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Abstract

We introduce the convolution of functions in the vector valued spaces H1(Lp)
andH1(Lq) by means of Young’s Theorem, and we use this to show that Bloch
functions taking values in certain space of operators define bilinear bounded
maps in the product of those spaces for 1 ≤ p, q ≤ 2. As a corollary, we get a
Marcinkiewicz-Zygmund type result.

Preliminaries

In all what follows, we shall write Lp (p ≥ 1) for the space Lp(σ), where σ is the
normalized Lebesgue measure in the torus T = {w ∈ C; |w| = 1}. As usual, the
norm of a function in Lp (or Lp(X) in the vector valued case) will be expressed ||f ||p
(or ||f ||p,X).

Given a Banach complex space X, the Hardy space H1(X), whose elements
are functions on T with values in X, is the closure of the set of all analytic X-
valued polynomials, denoted by P(X), in the Lebesgue-Bochner space L1(X), and
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coincides with the set of functions in L1(X) whose negative Fourier coefficients
vanish. Observe that a function f in H1(X) can be regarded as an analytic function
in D if we define f(z) =

∫
T
f(eit)P (z, e−it)dσ(eit), where P is the Poisson kernel

P (z, w) = 1−|z|2
|1−wz|2 and its derivative f ′ is another analytic function on D, but not

necessarily defined on T. For any 0 < r < 1 we get another function fr ∈ H1(X),
given by fr(eit) = f(reit) and following the usual notation we write M1,X(f, r) for
||fr||1,X . This norm grows with r, and the limit as r → 1 is precisely ||f ||H1(X).
This is just the same as in the scalar case, but the reader should be aware that there
are many “scalar theorems” that depend strongly on the geometry of the Banach
space in order to keep or not true in the vector valued case. We refer the reader
to [3, 7] for details on vector valued Hardy spaces in this setting.

One of the most important results in the theory of Hardy spaces which is not
always true in the vector valued case is that the dual space of H1 is BMOA. For a
complex Banach space X, BMOA(X) is the space of all functions f ∈ H1(X) such
that

||f ||∗,X = sup
I

1
|I|

∫
I

||f(eit) − fI ||dσ(eit) < ∞,

where the supremum is taken over all intervals I ⊂ T, |I| stands for the normalized
Lebesgue measure of I and fI = 1

|I|
∫
I
f(eit)dσ(eit).

Note that ||f ||∗,X is a seminorm, and if we define the norm by

||f ||BMOA(X) =
∥∥∥∥
∫

T

f(eit)dσ(eit)
∥∥∥∥ + ||f ||∗,X

then BMOA(X) is a Banach space.
For any Banach space X one has that BMOA(X∗) is continuously included in(

H1(X)
)∗, in the following sense: if f ∈ BMOA(X∗) and g ∈ P(X), then

∣∣∣∣
∫

T

〈
f(eit), g(e−it)

〉
dσ(eit)

∣∣∣∣ ≤ ||f ||BMOA(X∗)||g||1,X .

In the case that X has the UMD property (which was introduced in terms
of vector valued martingales, and is equivalent to the boundedness of the Hilbert
transform on Lp(X) for any 1 < p < ∞), then the pairing given by 〈f, g〉 as the
integral above gives the duality

(
H1(X)

)∗
= BMOA(X∗).

It is well known that Lp is a UMD space only for 1 < p < ∞.
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(The reader is referred to [3, 6] for information on the duality problem in the
vector valued setting).

Next we recall Kahane inequalities, which in their trigonometric version (see
[14]) state that, for any 0 < p < ∞ and any finite family (xn) in X, we have

∫
T

∥∥∥∥∥
n∑

k=0

xke
i2kt

∥∥∥∥∥ dσ(eit) ∼
(∫

T

∥∥∥ n∑
k=0

xke
i2kt

∥∥∥p

dσ(eit)

)1/p

.

Here, and in the sequel, A ∼ B stands for C1A ≤ B ≤ C2A for absolute
constants C1 and C2. In this case the constants only depend on p (and not on
X). If we substitute xk by scalars αk we get the so called Khintchine inequalities
because, by Plancherel, we have that

(∫
T

∣∣∣ n∑
k=0

αke
i2kt

∣∣∣2dσ(eit)

)1/2

=

(
n∑

k=0

|αk|2
)1/2

.

In the same way (though not so classical), it holds that

∫
T

∥∥∥∥∥
n∑

k=0

xke
i2kt

∥∥∥∥∥ dσ(eit) ∼
∥∥∥∥∥

n∑
k=0

xkz
2k

∥∥∥∥∥
BMOA(X)

.

A simple proof of this can be seen in [4].

An analytic function on D with values in X, say f(z) =
∑∞

n=0 xnz
n, is called a

Bloch function if
sup
|z|<1

(1 − |z|)||f ′(z)|| < ∞.

The set B(X) of Bloch functions taking values in X, denoted by B when X = C, is a
Banach space if we endow it with the norm max{||f(0)||, ||f ||B(X)}, where || · ||B(X)

stands for the supremum above (which is a seminorm).
Let us mention that for the Bloch norm we have that∥∥∥∥∥

∞∑
n=1

xnz
2n

∥∥∥∥∥
B(X)

∼ sup
n∈N

||xn|| .

This follows from the scalar case (see [1, 2]) using the easy fact that

||f ||B(X) = sup
||x∗||≤1

||x∗f ||B.

As usual, the constant C in the proofs may vary from line to line.
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The result

Recalling Young’s Theorem, which says that the convolution f ∗ g of two functions
f ∈ Lp and g ∈ Lq, when 1

p + 1
q ≥ 1, makes sense and verifies ||f ∗ g||r ≤ ||f ||p||g||q

if 1
r = 1

p + 1
q − 1, we can give the following definition.

Definition 1. Let 1 ≤ p, q, r ≤ ∞ such that 1
r = 1

p + 1
q − 1. Then, for any

f ∈ L1(Lp) and any g ∈ L1(Lq) we define their convolution f ∗ g as the Lr-valued
function given by

f ∗ g(eiθ) =
∫

T

f
(
ei(θ−t)

)
∗ g(eit)dσ(eit).

To justify our definition simply mention that the function f(ei(θ−t)) ∗ g(eit) is
easily seen to be measurable in T×T, and using Fubini and Young theorems we get
that the integral

∫
T
||f(ei(θ−t)) ∗ g(eit)||rdσ(eit) is finite for almost every eiθ ∈ T.

Then f ∗ g is a measurable function.

Remark 1. It is easy to see that if f(eit) =
∑N

−N ϕne
int and g(eit) =

∑N
−N ψne

int

then

f ∗ g(eiθ) =
N∑
−N

ϕn ∗ ψne
inθ.

Now we can state the following result whose elementary proof is left to the
reader.

Proposition 1
Given f ∈ L1(Lp) and g ∈ L1(Lq), the convolution f ∗g is in L1(Lr) and verifies

||f ∗ g||L1(Lr) ≤ ||f ||L1(Lp)||g||L1(Lq).
Moreover, if f ∈ H1(Lp) and g ∈ H1(Lq) then f ∗ g ∈ H1(Lr).

Our next result is the key point for the main theorem, this is the extension of a
classical result of Hardy and Littlewood (see [11, 9]) to the Lp-valued case for certain
values of p. We refer the reader to [4, 5] for a proof of a more general statement,
and further information about the Banach spaces for which the same result holds.
For instance, it is shown there that the result doesn’t extend to the rest of values
of p.

Theorem 1 (See [5], Lemma 1.1)
Let 1 ≤ p ≤ 2. There is an absolute constant C > 0 such that(∫ 1

0

(1 − s)M2
1,Lp

(f ′, s)ds
)1/2

≤ C||f ||1,Lp

for any f ∈ H1(Lp).
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Proof. By a theorem of Rosenthal ([15]) we know that Lp is isometrically contained
in L1 for 1 < p ≤ 2. Therefore we only have to prove the result for p = 1.

Let f be an analytic polynomial with values in L1, say f(z) =
∑N

n=0 ϕnz
n.

Given eit ∈ T we shall write ft for the scalar polynomial with coefficients (ϕn(eit));
note that then we have (ft)′ = (f ′)t, and we shall write simply f ′

t . We have∫ 1

0

(1 − s)M2
1,L1

(f ′, s)ds =
∫ 1

0

(1 − s)
(∫

T

||f ′(seiθ)||1dσ(eiθ)
)2

ds

=
∫ 1

0

(1 − s)
(∫

T

∫
T

|f ′
t(se

iθ)|dσ(eit)dσ(eiθ)
)2

ds

=
∫ 1

0

(1 − s)
(∫

T

∫
T

|f ′
t(se

iθ)|dσ(eiθ)dσ(eit)
)2

ds

=
(∫ 1

0

(1 − s)g(s)
∫

T

∫
T

|f ′
t(se

iθ)|dσ(eiθ)dσ(eit)ds
)2

(where g is a certain norm one function in L2((1 − s)ds))

=
(∫

T

( ∫ 1

0

(1 − s)M1(f ′
t , s)g(s)ds

)
dσ(eit)

)2

≤
(∫

T

( ∫ 1

0

(1 − s)M2
1 (f ′

t , s)ds
)1/2

dσ(eit)
)2

,

and using the scalar inequality (see [11]) for each t we get∫ 1

0

(1 − s)M2
1,L1

(f ′, s)ds ≤ C

(∫
T

||ft||1dσ(eit)
)2

= C

(∫
T

∫
T

|ft(eiθ)|dσ(eiθ)dσ(eit)
)2

= C

(∫
T

∫
T

|ft(eiθ)|dσ(eit)dσ(eiθ)
)2

= C||f ||2H1(L1) . �

We shall prove now our main result:

Theorem 2
Let X be a complex Banach space, let 1 ≤ p, q ≤ 2 and take 1 ≤ r ≤ ∞ such

that 1
r = 1

p + 1
q − 1. Then there exists an absolute constant C such that∥∥∥ ∑
n≥1

Tn(f̂(n) ∗ ĝ(n))
∥∥∥
X

≤ C||f ||H1(Lp)||g||H1(Lq)||h||B ,

for any f ∈ P(Lp), g ∈ P(Lq) and h(z) =
∑

n≥0 Tnz
n ∈ B

(
L(Lr, X)

)
, where

L(Lr, X) stands for the space of bounded operators from Lr into X.
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Proof. Let ϕn = f̂(n) ∈ Lp and ψn = ĝ(n) ∈ Lq for each n. Check that∫ 1

0

(1 − s3)2s3n−1ds =
2/3

n(n+ 1)(n+ 2)
,

so we can write∑
n≥1

Tn(ϕn ∗ ψn) =
3
2

∫ 1

0

(1 − s3)2
∑
n≥1

nsn−1Tn((n+ 1)ϕns
n ∗ (n+ 2)ψns

n)ds .

Let u(z) = zf(z) and v(z) = zg(z). Using that if Sn ∈ L(Lr, X) and φn ∈ Lr then∫
T

( ∞∑
n=0

Sne
int

) (
N∑

n=0

φne
−int

)
dσ(eit) =

N∑
n=0

Sn(φn)

and Remark 1 one can obtain that the sum in the above integral is the same as∫
T

h′(seiθ)
[
(u′s ∗ (v′s + gs))(e−iθ)

]
eiθdσ(eiθ) =: A(s) .

By Proposition 1 and the definition of || · ||B we have

||A(s)||X ≤
∫

T

||h′(seiθ)|| ||(u′s ∗ (v′s + gs))(e−iθ)||rdσ(eiθ)

≤ 1
1 − s

||h||B
∫

T

||u′(seiθ)||pdσ(eiθ)
∫

T

(||v′(seiθ)||q + ||g(seiθ)||q)dσ(eiθ)

=
1

1 − s
||h||BM1,Lp(u′, s) (M1,Lq (v′, s) +M1,Lq (g, s))

≤ 1
1 − s

||h||BM1,Lp(u′, s)(M1,Lq (v′, s) + ||g||H1(Lq)) ,

and using now that 1 − s3 ≤ 3(1 − s) along with Cauchy-Schwarz inequality and
Theorem 1, we get∥∥∥ ∑

n≥1

Tn(ϕn ∗ ψn)
∥∥∥
X
≤ 3

2

∫ 1

0

(
1 − s3

)2||A(s)||Xds

≤ 27
2
||h||B

∫ 1

0

(1 − s)M1,Lp(u′, s)
(
M1,Lq (v′, s) + ||g||H1(Lq)

)
ds

≤ 27
2
||h||B

(∫ 1

0

(1 − s)M2
1,Lp(u′, s)ds

)1/2

(( ∫ 1

0

(1 − s)M2
1,Lq (v′, s)ds

)1/2

+ ||g||H1(Lq)

)

≤ 27
2
||h||B C||u||H1(Lp)

(
C||v||H1(Lq) + ||g||H1(Lq)

)
=

27
2
C(C + 1)||h||B||f ||H1(Lp)||g||H1(Lq) . �
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Remark 2. The theorem shows that any function h ∈ B(L(Lr, X)) defines a bilinear
map in P(Lp) × P(Lq) which extends by density to a bounded bilinear map

Uh:H1(Lp) ×H1(Lq) → X ,

taking the value 3
2

∫ 1

0
(1 − s3)2A(s)ds, with A(s) as in the proof for every pair

of functions f and g. When f or g is a polynomial, it equals the finite sum∑
n≥1 Tn(f̂(n) ∗ ĝ(n)), but the convergence of the series in X is no granted in the

general case, due to the fact that
∑N

n=0 f̂(n)eint does not need to converge in norm
to f ∈ H1.

Nevertheless, the series above is always summable in the sense of Abel: for
every 0 < s < 1 the series

∑
n≥1 s

nTn(f̂(n) ∗ ĝ(n)) is convergent, and its sum x(s)
converges in norm to Uh(f, g) as s → 1.

To see this, note that x(s) = Uh(fs, g) with fs(eiθ) = f(seiθ), because fs is the
limit of the functions eiθ → ∑N

n=0 f̂s(n)einθ =
∑N

n=0 s
nf̂(n)einθ, and recall that fs

converges to f in H1(Lp).

Remark 3. The Theorem 2 for the case X = C gives that if f ∈ H1(Lp) and
g ∈ H1(Lq) then the convolution f ∗ g belongs to the predual of B(Lr) whenever
1 ≤ p, q ≤ 2 and 1

p + 1
q + 1

r = 2.

Let en denote the function in T given by en(w) = wn. Note then that, for
ϕ ∈ Lp, ψ ∈ Lq and 1

r = 1
p + 1

q − 1, we have 〈en, ϕ ∗ ψ〉 = ϕ̂(n)ψ̂(n).

Corollary 1

Let 1 ≤ p, q ≤ 2 such that 1
p + 1

q ≥ 3
2 and let 1

r = 1
p + 1

q − 1.

If (αn) is a sequence of scalars such that
∑N

n=1 n
r|αn|r = O(Nr), then there

exists a constant C that verifies∑
n≥1

|αnϕ̂n(n)ψ̂n(n)| ≤ C||f ||H1(Lp)||g||H1(Lq)

for any pair of polynomials f(z) =
∑

ϕnz
n ∈ P(Lp) and f(z) =

∑
ψnz

n ∈ P(Lq).

Proof. The result will follow directly from Theorem 2 as soon as we show that the
function

∑
n≥1 αnenz

n is in B(Lr′). We have to see that

∥∥∥∥∥
∑
n

nαnz
nen

∥∥∥∥∥
Lr′

≤ C(1 − |z|)−1 if |z| < 1.
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Note that the assumption gives that 1 ≤ r ≤ 2 and then Hausdorff-Young’s
theorem implies that

∥∥∥∥∥
∑
n≥1

nαnz
nen

∥∥∥∥∥
Lr′

≤ C

( ∑
n≥1

nr|αn|r|z|rn
)1/r

.

Observe that on one hand

1
1 − |z|r

∑
n≥1

nr|αn|r|z|rn =
∑
N≥1

(
N∑

n≥1

nr|αn|r
)
|z|rN ≤ C

∑
N≥1

Nr|z|rN .

On the other hand, from Stirling’s formula one easily gets the following estimate

∑
n≥1

nαsn ≤ C
( 1

1 − s

)α+1

for any 0 < s < 1 and α > −1.
Combining both estimates we have then

∑
n≥1

nr|αn|r|z|rn ≤ C
( 1

1 − |z|
)r

,

resulting the required inequality. �

Corollary 2

Let 1 ≤ p1, p2 ≤ 2 and 1 ≤ p3 ≤ ∞ such that 1
p1

+ 1
p2

+ 1
p3

≥ 2 and let
1
r = 1

p1
+ 1

p2
+ 1

p3
− 2. Let fk ∈ Lp1 , gk ∈ Lp2 and hk ∈ Lp3 for 1 ≤ k ≤ n. Then

there exists a constant C that verifies∥∥∥∥∥
n∑

k=1

hk ∗ fk ∗ gk

∥∥∥∥∥
r

≤ C||f ||H1(Lp1 )||g||H1(Lp2 )||h||B(Lp3 )

where f(z) =
∑n

k=1 fkz
k, g(z) =

∑n
k=1 gkz

k and h(z) =
∑n

k=1 hkz
k.

Proof. Take 1 ≤ s ≤ ∞ such that 1
s = 1

p1
+ 1

p2
−1 and look at the function h(z) ∈ Lp3

as the operator from Ls into Lr given by the convolution h(z)(φ) = h(z) ∗ φ which,
from Young’s inequality, has norm bounded by ||h(z)||p3 . �
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An application

In the case when q > 1 and X = C, the bilinear map considered in Remark 1 can
be regarded as a bounded operator H1(Lp) → BMOA(Lq′), with q′ the conjugate
exponent of q. By means of the results in the preliminaries, we derive the next
application of Theorem 2:

Theorem 3

There exists an absolute constant C such that, for any 1 ≤ p ≤ 2 and 2p
3p−2 ≤

q ≤ p
p−1 we have, if 1

r = 1
p + 1

q − 1, that

∥∥∥∥∥
( ∞∑

n=1

|gn ∗ fn|2
)1/2

∥∥∥∥∥
Lr

≤ C sup
n

{
||gn||q

} ∥∥∥∥∥
( ∞∑

n=1

|fn|2
)1/2

∥∥∥∥∥
Lp

for every two sequences (fn) ⊂ Lp and (gn) ⊂ Lq.

Proof. Note that p and q are required so that 2 ≤ r ≤ ∞. Assume first that r < ∞,
which corresponds to q < p/(p− 1). By the monotone convergence theorem, we just
have to show the result for finite sequences (fn)1≤n≤N , provided that the constant
does not depend on N . Given such a sequence, let G and F denote the polynomials
which take respectively the values

∑
n≤N gnz

2n ∈ Lq and
∑

n≤N fnz
2n ∈ Lp. Recall

then that ||G||B(Lq) ∼ supn{||gn||q}. On the other hand

||F ||H1(Lp) ∼ ||F ||Hp(Lp) =

(∫
T

∥∥∥∑
n

fne
i2nt

∥∥∥p

p
dσ(eit)

)1/p

=

(∫
T

∫
T

∣∣∣ ∑
n

fn(eiθ)ei2
nt

∣∣∣pdσ(eiθ)dσ(eit)

)1/p

=

(∫
T

∫
T

∣∣∣ ∑
n

fn(eiθ)ei2
nt

∣∣∣pdσ(eit)dσ(eiθ)

)1/p

,

and using the Khintchine inequality we get

||F ||H1(Lp) ∼
(∫

T

( ∑
n

|fn|2
)p/2

dσ

)1/p

.
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Now let K(z) =
∑N

n=1(gn ∗ fn)z2n

, with values in Lr. The same as with F , we
see that

||K||BMOA(Lr) ∼
(∫

T

( ∑
n

|gn ∗ fn|2
)r/2

dσ

)1/r

.

But, since the conjugate exponent of r verifies 1 < r′ ≤ 2, we can identify the
space BMOA(Lr) with the dual space of H1(Lr′) with the pairing indicated in the
preliminaries; therefore we have

||K||BMOA(Lr) = sup
{
|〈K,Φ〉|; Φ ∈ P(Lr′), ||Φ||H1(Lr′ ) ≤ 1

}
.

When Φ has coefficients (ϕn), the integral 〈K,Φ〉 takes the value

∑
n≤N

〈 gn ∗ fn, ϕ2n〉,

and this is the same as ∑
n≤N

〈 gn, fn ∗ ϕ2n〉.

Then since 1
q′ = 1

p + 1
r′ − 1 we can apply Theorem 2 for h = G ∈ B(L(Lq′ ,C)),

f = F ∈ H1(Lp) and g = Φ ∈ H1(Lr′) and we get

||K||BMOA(Lr) ≤ C||G||B(Lq)||F ||H1(Lp) ,

which gives the result in this case.
The remaining case r = ∞ is much easier: Now q is the conjugate exponent of

p, so ||gn ∗ fn||∞ ≤ ||gn||q||fn||p for each n. Then we have

∥∥∥∥∥
( ∞∑

n=1

|gn ∗ fn|2
)1/2

∥∥∥∥∥
∞

≤
( ∞∑

n=1

||gn||2q||fn||2p

)1/2

≤ sup
n

{
||gn||q

}( ∞∑
n=1

||fn||2p

)1/2

≤ sup
n

{
||gn||q

} ∥∥∥∥∥
( ∞∑

n=1

|fn|2
)1/2

∥∥∥∥∥
Lp

where the last inequality indicates the well-known fact that Lp is a 2-concave space
(see [12]). �
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Remark 3. If we set gn = g ∈ Lq in the statement of Corollary 1, we get—regarding
Lq as a subspace of L(Lp, Lr), by convolution—a special case of a classical theorem
of Marcinkiewicz and Zygmund (see [13, 10]), which reads as follows: If T :Lp → Lr

is a bounded linear operator, where 0 < p, r < ∞, then T has an .2-valued extension,
in the sense that ∥∥∥∥∥

( ∑
n

|Tfn|2
)1/2

∥∥∥∥∥
r

≤ C||T ||
∥∥∥∥∥
( ∑

n

|fn|2
)1/2

∥∥∥∥∥
p

for any sequence of functions fn ∈ Lp, where C depends only on p and r.
However, the standard proof of this statement, via Kahane inequalities, doesn’t

give a bound for ||(∑n |Tnfn|2)1/2||r when Tn are uniformly bounded.
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