
notations will be needed (see also [1]):

Ak =
{
t ∈ G : |f(t)| > k

}
, Bk =

{
t ∈ G : |f(t)| < 1

k

}
, Ck = G \

(
Ak ∪Bk

)
,

rk = sup
1
k≤|u|≤k

∣∣∣∣ 1u SK(·, u) − 1
∣∣∣∣

for k = 1, 2, . . . and

ro = sup
k
rk = sup

u �=0

∣∣∣∣ 1u SK(·, u) − 1
∣∣∣∣ .

We shall need also of the notions of left and right η-moduli of continuity ωl
η, ω

r
η :

L0(G)×U→[0,+∞], defined by ωl
η(f, U) = supt∈U η(f(t :) − f(:)) and ωr

η(f, U) =
supt∈U η (f(: t)− f(:)). Here in case of ωl

η we assume L0(G) to be left-translation
invariant, and in case of ωr

η we assume L0(G) to be right-translation invariant. For
the definitions and properties, see [2].
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Theorem 2

Let us suppose that Uo⊂Σ. Let the space L0(G) be translation invariant and

let ‖ ‖ be a monotone, extended seminorm on L0(G).
Let ψ ∈ Ψ and let η, ρ be two monotone modulars on L0(G) such that η is

right τ -bounded [resp. left τ -bounded], ρ is norm convex and the triple {ρ, ψ, η}
is properly directed. Let K : G×R→R be an (L,ψ)-Lipschitz kernel function and

denote p(t) = L(t)/‖L‖ for t ∈ G. Let S be a functional of integral type with

‖S‖ 
= 0 and let T l [resp. T r] be a nonlinear operator of integral type, defined by

(1). Suppose the function h from the definition of τ -boundedness of η to be bounded

by a constant ho on G. Let f ∈ DomT ◦ ∩ (L0(G))η+ρ and let λ ∈]0, 1[ and a > 0 be

so small that η(2cλf) < +∞, ρ(16af) < +∞ and 16a‖L‖ ‖S‖ < Cλ. Then for an

arbitrary set A ∈ Σ and arbitrary U ∈ U ∩ Σ there holds the inequality

ρ
[
a(T ◦f − f)

]
≤ ωo

η

(
λf, U

)
+

[
2η (2cλf) + ho

] ∥∥pχG\U
∥∥ +Rk, (5)

where

Ro = ρ
(
2arof

)
,

Rk = η
(
λfχG\A

)
+ ρ

(
16afχG\A

)
+ η

(
λfχA∩Ak

)
+ ρ

(
16afχA∩Ak

)
+ η

(
λfχA∩Bk

)
+ ρ

(
16afχA∩Bk

)
+ ρ

(
8arkf

)
, for k = 1, 2, . . . ,

with T ◦ = T l and ωo
η = ωr

η [resp. T ◦ = T r and ωo
η = ωl

η].

Proof. (In case of T l). Applying properties of S we obtain

∣∣(T lf)(t) − f(t)
∣∣ ≤ S

∣∣K(
·, f(t·)

)
−K(·, f(t))

∣∣ +
∣∣SK(·, f(t)) − f(t)

∣∣ .
Hence we get, by monotony of ρ,

ρ
[
a(T lf − f)

]
≤ J1 + J2,

where

J1 = ρ
[
2aS|K(·, f(: ·)) −K(·, f(:))|

]
, J2 = ρ

[
2a|SK(·, f(:)) − f(:)

]
. (6)

(L,ψ)-Lipschitz condition yields

∣∣K(·, f(: ·)) −K(·, f(:))
∣∣ ≤ L(·) ψ

(
·, |f(: ·) − f(:)|

)
.
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Thus, by monotony of ρ and properties of S we have

J1 ≤ ρ
[
‖p(·)2a‖L‖ ‖S‖ ψ(·, |f(: ·) − f(:)|)‖

]
.

Now we apply the inequality 16a‖L‖ ‖S‖ ≤ Cλ, norm convexity and monotony of
ρ, and the fact that the triple {ρ, ψ, η} is properly directed. Then we obtain

J1 ≤
∥∥p(·)η[λ(f(: ·) − f(:))

]∥∥ ≤ J1
1 + J2

1 ,

where

J1
1 =

∥∥p(·)χU (·) η[λ(f(: ·) − f(:))]
∥∥, J2

1 =
∥∥p(·)χG\U (·) η[λ(f(: ·) − f(:))]

∥∥ ,
with an arbitrary U ∈ U ∩ Σ. But

η
[
λ(f(: t) − f(:))

]
≤ ωr

η

(
λf, U

)
, t ∈ U.

Hence, by monotony of the ‖ ‖ we get J1
1 ≤ ωr

η(λf, U).

In order to estimate J2
1 , we apply right τ -boundedness of η, with h(t) ≤ ho, and

the monotony of η, obtaining easily the following inequality:

η
[
λ(f(: t) − f(:))

]
≤ 2η

(
2cλf

)
+ ho.

Hence, by monotony of ‖ ‖, we have J2
1 ≤

[
2η(2cλf) + ho

]∥∥pχG\U
∥∥. Consequently

J1 ≤ ωr
η

(
λf, U

)
+

[
2η(2cλf) + ho

] ∥∥pχG\U
∥∥ .

In order to finish the proof, we have to show that J2 ≤ Rk for k = 0, 1, 2, . . .
First we prove this for k = 0.

It is easily seen that |SK(·, f(t))−f(t)| ≤ ro |f(t)|. Hence we get, by monotony
of ρ, the inequality J2 ≤ ρ(2arof) = Ro. Now, let k ≥ 1. Taking A ∈ Σ arbitrarily,
we have

G = D1∪D2∪D3∪D4 with D1 = G\A, D2 = A∩Ak, D3 = A∩Bk, D4 = A∩Ck,

and the sets D1, D2, D3, D4 ∈ Σ are pairwise disjoint. Hence J2 ≤ J1
2 +J2

2 +J3
2 +J4

2 ,

where
J i

2 = ρ
[
8a|SK(·, f(:)) − f(:)|χDi

(:)
]
, i = 1, 2, 3, 4.
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Let P ∈ Σ be arbitrary. By (L,ψ)-Lipschitz condition, |K(t, u)| ≤ L(t) ψ(t, |u|) for
t ∈ G, u ∈ R. Hence |K(·, f(t)χP (t))| ≤ L(·) ψ(·, |f(t)| χP (t)) for t ∈ G. Applying
monotony of S, we thus easily obtain

∣∣SK(·, f(t)) − f(t)
∣∣ χP (t) ≤ S

∣∣K(·, f(t)) χP (t)
∣∣ + |f(t)| χP (t)

≤
∥∥p(·) ‖L‖ ‖S‖ ψ(·, |f(t)| χP (t))

∥∥ + |f(t)| χP (t)

for all t ∈ G. Hence, applying monotony of ρ, inequality 16a‖L‖ ‖S‖ ≤ Cλ, again
monotony of ρ, norm convexity of ρ, monotony of ‖ ‖ and the fact that {ρ, ψ, η} is
properly directed, we obtain

ρ
[
8a|SK(·, f(:)) − f(:)|χP (:)

]
≤ η(λfχP ) + ρ(16afχP ) .

Applying this inequality for P = D1, P = D2 and P = D3, we get the inequalities

J i
2 ≤ η

(
λfχDi

)
+ ρ

(
16afχDi

)
, for i = 1, 2, 3. (7)

Now, J4
2 is estimated analogously as J2 in case k = 0, since supposing t ∈ D4 =

A ∩ Ck we have

1
k
≤ |f(t)| ≤ k and so

∣∣SK(·, f(t)) − f(t)
∣∣ ≤ rk

∣∣f(t)
∣∣ .

Thus, J4
2 ≤ ρ (8arkf) for k ≥ 1. This, together with the inequality (7), shows that

J2 ≤ Rk for k ≥ 1. �

5. Convergence theorem

Taking a family K = (Kw)w∈W , where W is an abstract set of indices, we shall ask
now the question, under what conditions the functions T ◦

wf approximate f in the
sense of the modular ρ, i.e. we shall look for conditions under which ρ[a(T ◦

wf − f)]
tends to zero. In order to make sense to statement of this kind we suppose that there
is given a filter VW of subsets of W and the above convergence will be understood
in the sense of this filter, i.e. ρ[a(T ◦

wf − f)] VW−→0.
Here we will assume that the filter U of subsets of G has a basis Uo with Uo ⊂ Σ.
A family K = (Kw)w∈W of kernel functions is called a kernel. Let

(T l
wf)(t) = SKw(·, f(t·)), (T r

wf) (t) = SKw(·, f(·t)) , w ∈ W.
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We denote IΓl = (T l
w)w∈W and Dom IΓl =

⋂
w∈W Dom IΓl and similarly for IΓr,

see also [1]. Let L = (Lw)w∈W , where Lw : G → R
+
0 , L ∈L0(G) and L =

supw∈W‖Lw‖ < +∞; we write pw = Lw/‖Lw‖. Moreover let ψ ∈ Ψ. The ker-
nel K is (L, ψ)-Lipschitz, if the kernel functions Kw are (Lw, ψ)-Lipschitz for
all w ∈ W. An (L, ψ)-Lipschitz kernel K is called a singular kernel, if for every
U ∈ U ∩ Σ there hold the following conditions:

∥∥pwχG\U
∥∥ VW−→0, rk(w) = sup

1
k≤|u|≤k

∣∣∣∣ 1uSKw (·, u) − 1
∣∣∣∣ VW−→0 ,

for k = 1, 2, . . ..
A singular kernel is called strongly singular if additionally ro(w) =

supk rk(w) VW−→0 (for this terminology see [1]). Now we are able to prove the fol-
lowing convergence theorem.

Theorem 3

Let the system G = {G,U ,Σ, µ} be right-correctly filtered [resp. left-correctly

filtered] and let the space L0(G) be translation invariant. Let ‖ ‖ be a monotone,

extended seminorm on L0(G). Let ψ ∈ Ψ and let η, ρ be two monotone modulars on

L0(G) such that η is right τ -bounded [resp. left τ -bounded], absolutely finite and

absolutely continuous, ρ is norm convex and the triple {ρ, ψ, η} is properly directed.

Let K = (Kw)w∈W be a singular (L, ψ)-Lipschitz kernel and let at least one of the

following two conditions be satisfied:

(a) K is strongly singular;

(b) ρ is finite and absolutely continuous. Then, for every function f ∈ Dom IΓl ∩
(L0(G))η+ρ [resp. f ∈ Dom IΓr ∩ (L0(G))η+ρ] there is a constant ao > 0 such that

ρ
[
a(T l

wf − f)
] VW−→0, 0 < a ≤ ao [resp. ρ [a(T r

wf − f)] VW−→0, 0 < a ≤ ao] .

Proof. The proof is similar to that in [1] and therefore we give only its outline
here. Due to the assumptions on the system G and on L0(G) and η, we have
ωr
η(λof, U) U−→0 for sufficiently small λo > 0 ([2], Theorem 2). Let us choose an

arbitrary ε > 0. Fixing λo and U ∈ Uo we get ωr
η(λof, U) < ε/4. By singularity of

K, we may find a W1 ∈ VW such that J1 < ε/2 for w ∈ W1, where J1 is defined
by (6).

Supposing (a) we get our result from (5) with k = 0 immediately. If we suppose
(b) then ρ and η are both absolutely continuous. Since f ∈ (L0(G))η+ρ we have
µ(A ∩Ak)→0 as k→+∞, for any set A ∈ Σ such that µ(A) < +∞; moreover taken
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such a set A, we have also η(λfχA∩Bk
)→0 and ρ(16afχA∩Bk

)→0 as k→+∞. Thus
we infer that taking k sufficiently large, the terms in the formula for Rk with the
exception of the last one are smaller than ε/24 each of them, if only λ > 0 and
a > 0 are sufficiently small. Now keeping k fixed we derive from singularity of K

that ρ (8ark(w)f) < ε/4 for all w ∈W2, where W2 is a set from VW. This finish the
proof. For further details see [1]. �

6. Examples

1. We give first examples of functionals S of integral type on a seminormed subspace
{F , ‖ ‖} of L0(G), where F is correct and translation invariant. Let A ∈ Σ and
let ‖f‖p = ‖f‖ = (

∫
A

|f(t)|pdµ)1/p, 1 ≤ p < +∞. Moreover let g ∈ Lq(G), where
1/p + 1/q = 1 if 1 < p < +∞, and q = +∞ if p = 1. Let A ∈ Σ be arbitrary. We
take

Sf =
∣∣∣∣
∫
A

f(t)g(t)dµ
∣∣∣∣

or we may also take

Sf =
∫
A

f(t)g(t)dµ, supposing g ≥ 0 .

It is easily seen that S are continuous functionals of integral type over F = Lp(G).

2. We provide now some examples of (L,ψ)-Lipschitz, singular and strongly singular
kernels K which are not Lipschitz in the usual sense, i.e. with ψ(t, u) = |u|, taking
Sf =

∫
G

f(t)dµ and ‖f‖ = ‖f‖1. For a sake of simplicity we put W = N =
{1, 2, 3, . . .}, VW = the filter of neighborhoods of +∞ in N = N∪ {+∞}. Let Ln ∈
L1(G), for n ∈ N, ‖Ln‖1→1 as n→+∞ and

∫
G\U Ln(t)dµ(t)→0 as n→+∞, for

every U ∈ Uo.
Next we define Hn(u) putting for u ≥ 0,

Hn(u) =
{

1
n

(
u− k

n

)}1/2

+
k

n
, u ∈

[
k

n
,
k + 1
n

]
, k = 0, 1, 2, . . . , n = 1, 2 . . . .

Then we extend the definition for u < 0 on putting Hn(u) = −Hn(−u). We define
Kn(t, u) = Ln(t)Hn(u) for n ∈ N. It is easily to show that K = (Kn)n∈N is a kernel
satisfying an (L, ψ)-Lipschitz condition with L = (Ln)n∈N and ψ(t, u) =

√
|u|, but

does not satisfy a Lipschitz condition ψ(t, u) = |u|. Moreover
∫
G
Kn(t, u)dµ(t) con-

verges uniformly to u on every interval [a, b[⊂ R
+, where 0 < a < b ∈ R, as

n→+∞. Hence we deduce the singularity of K immediately.
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Let us remark that in a similar manner one can define also a strongly singular
kernel. For example we modify the definition of Hn(u) near the point u = 0 in such
a way that ∣∣∣∣Hn(u)

u
− 1

∣∣∣∣ ≤ 1
n
, 0 < u ≤ 1

n
.

3. Next, we consider some particular cases of our theory.
(a) Let G = ([0, 1], ·) with Lebesgue measure m; the operation “ · ” is here the

usual multiplication. Then G is a semigroup and m is not invariant. Here, we can
consider a net of linear operators of the form

(Trf)(t) =
∫ 1

0

wr(s)f(st)ds, r ∈ R
+ ,

where (wr)r∈R+ satisfies the assumptions i)
∫ 1

0
wr(t)dt = 1 for every r ∈ R

+,

ii) limr→+∞
∫ 1−δ

0
wr(t)dt = 0, for every δ ∈]0, 1/2[; we take the family

Uo=
{
[1 − δ, 1] : δ ∈]0, 1/2[

}
as a basis of the filter U . Operators of this form

are called average, or moment operators (see [3]).
Moreover, a general filtered family of nonlinear integral operators becomes now

of the form

(Twf) (t) =
∫ 1

0

Kw

(
s, f(st)

)
ds .

(b) Let G be the semigroup G = ([0,+∞[,+) be provided with a measure µ
defined on the σ-algebra Σ of all Lebesgue measurable subset of [0,+∞[ by means of
µ(A) =

∫
A
g(t)dm(t), A ∈ Σ where m is the Lebesgue measure and g is a non

negative function, locally integrable with respect to m. It is easy to show that,
denoting by U the filter of right neighborhoods of zero, G = {G,U ,Σ, µ} becomes
correctly filtered. Now, we may take a filtered family of integral operators

(Twf) (t) =
∫ +∞

0

Kw

(
s, f(t+ s)

)
dµ(s) .

(c) Let G be the semigroup G = (No,+), No = {0, 1, 2, 3, . . .} with a counting
measure.

Here we can consider a filtered family of integral operators of the form

(Twf)j =
+∞∑
i=0

Kw,i (ti+j), Twf =
(
(Twf)j

)+∞
j=0

,
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where f is now the sequence (ti)+∞
i=0 . Let ‖(ti)+∞

i=0 ‖ =
∑+∞

i=0 |ti|. Take as U the family
of neighborhoods of +∞ in No = {No,+∞}, i.e. U ∈ U when the complement
No\U is finite or empty. The sets Un = {n, n+1, n+2, . . .} where n = 0, 1, 2, . . . form
a basis Uo of this filter. Then singularity of the kernel K means that pw,i

VW−→0 for
every i = 0, 1, 2, . . . separately and

sup
1
k≤|u|≤k

∣∣∣∣∣
1
u

+∞∑
i=0

Kw,i(u) − 1

∣∣∣∣∣
VW−→0

for every k = 1, 2, . . . . Moreover we have the η-modulus of continuity

ωη

(
f, Un

)
= sup

j≥n
η
(
t·+j − t·

)
.

(d) The last example may be generalized as follows. Let a = (ai)+∞
i=0 be

a sequence of non negative numbers and let µ be the measure on No defined by
µ(A) =

∑
i∈A ai for every A⊂No. Then the family IΓ = (Tw)w∈W consists of

operators Twf =
(
(Twf)j

)+∞
j=0

, where (Twf)j =
∑+∞

i=0 aiKw,i(ti+j) .
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