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Abstract

Let E/Q be an elliptic curve, and let L(E/Q, s) be its Hasse-Weil L-series.
In this paper, working under certain simplifying assumptions, we sketch a proof
of the following result: L(E/Q, 1) �= 0 =⇒ E(Q) finite.

0. Let E/Q be an elliptic curve, and let L(E/Q, s) be its Hasse-Weil L-series.
Following the methods of our joint paper with Henri Darmon [2], and working under
certain simplifying assumptions, we sketch a proof of the following result:

L(E/Q, 1) �= 0 =⇒ E(Q) finite .

Such a result was first proved for elliptic curves with complex multiplication by
Coates and Wiles [3]. About ten years later, Kolyvagin [11], [12] found a proof for
all modular elliptic curves. Kolyvagin’s method uses in a crucial way the family of
Heegner points defined over the anticyclotomic extensions of an imaginary quadratic
field, and the limit formula of Gross-Zagier [8]. Kato [10] has announced a new
proof of Kolyvagin’s result, based on the construction of certain elements in the
second K-group of modular function fields, defined over cyclotomic extensions of Q.
In [2], Darmon and I present a proof of the above statement for modular elliptic
curves having at least one prime of multiplicative reduction (we actually assume
semistability, to simplify matters), which differs in essential ways from the other
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known proofs. We do use Heegner points, but we relate them directly to special
values of L-series rather than to first derivatives, using a slight generalization of a
formula of Gross [6] instead of [8]. We do not have to compute global heights of
Heegner points, but only a local term, corresponding to the image of the Heegner
points in the group of connected components of E at a multiplicative prime. This
computation is based on the work of Bas Edixhoven [5] on the specialization map
from the jacobian of certain (analogues of) modular curves to its groups of connected
components.

In this paper, we work in a somewhat simplified setting. This allows us to
bypass some of the technical complications arising in [2], which contains more general
results, without hiding the new features of the proofs. Therefore, we hope that this
note may also serve as an introduction to [2].

1. We assume throughout the paper that E/Q is an elliptic curve of squarefree
conductor, containing at least one prime p of non-split multiplicative reduction, and
that L(E/Q, 1) is non-zero. Write the conductor of E as Np. (Since the sign of the
functional equation for L(E/Q, s) is +1, observe that E has a non-split multiplicative
prime whenever the number of prime divisors of the conductor is even).

The fundamental work of Wiles [19] and Taylor-Wiles [17] implies that E is mo-
dular, i.e., there exists a non-constant morphism of abelian varieties defined over Q

ϕ : J0(Np) → E,

where J0(Np) is the jacobian of the modular curve X0(Np) of level Np.
By a result of Waldspurger [18] – see also chapter 6 of [14] and [15] for different

proofs – we can find an imaginary quadratic field K �= Q(
√
−1),Q(

√
−3) such that

p is inert in K, all primes dividing N are split in K, and L(E/K, 1) is non-zero.
Write Knr for the Hilbert class field of K, and Kn for the ring class field of

K of conductor pn+1, n ≥ 0. The fields Knr and Kn are abelian extensions of
K, and Galois extensions of dihedral type of Q. Let OK = Z + Zω denote the
maximal order of K, and let On = Z+Zpn+1ω be the order of K of conductor pn+1.
Upon fixing an embedding of Q̄ into C, we may view Knr and Kn as the subfields
of C generated over K by the values j(OK) and j(On) of the modular j-function.
Let Gn := Gal(Kn/Knr) and ∆ := Gal(Knr/K). The group Gn is cyclic of order
en := (p + 1)pn. Since p is inert in K, it is totally split in Knr/K, and the primes
of Knr above p are totally ramified in Kn.

In this setting, we can construct a compatible collection of Heegner points over
the extensions Kn as follows. A point on the modular curve X0(Np) defined over a
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number field F corresponds to the isomorphism class of a triple (A,C,C ′) defined
over F , where A is an elliptic curve and C and C ′ are cyclic subgroups of A of orders
p and N , respectively. For any prime q dividing N , choose a prime q of K above it,
and let n =

∏
q. Define An := C/On, Cn := Z/pZ · [pnω] and C ′

n := (n∩On)−1/On,
where [pnω] denotes the point of order p of An corresponding to the complex number
pnω. Thus, An is an elliptic curve with complex multiplication by On, and the
triple (An, Cn, C ′

n) corresponds to a point βn of X0(Np). The theory of complex
multiplication shows that the Heegner point βn is defined over Kn. Denote by δn the
divisor class (βn)−(wNpβn) in J0(Np), wNp being the Fricke involution on X0(Np).
Finally, write αn ∈ E(Kn) for the image of (−1)nδn by the modular parametrization
ϕ. (Note that wNp acts as −1 on the normalized cusp form attached to E, since the
root number of L(E/Q, s) is +1).

The next Lemma states the compatibility properties of the Heegner points we
shall need in the sequel of the paper. Let τ be the complex conjugation corresponding
to our fixed embedding of Q̄ into C. Given a finite Galois extension M/L with Galois
group G, let NormM/L ∈ Z[G] be the norm operator

∑
σ∈G σ.

Lemma 1.1

(i) For n ≥ 0, we have NormKn+1/Kn
αn+1 = αn.

(ii) We have NormKn/Knrαn = 0.

(iii) The equality ταn = −gαn holds for some g ∈ Gal(Kn/K).

Proof. We have the equality of divisors on X0(Np)

Upβn =
∑

σ∈Gal(Kn+1/Kn)

βσn+1 ,

where Up denotes the Hecke correspondence at p on X0(Np). Since p is a non-split
multiplicative prime for E, the operator Up acts as −1 on E. Part (i) follows. As
for part (ii), note that the divisor on X0(Np)

∑

σ∈Gal(K0/Knr)

βσ0

is equal to the pull-back of the point (C/OK , n
−1/OK) of X0(N) by the covering

map
π ◦ wp : X0(Np) → X0(N) .

Here wp is the Atkin-Lehner involution at p on X0(Np) and π is the natural pro-
jection of X0(Np) onto X0(N). Therefore, δn belongs to the old part of J0(Np),
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and the claim follows. Finally, Proposition 2.6 of [1] states that τβn = gwNβn for
a g in Gal(Kn/K). Since the root number of L(E/Q, s) is +1 and p is a non-split
multiplicative prime, the involution wN acts as −1 on E. This concludes the proof
of Lemma 1.1. �

2. Given a generator γn for the cyclic group Gn, define Kolyvagin’s derivative
operator Dn :=

∑en−1
i=1 iγin ∈ Z[Gn]. A direct computation yields the equality

(1) (γn − 1)Dn = en − NormKn/Knr .

By abuse of notation, let Dnαn denote also the image in E(Kn)/pnE(Kn) of the
point Dnαn of E(Kn). By Lemma 1.1, Dnαn belongs to (E(Kn)/pnE(Kn))Gn .

In order to simplify the exposition, we assume from now on that Ep(K0) is
zero, and that p is an odd prime which does not divide the class number of K and
the order of the groups of connected components of the Néron model of E at the
primes dividing N . (These assumptions can be avoided at the cost of introducing
some technical complications in the arguments: see [2]).

Since Ep(K0) = 0 and Kn/K0 is an abelian p-extension, we also have that
Ep(Kn) = 0 for all n ≥ 1. Thus, multiplication by pn induces the exact sequence of
Gn-modules

0 → E(Kn)
pn−→ E(Kn) → E(Kn)/pnE(Kn) → 0 .

Upon taking Gn-cohomology, we find

0 → E(K)/pnE(K) → (E(Kn)/pnE(Kn))Gn → H1(Gn, E(Kn))pn → 0 .

Let dn be the image in H1(Gn, E(Kn))pn of Dnαn by the coboundary map. More
explicitly, dn is the cohomology class corresponding to the cocycle

(2) Gn  σ �→ (σ − 1)Dnαn
pn

.

By the formula (1), ((γn−1)Dnαn)/pn is equal to (p+1)αn. More generally, if σ = γin
for i = 1, . . . , en, then ((σ−1)Dnαn)/pn is equal to (p+1)(γi−1

n + . . .+1)αn. When
convenient, we shall identify dn with its image in H1(Knr, E)pn by the inflation map.

It turns out that the class dn restricts to zero at all primes not equal to p, and
that its restriction at p is related to the special value L(E/K, 1).

We begin with some preliminaries. Write Kn,p for Kn ⊗ Qp = ⊕p|pKn,p, and
Un,p for the units of Kn,p. Our functors on abelian categories will always be additive,
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so that for example E(Kn,p) stands for ⊕p|pE(Kn,p). If p is as before a prime of Kn

above p, write Φp for the group of connected components of the Néron model of E
over the ring of integers of Kn,p, and let

Φn := ⊕p|pΦp.

By Tate’s theory of p-adic uniformization ([16], ch. V), Φn is defined by an exact
sequence

(3) 0 → Un,p → E(Kn,p) → Φn → 0 .

It follows that Φp is a cyclic group of order rn := en · ordp(qE), qE being Tate’s
p-adic period of E, and that Φn is isomorphic as a ∆-module to the group ring
(Z/rnZ)[∆]. The Gn-cohomology of (3) yields a map from H1(Gn, E(Kn,p))pn to
Hom(Gn,Φn)pn , and, by evaluating homomorphisms on the fixed generator γn of
Gn, also a map

(4) jn : H1(Gn, E(Kn,p))pn → (Φn)pn .

(One checks directly that jn is injective, and it can be shown that jn is in fact an
isomorphism. We will not need these facts in the sequel of the paper).

The next proposition describes the localization properties of the class dn. Given
a rational prime &, let res� : H1(Kn, E)pn → H1(Kn,�, E)pn be the natural restriction
map, where Kn,� denotes Kn ⊗ Q�.

Proposition 2.1

(i) If & �= p, then res�dn = 0.

(ii) The local class respdn belongs to H1(Gn, E(Kn,p))pn , and we have

jn(respdn) = (p + 1)ᾱn ,

where ᾱn denotes the natural image of αn in Φn.

Proof. The local cohomology group H1(Gn, E(Kn,�)) is trivial for all primes & of
good reduction for E, since Kn/Knr is unramified outside p. The same is true for
the primes & | N , by our assumption on the groups of connected components at the
primes dividing N . This proves part (i). Part (ii) follows from the definition of jn
and the explicit description of dn given in (2). �
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If M is a ∆-module and m is an element of M , we write M1 and m1 as
shorthands for NormKnr/KM ⊂ M∆ and NormKnr/Km ∈ M1.

Since p does not divide the class number of K under our assumptions, the
inflation-restriction sequence identifies the groups H1(K,E)pn and H1(Knr, E)∆pn ,
and similarly for their local counterparts. Thus, we may view the class d1

n as an
element of H1(K,E)pn .

Proposition 2.2

Assume that (p + 1)ᾱ1
n ∈ (Φn)∆pn is non-zero for some n ≥ 0. Then E(Q) is

finite.

Proof. By Proposition 2.1,

jn(respd1
n) = (p + 1)ᾱ1

n .

In view of the compatibility properties of the Heegner points stated in Lemma 1.1,
(p + 1)ᾱ1

n is non-zero for some n ≥ 1, and the order of (p + 1)ᾱ1
n+1 is p times the

order of (p + 1)ᾱ1
n. Hence, the order of respd1

n goes to infinity with n.
Since Dτ

n = −Dn modulo enZ[Gn], part (iii) of Lemma 1.1 shows that τ acts
as +1 on the class d1

n. It follows directly that d1
n belongs to H1(Q, E)pn , and thus

respd1
n belongs to H1(Qp, E)pn .
Write Ê(Qp) for the p-adic completion lim←

n
E(Qp)/pnE(Qp) of E(Qp). In our

setting, one checks that Ê(Qp) is a free Zp-module of rank 1. The local duality
theorem of Tate ([13], ch. 1) states the existence of a perfect pairing

〈 , 〉p : Ê(Qp) ×H1(Qp, E)p∞ → Qp/Zp .

It follows that H1(Qp, E)p∞ is isomorphic to the p-divisible group Qp/Zp, and hence
it is generated by the classes respd1

n with n varying.
Since the global classes d1

n ∈ H1(Q, E)pn restrict to zero at all primes & �= p, the
global duality theorem of class field theory ([13], ch. 1) implies that the local classes
respd1

n pair to zero with the natural image of E(Q) in Ê(Qp). But E(Q) maps to
Ê(Qp) with finite kernel, equal to its torsion subgroup. Therefore, E(Q) has to be
a finite group. �

3. Combining the next theorem with Proposition 2.2 completes our argument.

Theorem 3.1

The element (p + 1)ᾱ1
n ∈ (Φn)∆pn is non-zero for n sufficiently large.
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Sketch of proof.

Step 1. By definition, the Heegner point αn is (up to sign) the image by the modular
parametrization ϕ of the Heegner divisor class δn = (βn)− (wNpβn) in J0(Np)(Kn).
For a prime p of Kn above p, let Ψp be the group of connected components of the
Néron model of J0(Np) over the ring of integers of Kn,p, and let Ψn := ⊕p|pΨp. It
is crucial to determine the image in Ψn of the divisor class δn.

We first recall Grothendieck’s description of Ψn. It is known that the reduction
modulo p of (a suitable model of) the curve X0(Np) is equal to the union of two
copies of X0(N)/Fp

, crossing at the supersingular points. Let s1, . . . , sh be these su-
persingular points. They correspond to supersingular elliptic curves in characteristic
p, equipped with a cyclic N -isogeny. Let wi denote one half the order of the group
of automorphisms of the modulus si. Write M, resp. M0 for the free Z-module of
divisors, resp. degree-zero divisors with integral coefficients supported on the points
si. Define a non-degenerate pairing

(5) 〈 , 〉 : M0 × M0 → Z

to be the restriction to M0 of the diagonal pairing on M given by 〈si, sj〉 := δijwi.
Let ψ : M0 → (M0)∨ be the map from M0 to its Z-dual (M0)∨ induced by the
pairing (5). If p is a prime of Kn above p, the points s1, . . . , sh can be identified
with the double points of the fiber at p of X0(Np), and M0 can be identified with the
character group M0

p of the maximal torus at p of the Néron model of J0(Np). Write
si,p, ψp, etc. for the objects corresponding to si, ψ, etc. via the above identifications.

A theorem of Grothendieck ([9], thm. 11.5) states that the group Ψp of con-
nected components at p fits in the canonical exact sequence

(6) 0 → M0
p

en−→ M0
p

ψp−→ (M0
p)

∨ → Ψp → 0,

where the first map is multiplication by en = (p + 1)pn.
Observe that the Heegner points βn and wNpβn reduce modulo p to supersingu-

lar points, say si0,p and si1,p. For, βn corresponds to an elliptic curve An with com-
plex multiplication by the order On of K, together with a certain level Np-structure.
Since p is inert in K, the reduction of An at p is supersingular. Similarly for wNpβn.
It follows that the divisor class δn reduces modulo p to µp := si0,p − si1,p ∈ M0

p.
We can prove that the natural image of δn in Ψp corresponds via the sequence

(6) to the element ψp(µp) of (M0
p)

∨.
More precisely, the work of Edixhoven [5] shows that the image of δn in Ψp is

equal to the image via (6) of ψp(mi0si0,p −mi1si1,p), where the constants mi0 and
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mi1 can be described as follows. Let Op be the ring of integers of the completion
of the maximal unramified extension of Kn,p. Write F : An → A

(p)
n for the Frobe-

nius morphism over Op/pOp, with An as before. Then mi0 is defined to be the
largest positive integer m ≤ en such that An and A

(p)
n are isomorphic over the ring

Op/p
mOp. The constant mi1 is defined similarly. Our claim amounts to proving that

mi0 and mi1 are both equal to 1. In other words, An and A
(p)
n are not isomorphic

over Op/p
2Op, and similarly for the curves corresponding to wNpβn. This follows

from Gross’ theory of quasi-canonical liftings [7], by looking at the formal groups of
An and A

(p)
n . We refer the interested reader to [5] and [2] for more details on these

somewhat technical arguments.

Step 2. We can use the above description of the image δ̄n in Ψn of the divisor δn
to show that (p+ 1)ᾱ1

n is non-zero for n large enough. Equivalently, by the proof of
Proposition 2.2, to show that the order of ᾱ1

n is unbounded with n varying.
Write T for the algebra generated over Z by the Hecke operators acting on

J0(Np), and f for the normalized cusp form with rational coefficients attached to
E. Let πf be the projector in T ⊗ Q corresponding to f , and let nf be the smallest
positive integer such that the operator ηf := nfπf belongs to T. Note that Ψn is a
T[∆]-module. Let Ψf,1

n be ηfΨ1
n, and let δ̄f,1n ∈ Ψf,1

n be ηf δ̄
1
n. One checks directly

that the order of ᾱ1
n is unbounded with n varying if and only if the same is true for

the order of δ̄f,1n .
The fact that the order of δ̄f,1n is unbounded follows from a slight generalization

of a formula of Gross (see [6] and [4]) for the special value L(E/K, 1), combined with
Step 1. Consider the T[∆]-module Mn := ⊕p|pMp, and define Mf,1

n to be ηfM1
n. The

pairing (5) induces a pairing

〈 , 〉f,1 : Mf,1
n × Mf,1

n → Z .

If µ := (µp)p|p is the natural image of δn in Mn, write µf,1 for ηfµ1. Then,

L(E/K, 1) = C · 〈µf,1, µf,1〉f,1

for a non-zero constant C independent of n (which can be described explicitly).
Since in our setting L(E/K, 1) is non-zero, this concludes the argument. �
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