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Abstract

Let A be a semisimple, commutative, finite K-algebra, K a number field. In
this paper we study a family of height functions onAwith special regard toward
the characterization of height preservingK-linear transformations. The height
functions that we examine are defined as a product over MK (the set of places
ofK) of v-adic norms on the various completionsAv = A⊗KKv .

Introduction

Let A be a semisimple, commutative, finite K-algebra, K a number field. An MK-
family of norms on A is a collection F =

{
‖ · ‖v

}
v∈M

K

, where ‖ · ‖v is a Kv-norm
on Av. An MK-family F is called admissible if ‖a‖v �= 1 only for finitely many
v∈MK for all non-zero a∈A. To any admissible F one associates a height function
HF , defined by setting

HF (a) =
∏

v∈M
K

‖av‖dvv

where a 	→ av denotes the canonical injection of A into Av = A⊗KKv and dv =
[Kv : Qv]/[K : Q]. We will construct, for each 1 ≤ q ≤ ∞, a family Fq, and hence
a height function Hq := HFq

which depends only on q and on the algebra structure
of A. Our definition agrees with the classical Northcott-Weil 	q-height in the case
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A = Kn (for the Northcott-Weil heights the most frequently used values of q are 1, 2
and ∞). Among our height functions there is a special one: H∞. The peculiarity
of H∞ lies in the fact that it can be considered as the canonical height (in a sense
analogous to that of [3]) for Hq and the homomorphism ψk : A → A, a 	→ ak, see
the remark after proposition 2.1 for a more complete discussion. We also obtain a
description of the points of minimal height (proposition 2.6.), which for H∞ is the
analogue of corollary 1.1.1 of [3].

A useful tool in approaching the problem of characterizing the height preserving
linear transformations of A is the 	q-operator height on GLK

(
[A]

)
, which is defined

as
Hop
q : GLK

(
[A]

)
−→ R

T 	−→ Hop
q (T ) = sup

a∈A−{0}

Hq
(
T (a)

)
Hq(a)

.

The notion of operator height certainly deserves a deeper study which we began
in [7] and intend to pursue in a future paper. For the time being we will use it
merely as a tool. The decomposition of Hop

q as a product of local norms that we
obtain (theorem 3.2) reveals itself as the main ingredient to prove our first result
about height preserving transformations. Before stating it we need the following
definition: An element a∈A is called K − periodic if the set

{
[an]∈P

(
[A]

)}
is finite,

P
(
[A]

)
being the projective space associated to the K-vector space underlying A.

Theorem

Let A be an isotypical semisimple K-algebra. Given a∈A let La be the “mul-

tiplication by a”map. Let T be an invertible K-linear transformation of A. Then

T preserves Hq if and only if there exists a∈A invertible and K-periodic such that

(LaT )v is an isometry for the v-adic norm of Fq for all v∈MK .

The above result combined with some results about isometries for the local
norms yields.

Theorem

Let A be an isotypical semisimple K-algebra. Suppose that either A splits over

K or q = 1 or q = ∞. Then T∈GLK
(
[A]

)
preserves Hq if and only if there exists

a∈A invertible and K-periodic such that LaT is a K-algebra automorphism.
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The paper is organized as follows. In section 1 we give the definition of the local
norms that will be used to define our height functions. We also prove some results
about isometries for the archimedean case, that will be needed in section 3. Homo-
geneous heights are defined in section 2 where some of their properties, including
the appropriate version of Northcott’s finiteness theorem, are proved. Section 3 is
devoted to the proof of our results about height preserving transformations.

Conventions and Notations. By a k-algebra we will always mean a finite com-
mutative algebra with a unit, (where finite means that it is finite dimensional as a
k-vector space). If A is a k-algebra we denote by (XA,OXA

) the associated affine
k-scheme, and by a 	→ â the canonical isomorphism A � Γ(XA,OXA

). From the
structure theorem for semisimple k-algebras one sees immediately that Ap, the lo-
calization of A at any prime ideal p, is a field. Therefore the stalk of OXA

at x∈X
coincides with k(x) the residue field at x and the structure theorem can be seen as
saying that A � ∏

x∈X k(x).
If K is a number field, we denote by MK the set of equivalence classes of

absolute values of K. Moreover M0
K (respectively M∞

K ) is the subset of MK formed
by the equivalence classes of non-archimedean (resp. archimedean) absolute values.
For v∈MK , | · |v is the representative of the class v, normalized by requiring that
| · |v restricted to Q is either the standard p-adic absolute value or the standard
archimedean absolute value. With Kv we denote the completion of K with respect
to | · |v. With this normalization the product formula reads

∏
v∈M

K
|λ|nv

v = 1, where
nv = [Kv : Qv]. Finally we set dv = [Kv : Qv]/[K : Q].

Acknowledgments. Almost all the results of this paper, even though expressed
in a different language, were contained in my doctoral dissertation at Brandeis Uni-
versity. I would like to thank my thesis advisor Alan Mayer for his invaluable
guidance throughout my graduate studies and for the many hours spent discussing
mathematics; without his support this work could not have been done.

§1. Local norms

In this section we will employ the following notations
F a field complete with respect to the absolute value | · |
A a semisimple F -algebra
(X,OX) the affine F -scheme associated to A
| · |x the unique extension of | · | to F (x), for x∈X.
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Let us start with the non-archimedean case since it is the shortest of the two. Thus
we assume that | · | is a non-archimedean absolute value. The 	∞-norm on A is

‖ ‖A,∞ : A −→ R

a 	−→ sup
x∈X

|â(x)|x.

A endowed with ‖ ‖A,∞ becomes a non-archimedean Banach algebra.

Proposition 1.1

Let A and B be semisimple F -algebras.

(a) If φ : A→B is an isomorphism of F -algebras, then ‖ a ‖A,∞=‖φ(a) ‖B,∞.

(b) ‖ ak ‖A,∞ = ‖a‖kA,∞.

(c) Suppose A =
∏r
i=1Ai and let π : A → Ai denote the projection onto the ith

factor. Then

‖ a ‖A,∞ = sup
1≤i≤r

‖πi(a) ‖Ai,∞.

Proof. (a) and (b) follow directly from the definition. To prove (c) let Xi be the
affine scheme associated to Ai and denote by ηi : Xi → X the injection induced by
πi. Then

‖πi(a) ‖Ai,∞ = sup
x∈ηi(Xi)

|â(x)|x

and since X =
∐n
i=1 ηi(Xi), (c) follows. �

That is all we need in the non-archimedean case. From now on we assume that
| · | is an archimedean absolute value. Let 1 ≤ q ≤ ∞. We define the 	q-norm on A,
‖ · ‖A,q : A→ R, by setting

‖ a ‖A,q =


(∑
x∈X

dimFF (x) |â(x)|qx

)1/q

if 1 ≤ q <∞

sup
x∈X

|â(x)|x if q = ∞.

A endowed with any of the above norms becomes a real or complex Banach algebra
(depending on whether F = R or C). Note that if A splits over F then ‖ · ‖A,∞ is
nothing else than the standard 	q-norm on Rn or Cn.

Proposition 1.2

Let A and B be semisimple F -algebras.
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(a) If φ : A→ B is an isomorphism of F -algebras, then ‖ a ‖A,q = ‖φ(a) ‖B,q.
(b) ‖ ak ‖A,∞ = ‖a‖kA,∞
(c) Suppose A =

∏r
i=1Ai and let πi : A → Ai denote the projection onto the ith

factor. Then

‖ a ‖A,q =


( r∑
i=1

‖πi(a)‖qAi,q

)1/q

if 1 ≤ q <∞

max
1≤i≤r

‖πi(a) ‖Ai,q if q=∞.

(d) limk→∞ ‖ak‖
1
k

A,q = ‖a‖A,∞.

Proof. (a), (b) and (c) are proved as in lemma 1.1. (d) follows either from a general
result about real and complex Banach algebras, see e.g. [2, I.5.8 and I.13.7], or by a
direct computation which is left to the reader. �

Let GLF
(
[A]

)
be the group of invertible F -linear transformations of A. We

denote by Oq(A) the subgroup of GLF
(
[A]

)
formed by the isometries for the 	q-

norm. Our next goal is to prove a characterization for the elements of Oq(A). If A
splits over F this sort of results are well known:

Proposition 1.3

Suppose that A = Fn. Let Sn(U) ⊂ GL(n, F ) be the subgroup of monomial

matrices with entries in U =
{
a∈F

∣∣ |a| = 1
}
. Then

Oq(Fn) =


Sn(U) if q �= 2

O(n) if q = 2 and F = R

U(n) if q = 2 and F = C

where O(n)
(

respectively U(n)
)

denotes the subgroup of orthogonal (resp. unitary)

matrices.

Proof. These results can be viewed as special cases of their infinite dimensional
version, see [1]. �

It remains to deal with the case of a non-split real algebra. Thus from now on
we assume that A is a real semisimple algebra. The characterization that we will
be able to obtain is a corollary of the following generalization of the Banach-Stone
theorem due to M. Grzesiak.
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Theorem 1.4
Let Z be a compact Hausdorff space and τ : Z −→ Z be an involution. Set

C(Z, τ) =
{
f∈C(Z,C)

∣∣ f(τ(z)) = f(z) ∀z∈Z
}

. We always consider C(Z, τ) en-

dowed with the sup-norm (which makes C(Z, τ) a real Banach algebra). A map
T : C(Z, τ) −→ C(Z, τ) is a surjective linear isometry if and only if there exists
a homeomorphism α : Z −→ Z satisfying τ◦α = α◦τ and an invertible function
g∈C(Z, τ) satisfying |g(z)| = 1 ∀z∈Z such that

(Tf)(z) = g(z)f
(
α(z)

)
for every f∈C(Z, τ) and z∈Z.

Proof. See [5]. �
We have to reformulate this general result in our setting. The set X(C) of C-

valued points ofX is a compact hausdorff space. Recall thatX(C) can be interpreted
as the set of R-linear homomorphisms of A to C. We define an involution τ on X(C)
by setting ψτ (a) = ψ(a). Note that the assignment a 	→ ag∈, where ag(ψ) = ψ(a)
defines an injection  : A ↪→ C(X(C), τ) which is isometric if we endowed A with
the 	∞-norm. It is straightforward to check that dimRC(X(C), τ) = dimRA and so
 is an isometric isomorphism.

Corollary 1.5
Suppose A is a semisimple R-algebra and let T belong to GLR

(
[A]

)
. Then

T∈O∞(A) if and only if the following two conditions are satisfied

(1) T (1) = b belongs to A1 =
{
a∈A

∣∣ |â(x)| = 1 ∀x∈X
}

.

(2) L−1
b T is an algebra automorphism.

The same characterization holds for the 	1-norm of A as we shall now show.
Recall that on any semisimple real algebra there is a unique involution ∗ which is
positive with respect to the trace i.e. tr(aa∗) > 0 for all non-zero a∈A. Then

< , > : A×A −→ R

(a, b) 	−→ tr(ab∗)

is a positive definite bilinear form on A. Let us identify A with its dual (as real
vector spaces) by means of < , > . Under this identification the dual norm of ‖·‖A,q,
denoted by ‖ · ‖∨

A,q, becomes a norm on A

‖ a ‖∨

A,q = sup
b∈A−{0}

| < b, a > |
‖b‖A,q

.
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As in the split case, one checks immediately that ‖ · ‖∨

A,q = ‖ · ‖A,q′ , where q′ is the
conjugate exponent of q. By means of < , > we can define an involution, that by
an abuse of notation we denote by ∗ on GLR

(
[A]

)
, by requiring that

< T (a), b >=< a, T ∗(b) > (1)

for all a, b∈A. Let AutF−alg
(
A

)
⊂ GLR

(
[A]

)
denote the group of automorphism of

A as an F -algebra. Note that T∈GLR

(
[A]

)
is in AutF−alg

(
A

)
if and only if T ∗ is.

Corollary 1.6
The characterization of the isometries for the norm ‖·‖A,∞ obtained in corollary

1.5 holds also for ‖ · ‖A,1.

Proof. Suppose T∈O1(A), then also T−1 belongs to O1(A). It follows at once
from (1) that (T−1)∗ belongs to O∞(A). Let c = (T−1)∗(1) then, by corollary 1.5,
L−1
c (T−1)∗ is an algebra automorphism. But then

T ∗Lc =
(
Lc−1(T−1)∗

)−1∈AutF−alg
(
A

)
and so L∗

cT∈AutF−alg
(
A

)
. Therefore c∗ = T (1)−1 and since in general L∗

d = Ld∗

and L−1
d = Ld−1 we have L−1

T (1)T∈AutF−alg
(
A

)
. Finally, it is immediate to verify

that T (1) = (c∗)−1 satisfies (1) of corollary 1.5 since c does. �

§ 2. Homogeneous heights

In this section we will employ the following notations:
K a number field
A a semisimple K-algebra
(X,OX) the affine K-scheme associated to A
(Xv,OXv

) the affine Kv-scheme associated to Av = A⊗KKv
iv : A→ Av, a 	→ av the canonical injection
πv : Xv → X the surjection induced by iv
| · |y the unique extension of | · |v to Kv(y), y∈Xv.
As pointed out in the introduction in order to define a height function on A we need
only to exhibit an admissible MK-family. Given 1 ≤ q ≤ ∞ consider the MK-
family Fq =

{
‖ · ‖Av,∞

}
v∈M0

K

⋃{
‖ · ‖Av,q

}
v∈M∞

K

where the local norms are the ones
defined in the previous section. First of all we have to check that Fq is admissible.

Lemma 2.1
The MK-family Fq is admissible.
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Proof. By propositions 1.1 and 1.2 we can reduce to the case of a simple K-algebra.
Thus A = E is a field extension of K. Then given a∈E we have ‖ av ‖Ev,∞ =
supu∈Mv

E
|a|u where Mv

E =
{
u∈ME

∣∣ | · |u
∣∣
K

= | · |v
}
. So the lemma follows from

the standard fact that given a∈E there are only finitely many u∈ME such that
|a|u �= 1. �

When no confusion arises we will write ‖ · ‖v,q for ‖ · ‖Av,q. The absolute homo-
geneous 	q-height on A, Hq :→ R, is the height associated to Fq. More explicitly
let ny = dimKvKv(y), and let σ(âv) = {y ∈ Xv| âv(y) �= 0}, then

Hq(a) =



∏
v∈M

K

sup
y∈σ(âv)

|âv(y)|dvy if q = ∞

∏
v∈M0

K

sup
y∈σ(âv)

|âv(y)|dvy
∏

v∈M∞
K

 ∑
y∈σ(âv)

ny|âv(y)|qy

dv

if 1 ≤ q <∞ .

We collect the first properties of Hq in the next proposition.

Proposition 2.2

Let A and B be semisimple K-algebras. Then

(a) Hq(λa) = Hq for a∈A and λ∈K×. (scalar invariance)

(b) Hq(aa′) ≤ Hq(a) ·Hq(a′). (submultiplicativity)

(c) H∞(ak) =
(
H∞(a)

)k
. (power-multiplicativity)

(d) limk→∞
(
Hq(ak)

) 1
k = H∞(a). (Gelfand-Beurling formula)

(e) If ϕ : A −→ B is K-isomorphism, then Hq(a) = Hq
(
ϕ(a)

)
for all a∈A.

Proof. (a) follows from the product formula. The remaining ones follow directly
from the corresponding properties of the local norms of Fq. �

Remark. Note that (d) can also be proved (in its logarithmic version) by Tate’s
averaging procedure. In fact denote by φn the homomorphism a 	→ an and set
hq = logHq. Since M∞

K is finite we have that nhq − hq◦φn is a bounded function
on A. Then Tate’s lemma, as described in [6, Lemma 3.1], yields the existence of
a unique function ĥ such that h◦φn = nh and h is in the same class of hq modulo
bounded functions. But h∞ has both these properties and so ĥ = h∞.
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Example 1: If A = Kn then Hq coincides with the (absolute) Northcott-Weil
	q-height, i.e.

Hq(a) =



∏
v∈M

K

sup
1≤i≤n

|ai|dvv if q = ∞

∏
v∈M0

K

sup
1≤i≤n

|ai|dvv
∏

v∈M∞
K

(
n∑
i=1

|ai|
q

v

)dv/q

if 1 ≤ q <∞

where a = (a1, . . . , an)∈Kn.
2. Let A = E be a field extension of K. Then

Hq(a) =



∏
v∈M

K

sup
u∈Mv

E

|a|duu if q = ∞

∏
v∈M0

K

sup
u∈Mv

E

|a|duu
∏

v∈M∞
K

 1
nv

∑
u∈Mv

E

nu|a|qu

dv/q

if 1 ≤ q <∞.

Let L be a finite extension of K. We denote by ιL : A −→ AL the canonical
injection of A into AL = A⊗KL. We say that L is a splitting field for A if L is a
Galois extension of K and AL is isomorphic, as L-algebra to Ln (n = dimKA).
The next proposition gives a useful method for computing Hq.

Proposition 2.3
Let A be a semisimple K-algebra and 1 ≤ q ≤ ∞. Suppose that L is a splitting

field of A. Then Hq
(
ιL(a)

)
= Hq(a) for all a∈A.

Proof. Since Hq is invariant under isomorphisms it is enough to show that
Hq

(
(ψ◦ιL)(a)

)
= Hq(a), where ψ : AL → Ln is any L-isomorphism. Note

that the invariance of Hq under K-isomorphisms does not prove the proposi-
tion since A and AL are considered as algebras over different fields. Let Gq ={
‖ ‖w,∞

}
w∈M0

L

⋃{
‖ ‖w,q

}
v∈M∞

L

be the ML-family defining Hq on Ln. Since
ML =

∐
v∈M

K
Mv

L and
∑
w∈Mv

L
dw = dv it suffices to prove that for all a∈A

‖ (ψ◦ιL)(a) ‖w,q = ‖ a ‖v,q for all v∈M∞
K and all v∈M0

K (but only q = ∞). (∗)

By propositions 1.1 and 1.2 we need to prove (∗) only for simple algebras. Thus we
assume that A = E is a field extension of K. Since L is Galois over K there exist
n = [E : K] distinct embeddings of E into L over K, say φ1, . . . , φn. The map

φ : E⊗KL −→ Ln

a⊗ λ 	−→ λ
(
φ1(a), . . . , φn(a)

)
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is an isomorphism of L-algebras and we shall prove that (∗) holds for φ◦ιL. Since L
is Galois over K, the sets

{
| · |u

}
u∈Mv

E

and
{
| · |w◦φi

}n
i=1

contain the same distinct
absolute values, yielding (∗) for q = ∞. Moreover the only difference between the
two sets is that in

{
| · |w◦φi

}n
i=1

the same absolute value can appear more than once.
The number of times that | · |u appears in

{
| · |w◦φi

}n
i=1

is nu

nv
(cf. [4, III.1.20]).

Therefore

‖φ(a) ‖w,q =

(
n∑
i=1

|φi(a)|
q

w

)1/q

=

 ∑
u∈Mv

E

nu
nv

| a |qu

1/q

= ‖ a ‖v,q. �

Corollary 2.4

Let A and B be semisimple K-algebras. Then

(a) Hq(a) ≥ 1 for a �= 0. (positivity)

(b) Hq(a⊗ b) = Hq(a)Hq(b). (Segre invariance)

(c) Let L be any extension of K. Then Hq(a) = Hq
(
ιL(a)

)
for all a∈A.

Proposition 2.2 enables us to prove Northcott’s Finiteness Theorem for Hq on
P
(
[A]

)
.

Corollary 2.5 (Northcott’s Finiteness Theorem)

Let A be a semisimple K-algebra. Then for any constant C the set

Nq

(
P
(
[A]

)
, C

)
=

{
P∈P

(
[A]

) ∣∣ Hq(P ) ≤ C
}

is finite.

Proof. Let L be a splitting field of A and denote by ϕ : A −→ Ln the composition
of ιL with an isomorphism of AL into Ln. By Northcott’s Finiteness Theorem for
projective spaces we know that Nq

(
Pn−1(L), B

)
is finite. Thus the corollary follows

from proposition 2.2 and the fact that the map ϕ̃ : P
(
[A]

)
→ Pn−1(L) induced by ϕ

is injective. �

Given f∈Γ
(
X,OX), the set σ (f) =

{
x∈X

∣∣ f(x) �= 0
}

is called the support of
f . An element a of A is called K-periodic if there exist λ∈K× and a positive integer
r such that âr(x) = λ for all x∈σ (â), (or equivalently if the set

{
[an]∈P

(
[A]

)}
is

finite). Note that if A is simple, then a∈A is K-periodic if and only if a is a root of
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a polynomial in K[X] of the form Xr − λ. The set of K-periodic elements of A is
denoted by PerK

(
A

)
. Finally for a∈A we set δ(a) =

∑
x∈σ(â) dimKK(x).

Proposition 2.6

Let A be a semisimple K-algebra and a∈A be non-zero. Then

(a) H∞(a) = 1 if and only if a is a K-root.

(b) If 1 ≤ q <∞, then

Hq(a) ≥ δ(a)1/q

and the equality holds if and only if a is K-periodic.

Proof. (a) Suppose first that a∈PerK
(
A

)
. Then there exists λ∈K× such that

λâr(x) = 1 for all x∈σ(â). Thus H∞(a)r = H∞(ar) = 1, which yields H∞(a) = 1.
Suppose instead that H∞(a) = 1. Then, by proposition 2.1.(d), H∞(ar) = 1 for all
integers r ≥ 1. Thus

{
[an]∈P

(
[A]

)
, n ≥ 1

}
⊂ Nq

(
P
(
[A]

)
, 1

)
, but the latter set is

finite by Northcott’s Finiteness Theorem, hence a is K-periodic.
(b) Let a∈A be non-zero. Since Hq is invariant under multiplication by scalars

we can assume ‖ a ‖dvv,∞ ≥ 1 for all v∈M0
K , so

Λ(a) =
∏

v∈M0
K

‖ a ‖dvv,∞ ≥ 1 .

For x∈X set dx = dimKK(x) and dy = dimKvKv(y), for y∈Xv. Then∑
y∈π−1

v (x) dy = dx which yields δ(av) = δ(a) for all v∈MK . Moreover with our
notation the product formula

(
for the number field K(x)

)
reads∏

v∈M0
K

∏
y∈π−1

v (x)

|âv(y)|dydvy

∏
v∈M∞

K

∏
y∈π−1

v (x)

|âv(y)|dydvy = 1 .

Hence
Λ(a)dx

∏
v∈M∞

K

∏
y∈π−1

v (x)

|âv(y)|dydvy ≥ 1. (∗)

for every x∈X. Finally, given v∈M∞
K from the inequality between the arithmetic

and the geometric mean we get

∑
y∈σ(âv)

dy|âv(y)|qy ≥ δ(av)

 ∏
y∈σ(âv)

|âv(y)|qdyy

1/δ(a)

. (∗∗)
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Now we have all we need to obtain the lower bound for Hq:

Hq(a)q = Λ(a)q
∏

v∈M∞
K

 ∑
y∈σ(âv)

dy|âv(y)|qy

dv

≥ Λ(a)q
∏

v∈M∞
K

δ(av)

 ∏
y∈σ(âv)

|âv(y)|qdyy

dv/δ(a)

(by (∗∗))

= Λ(a)qδ(a)
∏

v∈M∞
K

∏
x∈σ(â)

 ∏
y∈π

−1
v (x)

|âv(y)|qdyy

dv/δ(a)

= δ(a)
∏

x∈σ(â)

Λ(a)
qdx
δ(a)

∏
v∈M∞

K

 ∏
y∈π−1

v (x)

|âv(y)|dvdyy

q/δ(a)

≥ δ(a). (by (∗))

It remains to show that Hq(a) = δ(a)
1
q if and only if a belongs to PerK

(
A

)
. Suppose

a is K-periodic. Then there exists λ∈K× such that |âv(y)|v = |λ|
1
r
v for all y∈Xv.

Thus

Hq(a) =
∏

v∈M0
K

|λ|
dv
r
y

∏
v∈M∞

K

 ∑
y∈σ(âv)

dy|λ|
q
r
y

dv/q

=
∏

v∈M
K

|λ|
dv
r
y

∏
v∈M∞

K

δ(a)
dv
q = δ(a)

1
q .

Suppose now that Hq(a) = δ(a)
1
q . Then in both (∗) and (∗∗) the equality holds.

For (∗) this implies that the equality holds also for an (for all n ≥ 1). In (∗∗) the
equality holds if and only if |âv(y)| is independent of y for every v∈M∞

K . Thus also
in (∗∗) the equality holds for all an’s . Hence

Hq(an) = δ(an)
1
q = δ(a)

1
q

and so Northcott’s Finiteness Theorem yields the K-periodicity of a. �

Corollary 2.7

Let A be a semisimple K-algebra and 1 ≤ q <∞. If a∈A is non-zero, then

Hq(a) ≥
(
min
x∈X

dimKK(x)
)1/q

.

and the equality holds iff a is K-periodic, σ (â) ={x0} and dimKK(x0) =
minx∈XdimKK(x) .
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§3. Height preserving linear transformations

Let GLK
(
[A]

)
denote the group of invertible linear transformations of [A]. Our first

necessity is a way to measure how far a linear transformation is from being height
preserving. This role can be interpreted by

Hop
q : GLK

(
[A]

)
−→ R

T 	−→ Hop
q (T ) = sup

a∈A−{0}

Hq
(
T (a)

)
Hq(a)

.

which we call the operator 	q-height on GLK
(
[A]

)
. The following properties of Hop

q

are immediate from the definition.

Proposition 3.1
Let A be a semisimple K-algebra, T, S∈GLK

(
[A]

)
, T, S �= 0 and λ∈K×. Then

(a) Hop
q (T ) ≥ 1.

(b) Hop
q (λT ) = Hop

q (T ).
(c) Hop

q (ST ) ≤ Hop
q (S)Hop

q (T ).

For v∈MK , we denote by T 	→ Tv the canonical injection of GLK
(
[A]

)
into

GLKv

(
[Av]

)
. Our next goal is to have a decomposition of Hop

q as product of local
norms. The local norms that we intend to use are, in view of the definition of the
operator 	q-height, the operator norms on GLKv

(
[Av]

)
associated to the norms of

Fq. By an abuse of notation we denote by ‖ · ‖v,q the operator norm on GLKv

(
[Av]

)
associated to ‖ · ‖v,q.

Theorem 3.2
Let A be a semisimple K-algebra. Then

Hop
q (T ) =

∏
v∈M0

K

‖Tv ‖dvv,∞
∏

v∈M∞
K

‖Tv ‖dvv,q

for all T∈GLK
(
[A]

)
.

Before proving theorem 3.2 we need some preparatory work. The subgroup of
GLKv

(
[Av]

)
formed by the isometries for the norm ‖ · ‖v,q (q = ∞ only if v is non

archimedean) is denoted by Oq(Av).

Lemma 3.3
Let A be a semisimple K-algebra. If T∈GLK

(
[A]

)
, then the set

ST =
{
v∈M0

K |Tv /∈ O∞(Av)
}

is finite.
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Proof. Let L be a splitting field of A, and φL : AL −→ Ln be an isomorphism.
Let S be the L-linear transformation of Ln defined by S = (φL◦TL◦φ−1

L ), where TL
is obtained by extending T by L-linearity to AL. Suppose that Sw∈O∞(Lnw) and
let v∈M0

K be such that w belongs to Mv
L. From the proof of proposition 2.3 (in

particular from (∗)) it follows that v∈ST if and only if Mv
L⊂SS . Thus it suffices to

prove the proposition in the case A = Kn. Then we can identify GLK
(
[Kn]

)
with

GLn(K), the group of invertible n×n matrices with entries in K, and GLKv

(
[Kn

v ]
)

with GLn(Kv). Under these identifications O∞(Kn
v ) ∩ GLK

(
[Kn]

)
corresponds to

GLn(Ov), where Ov =
{
λ∈K

∣∣ |λ|v ≤ 1
}
, and so the lemma follows. �

Given a finite subset S of MK we set AS =
∏
v∈S Av and we consider A as

embedded diagonally into AS . Set S0 = S ∩M0
K and S∞ = S ∩M∞

K . We define a
metric on A by setting

d
q : AS ×AS −→ R

(α , β) 	−→ dq (α, β) = max
{

sup
v∈S0

‖αv − βv ‖v,∞, sup
v∈S∞

‖αv − βv ‖v,q
}

where α = {αv}v∈S , and β = {βv}v∈S .

Proposition 3.4

Let A be a semisimple K-algebra, S a finite subset of MK and 1 ≤ q ≤ ∞.

Then A is dense in AS with respect to the metric d
q
.

Proof. If A is simple the proposition follows from the weak approximation theorem.
The general case is reduced to the case of A simple by means of propositions 1.1
and 1.2. �

Corollary 3.5

Let A be a semisimple K-algebra, S a finite subset of MK , T∈GLK
(
[A]

)
and

1 ≤ q ≤ ∞. Then for every ε > 0 there exists a∈A such that

‖Tv ‖v,q <
‖T (a) ‖v,q
‖ a ‖dvv,q

+ ε ∀ v∈S∞ and ‖Tv ‖v,∞ <
‖T (a) ‖v,∞
‖ a ‖dvv,∞

+ ε ∀ v∈S0 .

We can now proceed to the proof of theorem 3.2.

Proof of theorem 3.2. The inequality

Hop
q (T ) ≤

∏
v∈M0

K

‖Tv ‖dvv,∞
∏

v∈M∞
K

‖Tv ‖dvv,q
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is clear. Thus it suffices to show that for every ε > 0 there exists a∈A such that∏
v∈S0

‖Tv ‖dvv,∞
∏
v∈S∞

‖Tv ‖dvv,q <
Hq(T (a))
Hq(a)

+ ε

where S = S0
⋃S∞, S0 =

{
v∈M0

K

∣∣ T /∈ O∞(Av)
}

and S∞ =
{
v∈M∞

K

∣∣ T /∈
Oq(Av)

}
. Fix ε > 0. By lemma 3.3 S is finite and so we can find δ > 0 such that( ∏

v∈S0

‖Tv ‖dvv,∞
∏
v∈S∞

‖Tv ‖dvv,q

)
− ε <

∏
v∈S0

(
‖Tv ‖dvv,∞ − δ

) ∏
v∈S∞

(
‖Tv ‖dvv,q − δ

)
.

By corollary 3.5 there exists a∈A such that

‖Tv ‖dvv,∞ − δ <
‖T (a) ‖dvv,∞
‖ a ‖dvv,∞

∀v∈S0

and

‖Tv ‖dvv,q − δ <
‖T (y) ‖dvv,q
‖ ;y ‖dvv,q

∀v∈S∞.

Taking the product over v∈S we have( ∏
v∈S0

‖Tv ‖dvv,∞
∏
v∈S∞

‖Tv ‖dvv,q

)
− ε <

∏
v∈S0

(
‖T ‖dvv,∞ − δ

) ∏
v∈S∞

(
‖T ‖dvv,q − δ

)
<

∏
v∈S0

‖T (a) ‖dvv,∞
‖ a ‖dvv,∞

∏
v∈S∞

‖T (a) ‖dvv,q
‖ a ‖dvv,q

=
Hq(T (a))
Hq(a)

. �

As we said in the introduction our main interest is to give an explicit description
of the linear transformations that preserve the 	q-height on a semisimple K-algebra.
Set

Hq(A) =
{
T∈GLK

(
[A]

) ∣∣ Hq(T (a)
)

= Hq(a) ∀a∈A
}
.

Thus Hq(A) ⊂ GLK
(
[A]

)
is the subgroup of linear transformations that preserve the

	q-height onA. Note that AutK−alg
(
A

)
⊂ Hq(A). If a∈A is invertible La∈GLK

(
[A]

)
denotes the invertible linear transformation given by “multiplication by a”.

Lemma 3.6

Let A be a semisimple K-algebra. If a∈A is invertible, then La∈Hq(A) if and
only if a is K-periodic.
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Proof. If La∈Hq(A), then

Hq(a) = Hq
(
La(1)

)
=

{
1 if q = ∞

(dimKA)
1
q if 1 ≤ q <∞.

Thus, by proposition 2.5 a∈PerK
(
A

)
. Viceversa suppose a is K-periodic and inver-

tible. Then there exists λ∈K× such that |âv(y)|v = |λ|
1
r
v for all y∈Xv. Hence

Hq
(
La(b)

)
=

∏
v∈M0

K

sup
y∈σ(b̂v)

|âv(y)̂bv(y)|dvv
∏

v∈M∞
K

 ∑
y∈σ(b̂v)

ny|âv(y)̂bv(y)|
q

v


dv

=
∏

v∈M
K

|λ|
dv
r
v

∏
v∈M0

K

sup
y∈σ(b̂v)

|̂bv(y)|dvv
∏

v∈M∞
K

 ∑
y∈σ(âv)

ny |̂bv(y)|
q

v

dv

= Hq(b).

The analogous computation holds for q = ∞ . �
Let Per×K

(
A

)
⊂ PerK

(
A

)
be formed by the K-periodic elements of A that

are invertible. Note that Per×K
(
A

)
is a subgroup of A×. A K-algebra A is called

isotypical if all its simple components are isomorphic or equivalently if K(x) � K(y)
for all x, y∈X.

Theorem 3.7

Suppose A is an isotypical K-algebra and 1 ≤ q ≤ ∞. If T∈GLK
(
[A]

)
, then T

belongs to Hq(A) if and only if there exists a∈Per×K
(
A

)
, such that (LaT )v∈O∞(Av)

for all v∈M0
K and (LaT )v∈Oq(Av) for all v∈M∞

K .

Proof. The “if ”part follows directly from lemma 3.6. Suppose now that T belongs to
Hq(A). Choose z∈X such that dimKK(z) = minx∈X dimKK(x) and let b∈A be such
that b̂(y) = 0 if y �= x and b̂(z) = 1. Then Hq(b) = 1 and since T∈Hq(A) corollary
2.7 yields that T (b) is K-periodic. Since A is isotypical there exists a∈Per×K

(
A

)
,

such that
â(x)T̂ (b)(x) = 1 for all x∈σ (â) . (∗)

Then ‖ (LaT )v ‖v,∞ ≥ 1 ∀v∈M0
K and ‖ (LaT )v ‖v,q ≥ 1 ∀v∈M∞

K . By lemma 3.6.
La belongs to Hq(A) and so does LaT . Then, by theorem 3.4, we have

1 = Hop
q (LaT ) =

∏
v∈M0

K

‖ (LaT )v ‖dvv,∞
∏

v∈M∞
K

‖ (LaT )v ‖dvv,q
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which combined with (∗) yields

‖ (LaT )v ‖v,∞ = 1 ∀v∈M0
K and ‖ (LaT )v ‖v,q = 1 ∀v∈M∞

K . (∗∗)

Suppose there exists u∈M0
K such that (LaT )u /∈ O∞(Au). Hence we can find a∈A

such that ‖LaT (a) ‖u,∞ �= ‖ a ‖u,∞. By (∗∗) we must have ‖LaT (a) ‖u,∞ < ‖ a ‖u,∞.
But then

Hq(a) =
∏

v∈M0
K

‖LaT (a) ‖dvv,∞
∏

v∈M∞
K

‖LaT (a) ‖dvv,q

<
∏

v∈M0
K

‖ a ‖dvv,∞
∏

v∈M∞
K

‖ a ‖dvv,q = Hq(a)

which is a contradiction since LaT∈Hq(a). The same computation shows the im-
possibility of the existence of u∈M∞

K such that (LaT )u /∈Oq(Au) . �

We would like to have a more explicit characterization of the height preserving
transformations. As we already remarked Hq(a) contains both AutK−alg

(
A

)
and{

La
∣∣ a∈Per×K

(
A

)}
and thus the subgroup that they generate, which is isomorphic

to the semidirect product of the two subgroups. The next theorem shows that for a
large class of algebras that is all.

Theorem 3.8

Let A be an isotypical semisimple K-algebra and 1 ≤ q ≤ ∞. Suppose that one

of the following conditions is satisfied:

(1) either q = 1 or q = ∞
(2) A splits over K,

then T belongs to Hq(a) if and only if there exists a∈Per×K
(
A

)
such that LaT is a

K-algebra automorphism.

Proof. Suppose first that either q = 1 or q = ∞. By theorem 3.7 there ex-
ists c∈Per×K

(
A

)
, such that S = (LaT )v∈Oq(Av). Since Sv∈Oq(Av) theorem 1.6,

implies that (Lb−1)vSv is an algebra automorphism, with b = S(1). But then
L−1
b = (L−1

b S)S−1∈Hq(A), so by lemma 3.6 b∈Per×K
(
A

)
. Set a = b−1c, then LaT is

a K-algebra automorphism of A.
Suppose now that A splits over K so that we can assume A = Kn. Let us

identify GLK
(
[Kn]

)
with GL(n,K) the group of invertible n × n matrices with

coefficient in K. Let Sn(Γ) ⊂ GL(n,K) denote the subgroup of monomial matrices
with entries in Γ, where Γ ⊂ K× is a subgroup. Since a = (a1, . . . , an)∈Kn is
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invertible and K-periodic if and only if there exists λ∈K× such that λai∈µk for all
i = 1, . . . , n, theorem 3.7 implies that it is enough to show that⋂

v∈M0
K

Ov,∞(Kn)
⋂

v∈M∞
K

Ov,q(Kn) = Sn(µk).

where Ov,q(Kn) = Oq(Kn
v ) ∩ GL(n,K). Let Ov =

{
λ∈K

∣∣ |λ|v ≤ 1
}
. If v∈M0

K ,
then Ov,∞(Kn) = GL(n,Ov), so that⋂

v∈M0
K

Ov,∞(Kn) =
⋂

v∈M0
K

GL(n,Ov) = GL(n,OK).

where OK is the ring of integers of K. Thus all that is left to prove is the following
assertion: if S = (sij)∈GL(n,OK) is such that S∈Ov,q(Kn) for all v∈M∞

K then
S∈Sn(µk). If q �= 2, then, by proposition 1.5, Ov,q(Kn) = Sn(Uv) where Uv ={
λ∈K

∣∣ |λ|v = 1
}
. By Kronecker’s theorem every non-zero entry of S must be a

root of unity. If q = 2, let {e1, . . . en} denote the canonical basis of Kn. Then

1 = ‖ ei ‖v,2 = ‖S(ei) ‖v,2 =

 n∑
j=0

|sij |v

1/2

. (∗)

It follows that |sij |v ≤ 1 for all v∈M∞
K , and since we already know that the sij ’s

are algebraic integers, Kronecker’s theorem implies again that all the non-zero sij ’s
are roots of unity. Then, looking back at (∗), we see that the only possibility is that
S∈Sn(µk) . �
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