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Abstract

For Banach Jordan algebras and pairs the spectrum is proved to be related to the
spectrum in a Banach algebra. Consequently, it is an analytic multifunction,
upper semicontinuous with a dense Gδ-set of points of continuity, and the
scarcity theorem holds.

0. Introduction

In this paper we consider Banach Jordan algebras and pairs, i.e. complex Jordan
algebras resp. pairs which have complete norms such that quadratic operators and
squares are continuous (and even analytic). For details see [5]. As for associative
Banach algebras the spectrum is an important notion in this more general context.
Thus it is an obvious question whether its properties, besides being a compact subset
of C, are also true in the Jordan case.

In [1, § III.4] Aupetit showed some important analytic and topological properties
of spectra in unital Banach algebras by using subharmonic and analytic functions
as well as analytic multifunctions. The aim of this paper is the generalization of
Aupetit’s results to Banach Jordan algebras and pairs. Astonishingly this can be
done very easily by using a fact which is partially due to Loos [5]: For an element
x of a unital Banach Jordan algebra J or an element (x, y) of a Banach Jordan pair
V the spectrum is equal to the spectrum of(

0 IdJ

−Ux Vx

)
resp.

(
0 IdV +

−Q(x)Q(y) D(x, y)

)
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in the associative Banach algebras Mat2(L(J)) resp. Mat2(L(V +)), where L denotes
the set of bounded linear operators. Using the fact that the above matrices depend
analytically on x resp. (x, y), it is not necessary to adapt Aupetit’s proofs to the
Jordan setting for most of the claims.

The main results are:

(1) For a unital Banach Jordan algebra J or a Banach Jordan pair V the mappings
x �→ SpJ(x) resp. (x, y) �→ SpV (x, y) are upper semicontinuous. If f is an
analytic function from a domain D of C into J or V + × V −, we get analytic
multifunctions λ �→ SpJ(f(λ)) resp. λ �→ SpV (f+(λ), f−(λ)).

(2) The sets of points of continuity of x �→ SpJ(x) resp. (x, y) �→ SpV (x, y) are
dense Gδ-subsets of J resp. V + × V − containing all elements with totally
disconnected spectrum.

(3) Scarcity of spectrum-finite elements: For an analytic function f from a domain
D of C into J or V + × V − either “almost all” f(λ) have infinite spectrum or
the number of spectral values is equal to a fixed n ∈ N for “almost all” λ ∈ D
and smaller than n for the rest.

In the sequel R is an arbitrary field. We use the notation Sp′ for the union
of the spectrum with {0}, and ρ for the spectral radius. If A is an associative or
Jordan algebra, the subset of invertible elements is denoted by A×. All Banach
spaces occurring are over the complex numbers.

1. The quadratic spectrum

Definition 1.1. Let A be a unital associative R-algebra. For commuting elements
u, v ∈ A we define

Sp2
A(u, v) :=

{
λ ∈ R : λ21A − λv + u �∈ A×}

,

m(u, v) :=

(
0 1

−u v

)
∈ Mat2(A) =: B .

Proposition 1.2

In the situation of 1.1 we have:

λ21A − λv + u ∈ A× ⇔ λ1B −m(u, v) ∈ B× .
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Proof. “⇒”: Let w :=
(
λ21A − λv + u)−1. Since λ21A − λv + u commutes with u

and v the same is true for w. Therefore(
λ1A − v 1

−u λ1A

)
w = w

(
λ1A − v 1

−u λ1A

)
=: n ,

whence we can easily show that
(
λ1B −m(u, v)

)
n = 1B = n

(
λ1B −m(u, v)

)
and

get λ1B −m(u, v) ∈ B× .

“⇐”: Let (
a b

c d

)
:=

(
λ1B −m(u, v)

)−1
.

The equations defining the inverse yield

−a+ λb− bv = 0 , (1)

λa+ bu = 1A , (2)

λb− d = 0 , (3)

ub+ λd− vd = 1A , (4)

and four additional equations. Using (1) and (2) we get

b
(
λ21A − λv + u

)
= λ

(
λb− bv

)
+ bu = λa+ bu = 1A ,

whereas (3) and (4) imply(
λ21A − λv + u

)
b = ub+

(
λ1A − v

)
λb = ub+

(
λ1A − v

)
d = 1A .

Thus
(
λ21A − λv + u

)
is invertible (with inverse b). �

Corollary 1.3

Sp2
A(u, v) = SpB

(
m(u, v)

)
.

2. Relating the Jordan case to the associative case

Proposition 2.1
Let J be a unital Jordan algebra over R. Consider the associative R-algebra

B := Mat2(EndR(J)) and for x ∈ J define

m(x) := m(Ux, Vx) =

(
0 IdJ

−Ux Vx

)
∈ B .

Then SpJ(x) = SpB(m(x)) .
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Proof. Let A := EndR(J), v := Vx = V1J ,x = Vx,1J
∈ A and u := Ux ∈ A. By

[4, 1.6.7] uv = UxV1J ,x = Vx,1J
Ux = vu, whence we can apply 1.3. Using [4, 3.1.2]

we get
SpJ(x) =

{
λ ∈ R : Uλ1J−x is not invertible

}
=

{
λ ∈ R : λ21A − λv + u is not invertible

}
= Sp2

A(u, v) = SpB(m(x)) . �

Proposition 2.2

Let V be a Jordan pair over R. Consider the associative R-algebra B :=
Mat2(EndR(V +)) and for (x, y) ∈ V define

m(x, y) := m
(
Q(x)Q(y), D(x, y)

)
=

(
0 IdV +

−Q(x)Q(y) D(x, y)

)
∈ B .

Then SpV (x, y) = Sp′
B

(
m(x, y)

)
.

Proof. Let A := EndR(V +), v := D(x, y) ∈ A and u := Q(x)Q(y) ∈ A. By [4, JP 1]
uv = Q(x)Q(y)D(x, y) = Q(x)D(y, x)Q(y) = D(x, y)Q(x)Q(y) = vu , whence we
can apply 1.3. Defining SpV (x, y) as in [5, 1.2.1] we obtain analogously to [5, 1.2.3]

SpV (x, y) = {0} ∪
{
λ ∈ R : B(λ−1x, y) is not invertible

}
= {0} ∪

{
λ ∈ R : λ2B(λ−1x, y) is not invertible

}
= {0} ∪

{
λ ∈ R : λ21A − λv + u is not invertible

}
= {0} ∪ Sp2

A(u, v) = {0} ∪ SpB

(
m(x, y)

)
= Sp′

B

(
m(x, y)

)
. �

Theorem 2.3

(a) Let J be a unital Banach Jordan algebra, x ∈ J and B := Mat2
(
L(J)

)
. Then

m(x) ∈ B, and

SpJ(x) = SpB

(
m(x)

)
.

Recall that m : J → B is analytic being a continuous polynomial of degree 2.

(b) For a Banach Jordan pair V, (x, y) ∈ V and B := Mat2
(
L(V +)

)
we have

m(x, y) ∈ B and

SpV (x, y) = Sp′
B

(
m(x, y)

)
.

Again, m : V → B is an analytic function.
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Corollary 2.4

Let f be an analytic function from a domain D of C into J or V + × V −.

Then the mappings λ �→ SpJ

(
f(λ)

)
resp. λ �→ SpV

(
f+(λ), f−(λ)

)
are analytic

multifunctions.

Remark. This result improves a theorem by Aupetit and Zräıbi [2, Th. 1]. With
different arguments it was also proved by Maouche [6, 4.3.8].

Knowing that the spectrum is an analytic multifunction for Jordan pairs, a
great number of results of Chapters III, V and VII in [1] can be adapted or used
directly. In the following sections we use the above theorem and other techniques
for generalizing some of Aupetit’s results on analytic properties of the spectrum in
Banach algebras to the Banach Jordan context.

3. Continuity of the spectrum

Proposition 3.1

Let J be a unital Banach Jordan algebra, and x, y ∈ J such that Ux, Uy, Ux,y, Vx,

and Vy commute pairwise. Then

SpJ(y) ⊆ SpJ(x) + ρJ(x− y) .

Proof. Let B := C[x, y] the Jordan subalgebra of J generated by x and y. By [3,
3.2.4] the subalgebra of End(J) generated by UB and VB equals the subalgebra
generated by the five commuting operators Ux, Uy, Ux,y, Vx, Vy and is therefore com-
mutative. Thus B is strongly associative, whence there exists a closed, full and
strongly associative subalgebra A ⊆ J with A ⊇ B [7, I.3 and II.2]. In particular, A
is an associative commutative unital Banach algebra and x, y, x − y have the same
spectra in A and in J. Applying [1, III.4.1] we get

SpJ(y) = SpA(y) ⊆ SpA(x) + ρA(x− y) = SpJ(x) + ρJ(x− y) . �

Theorem 3.2

(a) Let J be a unital Banach Jordan algebra. Then the function x �→ SpJ(x) is upper

semicontinuous, i.e. for any open setW ⊇ SpJ(x) there exists an open neighborhood

Z of x in J such that SpJ(z) ⊆W for all z ∈ Z.
(b) Let V be a Banach Jordan pair. Then the function (x, y) �→ SpV (x, y) is upper

semicontinuous, i.e. for any open set W ⊇ SpV (x, y) there exists an open neighbor-

hood Z of (x, y) in V + × V − such that SpV (z, w) ⊆W for all (z, w) ∈ Z.
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Proof. (a) Put A := Mat2
(
L(J)

)
. By [1, III.4.2] there exists an open neighborhood

Z̃ of m(x) in A such that SpA(a) ⊆ W for all a ∈ Z̃. Since m is analytic by 2.3(a),
it is continuous. Thus there exists an open neighborhood Z of x in J such that
m(z) ∈ Z̃ for all z ∈ Z. In particular, an application of 2.3(a) yields

SpJ(z) = SpA

(
m(z)

)
⊆W.

(b) The assertion can be shown analogously to (a) by using 2.3(b). �

Theorem 3.3

Let J be a unital Banach Jordan algebra and V a Banach Jordan pair. Then

the sets of points of continuity of the functions x �→ SpJ(x) and (x, y) �→ SpV (x, y)
are dense Gδ-subsets of J resp. V + × V −.

Proof. We will show the claim for J by following the proof of [1, III.4.3]: Let
(fn) be a dense sequence of elements of the algebra of real continuous functions
(together with the topology of uniform convergence on compact subsets). For x ∈ J
we define Fn(x) := sup

(
fn(SpJ(x))

)
. Then Fn : J → R is upper semicontinuous as

a consequence of 3.2(a). Thus z �→ SpJ(z) is continuous at x ∈ J if and only if all
Fn are continuous at x (cf. proof of [1, III.4.3]). The rest of the proof is identical to
the respective part of the proof of of [1, III.4.3] since this part works for an arbitrary
Banach space and does not depend on any algebraic structure. The claim for V can
be shown analogously by using 3.2(b). �

Proposition 3.4

Let U,W be disjoint open subsets of C.

(a) For a unital Banach Jordan algebra J and x ∈ J suppose that SpJ(x) ⊆ U ∪W
and SpJ(x)∩W �= ∅. Then there exists an open neighborhood Z of x in J such that

SpJ(z) ∩W �= ∅ for all z ∈ Z.
(b) For a Banach Jordan pair V and (x, y) ∈ V suppose that SpV (x, y) ⊆ U ∪W and

SpV (x, y)∩W �= ∅. Then there exists an open neighborhood Z of (x,y) in V + ×V −

such that SpV (z, w) ∩W �= ∅ for all (z, y) ∈ Z.

Proof. (a) Put A := Mat2
(
L(J)

)
. Then by 2.3(a) we have SpA

(
m(x)

)
⊆ U ∪W and

SpA(m(x))∩W �= ∅ whence we may apply [1, III.4.4] and get an open neighborhood
Z̃ of m(x) in A such that SpA(a)∩W �= ∅ for all a ∈ Z̃. By continuity of m : J → A

we can find an open neighborhood Z of x such that m(z) ∈ Z̃ for all z ∈ Z. Now
the claim is true by 2.3(a).

(b) The proof works analogously if we use 2.3(b). �
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Theorem 3.5

(a) Let J be a unital Banach Jordan algebra and x ∈ J with SpJ(x) totally discon-

nected. Then the function z �→ SpJ(z) is continuous at x.

(b) Let V be a Banach Jordan pair and (x, y) ∈ V with SpV (x, y) totally discon-

nected. Then the function (z, w) �→ SpV (z, w) is continuous at (x, y).

Proof. The first part can be shown analogously to [1, III.4.5] if we use 3.2(a)
and 3.4(a), the second part with the help of 3.2(b) resp. 3.4(b). �

4. The scarcity theorem

Definition 4.1. For a compact set K ⊆ C and n ∈ N the n-th diameter of K is
defined by

δn[K] := max


 ∏

1≤i<j≤n+1

|λi − λj |2/(n
2+n) : λ1, . . . , λn+1 ∈ K


 .

Note that δn[K] ≥ δn+1[K] and that δ1[K] = max
(
|λ1 − λ2| : λ1, λ2 ∈ K

)
is the

classical diameter of K.

Definition 4.2. For X ⊂ C we define the capacity of X as in [1, § A.1]:

(a) If X = K is a compact set, then c(K) := limn→∞ δn[K] < ∞, which is
well-defined by 4.1.

(b) If X = U is an open set, then c(U) := sup
(
c(K) : K ⊆ U compact

)
≤ ∞ .

(c) If X is arbitrary, then c(U) := inf
(
c(U) : U ⊇ X open

)
≤ ∞ .

Recall that sets having zero capacity are totally disconnected [1, A.1.28].

Theorem 4.3

Let J be a unital Banach Jordan algebra, V a Banach Jordan pair, and f an

analytic function from a domain D of C into J or V + × V −. Put F :=
{
λ ∈ D :

"
(
Sp(f(λ))

)
<∞

}
. Then either F is a Borel set with c(F ) = 0 or there exists n ∈ N

and a closed discrete subset E of D such that

"
(
Sp(f(λ))

) {
= n for λ ∈ D\E

< n for λ ∈ E

}
.

In this case we get analytic functions h1, . . . , hn : D\E → C with Sp
(
f(λ)

)
={

h1(λ), . . . , hn(λ)
}
.
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Proof. The claim is true by 2.3 and [1, III.4.25]. �

Remark. Analogously to the above proof most of the results of [1, § III.4] can easily
be adapted to the Banach Jordan context.
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