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Abstract

The necessary and sufficient condition that a given plurisubharmonic or a sub-
harmonic function admits the representation by the logarithmic potential (up
to pluriharmonic or a harmonic term) is obtained in terms of the Radon trans-
form. This representation is applied to the problem of representation of analytic
functions by products of primary factors.

It is well known that an interest in subharmonic and plurisubharmonic functions
is mostly due to the relation of these classes to analytic functions. In the case of
one complex variable the Riesz integral representation of subharmonic functions [7,
Chapter III] is of particular importance because of its kernel ln |z − w|. This rep-
resentation itself testifies to a certain relation between subharmonic and analytic
functions since it means that any subharmonic function is an integral with respect
to the parameter α defining the family of the form ln |fα|, where fα is analytic.
In several variables that relation disappears and therefore the search for an ana-
logue of such a representation is of great importance. In this connection the author
[16–19] considered the problem of representation of subharmonic and plurisubhar-
monic functions in domains of the space C

n, n ≥ 2, by the logarithmic potential

(1)
∫

ln |t− 〈z, w〉| dµ(t, w),
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where µ(t, w) is a positive measure defined on the set of hyperplanes.
It should be noted that some properties of the potential (1) were investigated

earlier in [3, 4, 13]. In particular, the properties of the potential (1) related to the
notion of capacity were studied. Also the properties of this potential were used to
study defects of meromorphic mappings and to obtain the average growth estimates
for hyperplane sections of analytic sets. The author has discovered that the problem
of representation of plurisubharmonic functions by the potential (1) is closely related
to the properties of the classic complex Radon transform (concerning the complex
Radon transform we refer to [5]). The necessary and sufficient condition that a
given plurisubharmonic or a subharmonic function admits the representation by the
potential (1) (up to pluriharmonic or a harmonic term) was obtained in terms of the
Radon transform. It was shown that a sufficiently smooth and strictly plurisubhar-
monic function is representable as the potential (1) in some neighborhood of each
point. Also it was ascertained that any real-valued function satisfying certain con-
ditions of smoothness may be represented as a difference of potentials (1). However
it is known that an arbitrary plurisubharmonic function is not representable as the
potential (1) in the whole domain of its definition. In this paper we investigate the
problem of representation of functions by the potential

(2)
∫

ln |Pα|dµ(α),

where, for every α, Pα is a holomorphic polynomial of degree ≤ m, where m is a fixed
integer and µ is a positive measure. In terms of the generalized Radon transform
we give the necessary and sufficient condition that a given plurisubharmonic or a
subharmonic function admits the representation by the potential (2) (Theorems 1
and 2). Also we apply this representation to the reducibility problem for analytic
functions (Theorem 3 and its corollaries). We show that a holomorphic function L(z)
is a product (up to factors without zeros) of holomorphic polynomials of degrees ≤ m

if and only if the function ln |L(z)| is representable as the potential (2). In contrast
with the case of an arbitrary plurisubharmonic function, Corollary 2 of Theorem
3 shows that the local representation of the logarithm of the modulus of an entire
function by the potential (2) is equivalent to the global representation. These results
justify the Radon transform as a proper tool to investigate the reducibility problem
for holomorphic functions.

It is worth mentioning that under certain conditions imposed on an entire func-
tion [2, 14] its zero-set is the union of the complex hyperplanes {z : 〈ak, z〉 = ck}∞k=1,
where ak ∈ R

n, ck ∈ C.
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Now we introduce most of the notation which will be used. We also give some
definitions.

For z, w ∈ C
p, we write 〈z, w〉 =

∑
zjwj . We put B(z,R) = {w ∈ C

p| |z−w| <
R} for z ∈ C

p and R > 0, S2p−1 = {z ∈ C
p| |z| = 1}. Throughout this paper we

assume that Ω is a domain in C
n. If Ω1 is a bounded domain whose closure is a

compact subset of Ω, we write Ω1 ⊂⊂ Ω. We denote by D(Ω) the space of smooth
C-valued functions with compact support in Ω. For ϕ ∈ D(Cn), we write ∆ϕ for
the Laplacian. The symbol dω2n(z) is used to denote the volume form on C

n:

dω2n(z) =
(
i

2

)n

(dz1 ∧ dz̄1) ∧ . . . ∧ (dzn ∧ dz̄n).

For a holomorphic function F (z), Z(F ) denotes the zero-set of F . The term “mea-
sure” will refer to positive Radon measures.

If ϕ ∈ D(Cn), the standard complex Radon transform of ϕ (denoted by ϕ̂) is
defined by

ϕ̂(s, ξ) =
1
|ξ|2

∫
〈z,ξ〉=s

ϕ(z) dλ(z),

where (s, ξ) ∈ C × (Cn \ 0), and dλ(z) is the area element on the hyperplane {z :
〈z, ξ〉 = s}.

Throughout this paper we fix positive integers m and n ≥ 2. Let Pm denote the
vector space of all polynomials in the complex variables z1, . . . , zn of degrees ≤ m.
The dimension of Pm will be denoted by N +1. We fix a basis {1, P1(z), . . . , PN (z)}
of Pm, where the polynomials Pj(z) are homogeneous and Pj(z) = zj for 1 ≤
j ≤ n. P (z) denotes the vector-valued function (P1(z), ..., PN (z)). Let X denote
the topological product [0,∞) × S2N−1. For an open set Y ⊂ X, we denote by
Cc(Y ) the space of continuous C-valued functions with compact support in Y . For
a set A ⊂ C

n, we denote by Â the set of all (t, w) ∈ X such that the polynomial
t− 〈P (z), w〉 has zeros in A. If A ⊂ B, then obviously Â ⊂ B̂.

Lemma 1

Let G ⊂ C
n be an open set and let K ⊂ C

n be compact. Then the set Ĝ is

open and K̂ is a compact subset of X.

Proof. Fix (t0, w0) ∈ Ĝ. By definition t0 = 〈P (z0), w0〉 for some z0 ∈ G. Suppose,
seeking a contradiction, that (t0, w0) is not contained in the interior of Ĝ. Then there
exists a sequence {tk, wk}∞k=1 ⊂ X such that (tk, wk) → (t0, w0) and (tk, wk) /∈ Ĝ.
For some ξ0 ∈ S2n−1 the function q(λ) = t0 − 〈P (z0 + λξ0), w0〉 of the variable
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λ ∈ C is not identically zero. Since q(0) = 0, it follows from the Hurwitz theorem
that, for k ≥ k(ε), the functions qk(λ) = tk − 〈P (z0 + λξ0), wk〉 have zeros in
{λ ∈ C : |λ| < ε}. Consequently, the functions tk − 〈P (z), wk〉 have zeros in G for
k ≥ k0, which contradicts the conditions (tk, wk) /∈ Ĝ.

Let K ⊂ C
n be compact. It is easy to see that K̂ ⊂ [0, R] × S2N−1 for some

R > 0. Thus, to complete the proof of Lemma 1, it remains to show that K̂ is
closed. Suppose {tk, wk}∞k=1 ⊂ K and (tk, wk) → (t0, w0). By definition of K̂, we
have tk = 〈P (zk), wk〉 for some zk ∈ K. We may suppose that zk → z0 ∈ K. Then
t0 = 〈P (z0), w0〉 and (t0, w0) ∈ K̂ by definition of K̂. Lemma 1 is proved. �

Definition 1. A subharmonic function u(z) on Ω ⊂ C
n will be called an m-

logarithmic potential with a harmonic addition (m − log + h-potential) if there
exists a measure µ ≥ 0 on Ω̂ such that for every Ω1 ⊂⊂ Ω we have

(3) u(z) =
∫
ˆ
Ω1

ln |t− 〈P (z), w〉| dµ(t, w) +H(Ω1, z),

where H(Ω1, z) is harmonic on Ω1. The measure µ will be called the m − log + h-
measure of u. Let u(z) be a plurisubharmonic function on Ω. We say that u(z) is
an m-logarithmic potential (m− log-potential) and that measure µ is the m− log-
measure of u if for every Ω1 ⊂⊂ Ω the representation (3) holds, where the function
H(Ω1, z) is pluriharmonic on Ω1.

Lemma 2

For all (s, w) ∈ C × S2n−1, ϕ ∈ D(Cn) the following equalities hold:

(4)
∫

Cn

ln |s− 〈z, w〉|∂
2ϕ(z)
∂zi∂zj

dω2n(z) = (π/2)ϕ̂(s, w)wiwj ,

(5)
∫

Cn

ln |s− 〈z, w〉|∆ϕ(z) dω2n(z) = (2π)ϕ̂(s, w),

where ϕ̂(s, w) is the (complex) Radon transform of ϕ.
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Proof. It is evident that (5) follows from (4). To prove (4), we denote by I the
integral on the left-hand side of (4). The change of variables gives

I =
∫
C

ln |s− λ|ψ̂ij(λ,w)dω2(λ),

where ψ̂ij(λ,w) is the Radon transform of ψij(z) = ∂2ϕ(z)/∂zi∂zj . We have [5,
Chapter II]

(6) ψ̂ij(λ,w) = wiwj
∂2ϕ̂(λ,w)
∂λ∂λ

.

For every ψ(λ) ∈ D(C) we have [7, Chapter III]

(7)
∫
C

ln |s− λ|∂
2ψ(λ)
∂λ∂λ

dω2(λ) = (π/2)ψ(s).

Since, for every w ∈ S2n−1, ϕ̂(s, w) belongs to D(C), the assertion being proved
follows from (6) and (7). The lemma is proved. �

It should be noted that the Poincare-Lelong formula [6] contains (5) as a special
case.

Equality (5) can be used as a definition of the Radon transform. In a natural
way this leads to the following.

Definition 2. Let ϕ(z) ∈ D(Cn). In the notation introduced above, the m-Radon
transform of ϕ (denoted by ϕ̃) is defined by

ϕ̃(t, w) =
1
2π

∫
Cn

ln |t− 〈P (z), w〉|∆ϕ(z) dω2n(z), (t, w) ∈ [0,∞) × S2N−1.

Let ϕ̃(t, w) be the m-Radon transform of ϕ ∈ D(Cn). Suppose (w1, ..., wn)
∈ S2n−1. For w = (w1, ..., wn, 0, ..., 0) ∈ S2N−1, we have by Lemma 2 that
ϕ̃(t, w) = ϕ̂(t, w1, ..., wn), where ϕ̂ is the standard Radon transform of ϕ. In par-
ticular, the 1-Radon transform coincides with the restriction of the standard Radon
transform of ϕ to R×S2n−1. Therefore, if ϕ̃(t, w) ≡ 0, then ϕ̂(t, w) = 0 on R×S2n−1,
so ϕ(z) ≡ 0 in view of well-known properties of the Radon transform.

Lemma 3
For all i, j ∈ {1, ..., n} and ϕ ∈ D(Ω) the function

(8) ψij(t, w) =
∫

Cn

ln |t− 〈P (z), w〉|∂
2ϕ(z)
∂zi∂zj

dω2n(z)

belongs to Cc(Ω̂). For every function ψ ∈ Cc(Ω̂) there exists a nonnegative function
ϕ ∈ D(Ω) such that |ψ(t, w)| ≤ ϕ̃(t, w), where ϕ̃(t, w) is the m-Radon transform
of ϕ.
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Proof. Let ϕ ∈ D(Ω). Let Ω1 ⊂⊂ Ω be a bounded domain that contains the support
of ϕ. For every (t, w) /∈ Ω̂1 the function ln |t − 〈P (z), w〉| is pluriharmonic on Ω1

by definition of Ω̂1. Then for (t, w) /∈ Ω̂1 the integral on the right-hand side of (8)
equals zero. Therefore the support of ψij is contained in ˆ̄Ω1. Suppose (tk, wk) ∈ X

and (tk, wk) → (t0, w0) ∈ X as k → ∞. Then it is easily seen that

lim
k→∞

∫
K

|ln |tk − 〈P (z), wk〉| − ln |t0 − 〈P (z), w0〉|| dω2n(z) = 0

for every K ⊂⊂ C
n. From this it follows that ψij is continuous on X = [0,∞) ×

S2N−1.
Suppose now that ψ ∈ Cc(Ω̂). Let {Ωp}∞p=1 be a sequence of bounded domains

such that Ω̄p ⊂ Ωp+1 and ∪Ωp = Ω. Then by Lemma 1, the sets Ω̂p are open and
{Ω̂p}∞p=1 is a covering of Ω̂. The support of ψ is a compact subset of Ω̂, so there

exists a number q such that suppψ ⊂ Ω̂q. Let ϕ ∈ D(Ω) be a nonnegative function
such that ϕ(z) = 1 on Ωq+1. Let ϕ̃(t, w) be the m-Radon transform of ϕ. Since the
function ln |t − 〈P (z), w〉| is plurisubharmonic, we have ϕ̃(t, w) ≥ 0. We will show,
by the method of contradiction, that ϕ̃(t, w) > 0 on Ω̂q. Suppose ϕ̃(t0, w0) = 0 for
some (t0, w0) ∈ ˆ̄Ωq. By the choice of the function ϕ we have

ϕ̃(t0, w0) ≥ cnµ(t0,w0)(Ω̄q+1),

where cn > 0 and µ(t0,w0) is the Riesz measure of the function ln |t0 − 〈P (z), w0〉|.
Since ϕ̃(t0, w0) = 0, we have µ(t0,w0)(Ω̄q+1) = 0. This means that the function

ln |t0 − 〈P (z), w0〉| is harmonic on Ωq+1. On the other hand, since (t0, w0) ∈ ˆ̄Ωq,
we have ln |t0 − 〈P (z0), w0〉| = −∞ for some z0 ∈ Ω̄q.This contradiction shows that

ϕ̃(t, w) > 0 on ˆ̄Ωq. Since ϕ̃(t, w) is continuous and since Ω̂q is a compact set, there
exists c0 > 0 such that ϕ̃(t, w) > c0 on ˆ̄Ωq. Then, since suppψ ⊂ Ω̂q, we have
|ψ(t, w)| ≤ Aϕ̃(t, w) for some A > 0. Lemma 3 is proved. �

Theorem 1

Let u(z) �≡ −∞ be a subharmonic function on Ω ⊂ C
n. In order that u(z) be

an m− log + h-potential on Ω, it is necessary and sufficient that

(9)
∫

u(z)∆ϕ(z) dω2n(z) ≥ 0, for each ϕ ∈ D(Ω) such that ϕ̃ ≥ 0,

where ϕ̃ denotes the m-Radon transform of ϕ.
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Proof. Necessity. Let u(z) be an m − log + h-potential on Ω. Denote by µ the
m − log + h-measure of u. Suppose that the m-Radon transform of ϕ ∈ D(Ω) is
nonnegative. Since ϕ ∈ D(Ω1) for some Ω1 ⊂⊂ Ω, it follows from Definition 1 and
Fubini’s theorem that∫

Ω1

u(z)∆ϕ(z) dω2n(z)

=
∫
ˆ̄Ω1


∫

Ω1

∆ϕ(z) ln |t− 〈P (z), w〉| dω2n(z)


 dµ(t, w)

=2π
∫
ˆ
Ω1

ϕ̃(t, w) dµ(t, w) ≥ 0.

The last equality follows from the definition of the m-Radon transform.
Sufficiency Let u(z) �≡ −∞ be a subharmonic function on Ω such that (9)

holds. Denote by ReCc(Ω̂) the vector space of all real-valued functions ψ ∈ Cc(Ω̂).
Let M be the subspace of ReCc(Ω̂) formed by the m-Radon transforms ϕ̃ of functions
ϕ ∈ D(Ω). Since every function ϕ ∈ D(Ω) is uniquely determined by its m-Radon
transform, it follows from Definition 2 that ϕ̃ belongs to M if and only if it is the
m-Radon transform of a real-valued function ϕ ∈ D(Ω). We define a functional F
on M by

〈F, ϕ̃〉 =
1
2π

∫
u(z)∆ϕ(z) dω2n(z),

where the function ϕ ∈ D(Ω) is chosen in such a way that its m-Radon transform
equals ϕ̃. Since ϕ is uniquely determined by ϕ̃, the functional F is well defined. By
our assumption the functional F is positive on M , i.e., 〈F, ϕ̃〉 ≥ 0 for ϕ̃ ≥ 0. By
Lemma 3 for every function ψ(t, w) ∈ Cc(Ω̂) there exists a function ϕ̃ ∈ M such that
|ψ(t, w)| ≤ ϕ̃(t, w). Then [12, Chapter XI] F can be extended to a positive functional
F1 on ReCc(Ω̂). By the Riesz theorem on positive functionals [7, Chapter III] there
exists a positive Radon measure on Ω̂ such that

〈F1, ψ〉 =
∫
Ω̂

ψ(t, w) dµ(t, w)

for every ψ(t, w) ∈ ReCc(Ω̂). Let Ω1 ⊂⊂ Ω. We set

(10) H(Ω1, z) = u(z) −
∫
ˆ̄Ω1

ln |t− 〈P (z), w〉| dµ(t, w).
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We will show that the function H(Ω1, z) is harmonic on Ω1. Fix some real-valued
function ϕ ∈ D(Ω1) and denote by ϕ̃(t, w) the m-Radon transform of ϕ. It follows
from Fubini’s theorem and Definition 2 that∫

Ω1

H(Ω1, z)∆ϕ(z) dω2n(z)

=
∫
Ω1

u(z)∆ϕ(z) dω2n(z) − 2π
∫
ˆ̄Ω1

ϕ̃(t, w) dµ(t, w).(11)

By Lemma 3 we have suppϕ̃ ⊂ Ω̂1. Then by the construction of the measure µ, the
difference on the right-hand side of (11) equals zero. Then [9, Chapter XI] there
exists a harmonic function H̃(Ω1, z) on Ω1 such that H̃(Ω1, z) = H(Ω1, z) almost
everywhere on Ω1. Therefore, in view of (10), H̃(Ω1, z) − H(Ω1, z) is a difference
of two subharmonic functions and equals zero almost everywhere on Ω1. Then [15,
Chapter I] H̃(Ω1, z) −H(Ω1, z) = 0 everywhere on Ω1. Theorem 1 is proved. �

Theorem 1 is an analogue of the Riesz theorem on the integral representation
of subharmonic functions of one complex variable. We can state the Riesz theorem
as follows:

Let u be a distribution on a domain Ω ⊂ C. In order that u be a logarithmic
potential, it is necessary and sufficient that
(12) 〈∆u, ϕ〉 ≥ 0 for each ϕ ∈ D(Ω) such that ϕ ≥ 0,
i.e., every subharmonic function of one complex variable is a logarithmic potential.

If u(z) �≡ −∞ is a subharmonic function on a domain Ω ⊂ C
n,n ≥ 2, then (12) is

not equivalent to (9), because there is a class K of functions ϕ ∈ D(Ω) such that the
m-Radon transform of every ϕ ∈ K is nonnegative, but nonetheless the inequality
ϕ ≥ 0 is not true. We shall see that, for every m, there exists a plurisubharmonic
function that is not an m− log + h-potential. (See Theorem 3.)

Remark 1. Let u(z) be an m− log+ h-potential on Ω ⊂ C
n and let µ be a positive

measure on Ω̂. It is easy to see that µ is the m − log + h-measure of u if and only
if, for every ϕ ∈ D(Ω), the following equality holds:∫

Ω

u(z)∆ϕ(z)dω2n(z) = 2π
∫
Ω̂

ϕ̃(t, w)dµ(t, w),

where ϕ̃(t, w) is the m-Radon transform of ϕ. This measure is not unique, even in
the case m = 1.

Lemma 4
Let Ω be a domain in C

n and let µ ≥ 0 be a positive measure on Ω̂. Then there
exists an m−log+h-potential u(z) on Ω such that µ is one of the m−log+h-measures
of u.



Representation of functions by logarithmic potential and reducibility 195

Proof. We define a functional ν on D(Ω) by

〈ν, ϕ〉 = 2π
∫
Ω̂

ϕ̃(t, w)dµ(t, w),

where ϕ̃(t, w) is the m-Radon transform of ϕ. The functional ν is well defined
because by Lemma 3 ϕ̃ belongs to Cc(Ω̂) for every function ϕ ∈ D(Ω). We have
〈ν, ϕ〉 ≥ 0 for ϕ ≥ 0. By the Riesz theorem on positive functionals there exists a
positive measure ν on Ω such that

〈ν, ϕ〉 =
∫
Ω

ϕ(z)dν(z)

for every ϕ ∈ D(Ω). Then [8, Chapter IV] there exists a subharmonic function u(z)
on Ω such that ∆u = ν. By Theorem 1 u(z) is an m − log + h-potential on Ω and
µ is the m− log + h-measure of u. The lemma is proved. �

For a domain Ω ⊂ C
n let Dn−1,n−1(Ω) denote the space of smooth and com-

pactly supported differential forms on D(Ω) of bidegree (n − 1, n − 1). Every form
ϕ ∈ Dn−1,n−1(Ω) may be written in unique way as

(13) ϕ =
n∑

k,m=1

ϕkm(z) ∧ ωkm,

where ϕkm ∈ D(Ω), and the forms ωkm are defined by the equalities

i

2
dzk ∧ dz̄m ∧ ωkm =

(
i

2

)n

(dz1 ∧ dz̄1) ∧ . . . ∧ (dzn ∧ dz̄n).

Let us agree to call the functions ϕkm on the right-hand side of (13) the coeffi-
cients of ϕ. As usual we denote by ddc the operator 2i∂∂̄.

Definition 3. Let ϕ ∈ Dn−1,n−1(Cn). The m-Radon transform of ϕ is defined by

ϕ̃(t, w) =
1
2π

〈ln |t− 〈P (z), w〉|, ddcϕ〉

=
1
2π

∫
Cn

ln |t− 〈P (z), w〉|
n∑

i,j=1

4
∂2ϕij(z)
∂zi∂z̄j

dω2n(z),(14)

where, for i, j = 1, . . . , n, the functions ϕij(z) are the coefficients of ϕ.
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By Lemma 3 the m-Radon transform of every ϕ ∈ Dn−1,n−1(Ω) belongs to
Cc(Ω̂). It follows from the Poincare-Lelong formula that, for every (t, w) ∈ [0,∞)×
S2N−1, the m-Radon transform ϕ̃(t, w) of ϕ ∈ Dn−1,n−1(Cn) equals [D(t,w)](ϕ),
where [D(t,w)] is the current of integration over the set D(t,w) = {z : t = 〈P (z), w〉}.

Lemma 5

Let ϕ ∈ Dn−1,n−1(Cn). Then the m-Radon transform ϕ̃(t, w) of ϕ is identically

zero if and only if ddcϕ = 0, i.e., the coefficients ϕij of ϕ satisfy the equality

n∑
i,j=1

∂2ϕij(z)
∂zi∂z̄j

≡ 0.

Moreover, the function ϕ̃(t, w) is real-valued if and only if

(15) Im


 n∑

i,j=1

∂2ϕij(z)
∂zi∂z̄j


 ≡ 0.

Proof. Obviously it is enough to prove the second statement of the lemma. Let
ϕ̃(t, w) be the m-Radon transform of ϕ ∈ Dn−1,n−1(Cn). If the coefficients
of ϕ satisfy (15), then, in view of (14), Im(ϕ̃(t, w)) ≡ 0. Suppose now that
Im(ϕ̃(t, w)) ≡ 0. Denote by ϕ̂ij the standard Radon transform of ϕij . Setting
w = (w1, . . . , wn, 0, . . . , 0) for (w1, . . . , wn) ∈ S2n−1, we obtain from (4) that

(16) Im


 n∑

i,j=1

wiw̄jϕ̂ij(t, w1, . . . , wn)


 = 0

for every t ≥ 0. For all ψ ∈ D(Cn) and α ∈ C \ 0 we have

ψ̂(αs, αξ) ≡ |α|−2ψ̂(s, ξ), (s, ξ) ∈ C × (Cn \ 0).

Then we obtain from (16) that

Im


 n∑

i,j=1

ξiξ̄jϕ̂ij(s, ξ)


 ≡ 0, (s, ξ) ∈ C × (Cn \ 0).

From this it follows that

(17)
∂2

∂s∂s̄
Im


 n∑

i,j=1

ξiξ̄jϕ̂ij(s, ξ)


 ≡ Im


 n∑

i,j=1

ξiξ̄j
∂2ϕ̂ij(s, ξ)

∂s∂s̄


 ≡ 0.
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Since ξiξ̄j
∂2ϕ̂ij(s,ξ)

∂s∂s̄ is the standard Radon transform of ∂2ϕij(z)
∂zi∂z̄j

, it follows
from (17) that (15) is valid. The lemma is proved. �

Theorem 2

Let u(z) �≡ −∞ be a plurisubharmonic function on a domain Ω ⊂ C
n. Then

u(z) is an m− log-potential on Ω if and only if

(18) 〈u, ddcϕ〉 ≥ 0 for each ϕ ∈ Dn−1,n−1(Ω) such that ϕ̃ ≥ 0,

where ϕ̃ denotes the m-Radon transform of ϕ.

Proof. The proof of Theorem 2 is similar to that of Theorem 1. The “only if” part
is an immediate consequence of Fubini’s theorem and Definition 3. Let us prove
the “if” part. Let u(z) �≡ −∞ be a plurisubharmonic function on Ω such that (18)
holds. As in the proof of Theorem 1, ReCc(Ω̂) denotes the space of real-valued
functions ψ ∈ Cc(Ω̂). Let L be the subspace of ReCc(Ω̂) formed by the m-Radon
transforms of forms ϕ ∈ Dn−1,n−1(Ω). By Lemma 5 the m-Radon transform of
ϕ ∈ Dn−1,n−1(Ω) belongs to L if and only if the coefficients of ϕ satisfy (15). If
ψ ∈ D(Ω) is real-valued, then the m-Radon transform of the form

ϕ =
n∑

j=1

ψ(z) ∧ ωjj

equals the m-Radon transform of the function ψ. Therefore L contains the space
M formed by the m-Radon transforms of real-valued functions in D(Ω). Then by
Lemma 3, for every ψ ∈ Cc(Ω̂), there exists a function ϕ̃ ∈ L such that |ψ| ≤ ϕ̃. We
define a functional F on L by

〈F, ϕ̃〉 =
1
2π

〈u, ddcϕ〉,

where the m-Radon transform of ϕ ∈ Dn−1,n−1(Ω) equals ϕ̃. If ϕ̃ = 0, then by
Lemma 5 we have ddcϕ = 0. Therefore the functional F is well defined. By our
assumption F is positive on L. There exists a positive functional F1 on ReCc(Ω̂)
that is an extension of F . This functional F1 is the m-log-measure of u. The proof
is complete. �

It is evident that there is a class of m-log+h-potentials which are not pluri-
subharmonic. However, we have the following fact:
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Lemma 6

Let u(z) be an m-log+h-potential on a domain Ω ⊂ C
n and let µ be the m-

log+h measure of u. Suppose that u(z) is harmonic on some neighborhood of z0 ∈ Ω.

Then there exists r > 0 such that µ(K(z0, r)) = 0, where

K(z0, r) = {(t, w) ∈ [0,∞) × S2N−1||t− 〈P (z0), w〉| ≤ r}.

If u(z) is pluriharmonic on some open subset of Ω, then u(z) is an m-log-

potential on Ω and µ is the m-log-measure of u.

Proof. Suppose that u(z) is harmonic on B(z0, ε), where B̄(z0, ε) ⊂ Ω. We claim
that K(z0, r) ⊂ B̂(z0, ε) for some r > 0. Indeed, in the contrary case, there exists
a sequence of positive numbers rp, rp → 0, such that (tp, wp) /∈ B̂(z0, ε) for some
(tp, wp) ∈ K(z0, rp). We may assume that (tp, wp) → (t0, w0) ∈ [0,∞) × S2N−1.
Then t0 − 〈P (z0), w0〉 = 0, so we have (t0, w0) ∈ B̂(z0, ε). By Lemma 1 B̂(z0, ε) is
open, which contradicts that (tp, wp) /∈ B̂(z0, ε). Thus we have K(z0, r) ⊂ B̂(z0, ε)
for some r > 0. Since K(z0, r) is compact, there exists a nonnegative function
ψ0(t, w) ∈ Cc(B̂(z0, ε)) that equals 1 onK(z0, r). By Lemma 3 there is a nonnegative
function ϕ0(z) ∈ D(B(z0, ε)) such that ψ0(t, w) ≤ ϕ̃0(t, w), where ϕ̃0(t, w) is the m-
Radon transform of ϕ0. Then, in view of Remark 1, we have

0 =
∫

u(z)∆ϕ0(z)dω2n(z) = 2π
∫

ϕ̃0(t, w)dµ(t, w)

≥ 2π
∫

ψ0(t, w)dµ(t, w) ≥ 2πµ(K(z0, r)).

Therefore we have µ(K(z0, r)) = 0.
Suppose now that u(z) is pluriharmonic on B(z0, ε). Let Ω1 ⊂⊂ Ω be a bounded

domain such that B̄(z0, ε) ⊂ Ω1. Then the function

H(Ω1, z) =
∫
ˆ
Ω1

ln |t− 〈P (z), w〉| dµ(t, w) − u(z)

is harmonic on Ω1 and plurisubharmonic on B(z0, ε). Then H(Ω1, z) is plurihar-
monic on B(z0, ε). For every i, j ∈ {1, . . . , n} the function ∂2H(Ω1,z)

∂zi∂z̄j
is real-analytic

on Ω1 and vanishes on B(z0, ε). Therefore ∂2H(Ω1,z)
∂zi∂z̄j

is identically zero. This means
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that H(Ω1, z) is pluriharmonic on Ω1. Suppose now that Ω1 ⊂⊂ Ω is arbitrary. Let
Ω2 ⊂⊂ Ω be a domain that contains Ω̄1 ∪B(z0, ε). We set

H(Ωj , z) =
∫
ˆ
Ωj

ln |t− 〈P (z), w〉| dµ(t, w) − u(z), j = 1, 2.

By what has been proved, the function H(Ω2, z) is pluriharmonic on Ω2. We have

(19) H(Ω1, z) = −
∫

ˆ̄Ω2\ ˆ̄Ω1

ln |t− 〈P (z), w〉| dµ(t, w) +H(Ω2, z).

Since, for every (t, w) /∈ ˆ̄Ω1, the function t − 〈P (z), w〉 has no zeros in Ω̄1, the
integral on the right-hand side of (19) is pluriharmonic on Ω1. Therefore H(Ω1, z)
is pluriharmonic on Ω1. The proof is complete. �

From Lemma 6 and Theorem 1 we obtain

Corollary

Let L(z) �≡ 0 be a holomorphic function on a domain Ω ⊂ C
n. In order that

ln |L(z)| be an m-log-potential on Ω, it is necessary and sufficient that

∫
ln |L(z)|∆ϕ(z) dω2n(z) ≥ 0

for every function ϕ ∈ D(Ω) whose m-Radon transform is nonnegative.

Theorem 3

Let L(z) �≡ 0 be a holomorphic function on Ω ⊂ C
n. Then ln |L(z)| is an m-log-

potential on Ω if and only if there exist sequences of positive integers {nk}∞k=1 and

irreducible polynomials {Pk(z)}∞k=1 of degrees ≤ m such that, for every Ω1 ⊂⊂ Ω,

the following formula holds:

(20) L(z) = g(Ω1, z)
∏

k∈I(Ω1)

(Pk(z))nk z ∈ Ω1,

where I(Ω1) is a finite set and g(Ω1, z) is holomorphic and nowhere zero on Ω1.
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Remark 2. For every irreducible polynomial P (z), Z(P ) is an irreducible analytic
subset of C

n. (For the definition of complex analytic sets and their fundamental
properties we refer to E.M. Chirka [1].) Then, by the uniqueness theorem for irre-
ducible analytic subsets, Z(P ) is nowhere dense in the zero-set of every polynomial
Q(z) which is not divisible by P . In particular, for every j, Z(P ) is nowhere dense in
Z(∂P/∂zj). This means that every function L(z) ∈ H(Ω) with Z(L)∩Ω ⊃ Z(P )∩Ω
is divisible by P .

Remark 3. In the case of an arbitrary domain Ω, the representation (20) and the
equality

(21) Z(L) ∩ Ω =
∞⋃
k=1

Z(Pk) ∩ Ω,

are not equivalent. There exist a domain Ω ⊂ C
n and a function L(z) ∈ H(Ω)

satisfying (21) such that, for some Ω1 ⊂⊂ Ω, the representation (20) also holds
but the function g(Ω1, z) on the right-hand side of (20) has zeros in Ω1 and is not
divisible by any polynomial P . If L(z) is an entire function, then, for every domain
Ω ⊂ C

n, (20) is equivalent to (21) because, by the uniqueness theorem for irreducible
analytic subsets, the relation Z(Pk) ∩ Ω ⊂ Z(L) ∩ Ω implies Z(Pk) ⊂ Z(L). This
means that, if (21) holds, then, for every Ω1 ⊂⊂ Ω, the function g(Ω1, z) is entire.
Thus if g(Ω1, z) has zeros in Ω1, then by (21) it is divisible by Pk for some k.

An important tool in the proof of Theorem 3 is the Lelong number [11]. We
recall it here:

Let u(z) be a plurisubharmonic function on some neighborhood Va of a ∈ C
n.

We denote by λ(a, r, u) the average of u over the sphere of radius r about a. The
Lelong number νu(a) is defined by

νu(a) = lim
r→0

λ(a, r, u)
ln r

.

If L(z) �≡ 0 is a holomorphic function on Va, then the Lelong number νu(a) of the
function u(z) = ln |L(z)| equals the order of the zero of L at the point a (if L(a) �= 0,
then νu(a) = 0).

Proof of Theorem 3. The “if” part follows immediately from the definition of m-
log-potentials. We shall prove the “only if ” part. Let L(z) �≡ 0 be a holomorphic
function such that ln |L(z)| is an m-log-potential on Ω. Assume, without loss of
generality, that 0 ∈ Ω and L(0) �= 0.

Let µ be the m-log-measure of ln |L(z)|. We denote by B the set of all (t, w) ∈ Ω̂
such that L(z) vanishes on {z ∈ Ω|t = 〈P (z), w〉}. It is easy to see that B is



Representation of functions by logarithmic potential and reducibility 201

(relatively) closed in Ω̂. We claim that µ(Ω̂ \ B) = 0. Indeed, for every (t0, w0) ∈
Ω̂ \ B, there exists a point z0 ∈ Ω such that t0 = 〈P (z0), w0〉 and L(z0) �= 0. Then
ln |L(z)| is pluriharmonic on some neighborhood of z0. Then by Lemma 6 there
exists r > 0 such that

A = {(t, w)| |t− 〈P (z0), w〉| < r} ⊂ Ω̂

and µ(A) = 0. The set A is open and contains the point (t0, w0). Thus, for every
(t, w) ∈ Ω̂ \ B, there exists an open set A ⊂ Ω̂ such that (t, w) ∈ A and µ(A) = 0.
Therefore Ω̂ \ B can be covered by a countable union of sets Ak with µ(Ak) = 0.
Then µ(Ω̂\B) = 0. If B = ∅, then µ(Ω̂) = 0 and ln |L(z)| is pluriharmonic on Ω,i.e.,
L(z) has no zeros in Ω. Suppose now that B �= ∅. By what has been proved, we
have for every Ω1 ⊂⊂ Ω that

ln |L(z)| =
∫

Ω̂1∩B

ln |t− 〈P (z), w〉| dµ(t, w) +H(Ω1, z),

where H(Ω1, z) is pluriharmonic on Ω1.
Without loss of generality we can assume that m > 1. Denote by B̃m−1 the

set of all (t, w) ∈ B such that ln |t − 〈P (z), w〉| is an (m − 1)-log-potential on C
n.

Since B is closed in Ω̂, it follows from Theorem 2 that B̃m−1 is also closed in Ω̂. Let
Bm = B \ B̃m−1. For every (t, w) ∈ Bm the polynomial t− 〈P (z), w〉 is irreducible,
for in the contrary case ln |t−〈P (z), w〉| is an (m−1)-log-potential. Since, for every
(t, w) ∈ B, L(z) vanishes on {z ∈ Ω|t = 〈P (z), w〉}, it follows from Remark 2 that
every finite product

∏
(tj − 〈P (z), wj〉) , (tj , wj) ∈ Bm,

divides L(z). Then, for every Ω1 ⊂⊂ Ω, the intersection Bm ∩ ˆ̄Ω1 is a finite set of
points. Therefore the restriction νm of the measure µ to Bm equals

νm =
∞∑
k=1

αk,mδ(tk,m, wk,m),

where αk,m > 0 and δ(tk,m, wk,m) denotes the Dirac measure at the point
(tk,m, wk,m).
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By Lemma 4 there exists an m-log+h-potential v(z) on Ω (an m-log-potential
with a harmonic addition) such that νm is one of the m-log+h-measures of v(z).
Then, for every Ω1 ⊂⊂ Ω, we have

(22) ln |L(z)| − v(z) =
∫

ˆ
Ω1∩B̃m−1

ln |t− 〈P (z), w〉| dµ(t, w) + h(Ω1, z),

where h(Ω1, z) is harmonic on Ω1. Since, for every (t, w) ∈ B̃m−1, the function
ln |t − 〈P (z), w〉| is an (m − 1)-log-potential on C

n, it follows from Theorem 1 and
the representation (22) that ln |L(z)| − v(z) is an (m− 1)-log+h-potential on Ω.

In the case of k-log-potentials, 1 ≤ k < m, we can use the same kernel ln |t −
〈P (z), w〉| as well as in the case of m-log-potentials. In other words, we can assume
that, for 1 ≤ k < m, every k-log-potential is anm-log-potential whosem-log-measure
is concentrated on Sk, where Sk denotes the set of all (t, w) ∈ [0,∞) × S2N−1 such
that 〈P (z), w〉 is a polynomial of degree ≤ k. Thus, there is a measure µm−1 on Ω̂
such that, for every Ω1 ⊂⊂ Ω,

ln |L(z)| − v(z) =
∫

ˆ̄Ω1∩Sm−1

ln |t− 〈P (z), w〉| dµm−1(t, w) + h(Ω1, z),

where the function h(Ω1, z) is harmonic on Ω1. Then by the construction of the
potential v(z) we have

ln |L(z)| =
∫

ˆ̄Ω1∩Sm−1

ln |t− 〈P (z), w〉| dµm−1(t, w)

+
∑

(tk,m,wk,m)∈ ˆ̄Ω1

αk,m ln |tk,m − 〈P (z), wk,m〉| + h1(Ω1, z),(23)

where h1(Ω1, z) is also harmonic on Ω1. Then by definition, µm−1 + νm is one of
the m-log+h-measures of ln |L(z)|. Since ln |L(z)| is pluriharmonic on some neigh-
borhood of the origin, it follows from Lemma 6 that µm−1 + νm is one of the m-
log-measures of ln |L(z)|,i.e., for every Ω1 ⊂⊂ Ω, the function h1(Ω1, z) on the
right-hand side of (23) is pluriharmonic on Ω1. By what has been proved, the mea-
sure µm−1 + νm is concentrated on B. Let Bm−1 be the set of all (t, w) ∈ Sm−1 ∩B

such that ln |t − 〈P (z), w〉| is not an (m − 2)-log-potential on C
n. Since, for every

(t, w) ∈ Bm−1, the polynomial t − 〈P (z), w〉 is irreducible, it follows, exactly as
above, that Bm−1 is a discrete set such that, for every Ω1 ⊂⊂ Ω, the intersection
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Bm−1 ∩ ˆ̄Ω1 is a finite set. Therefore the restriction νm−1 of the measure µm−1 to
Bm−1 equals

νm−1 =
∞∑
k=1

αk,m−1δ(tk,m−1, wk,m−1).

Then as above, we see that one of the m-log-measures of ln |L(z)| is of the form
νm+νm−1+µm−2, where the measure µm−2 is concentrated on B∩Sm−2. Repeating
the above procedure for m − 2,m − 3, . . . , 1, we see that the function ln |L(z)| has
the m-log-measure

ν =
∞∑
p=1

αpδ(tp, wp),

where αp > 0, and, for every Ω1 ⊂⊂ Ω, the intersection {tp, wp}∞p=1 ∩ ˆ̄Ω1 is a finite
set. Moreover, for every p ∈ N the polynomial Qp(z) = tp−〈P (z), wp〉 is irreducible,
and (tp, wp) ∈ B. Since L(0) �= 0, we have tp �= 0 for every p ∈ N. This means that
for p1 �= p2 the function Qp1(z)/Qp2(z) is not constant.

The next step is to prove that the coefficients αp are positive integers. For
Ω1 ⊂⊂ Ω we denote by I(Ω1) the set of all p ∈ N such that (tp, wp) ∈ ˆ̄Ω1. As above,
Qp(z) denotes the polynomial tp − 〈P (z), wp〉. Fix p0 ∈ N. For some Ω1 ⊂⊂ Ω
we have (tp0 , wp0) ∈ Ω̂1. Since I(Ω1) is a finite set, by Remark 2 there is a point
z0 ∈ {z ∈ Ω1| Qp0(z) = 0} lying outside the union


 ⋃

p∈I(Ω1)\{p0}
{z ∈ Ω1| Qp(z) = 0}


 ⋃ {

z ∈ Ω1 |
∂Qp0(z)
∂z1

= 0
}
.

We have

ln |L(z)| = αp0 ln |tp0 − 〈P (z), wp0〉|
+

∑
p∈I(Ω1)\{p0}

αp ln |tp − 〈P (z), wp〉| +H1(Ω1, z),(24)

where H1(Ω1, z) is pluriharmonic on Ω1. Let νp(z) denote the Lelong number of
ln |tp − 〈P (z), wp〉| at the point z. By the choice of the point z0 we have νp(z0) = 0
for p ∈ I(Ω1) \ {p0}, and νp0(z0) = 1. Then from (24) we obtain

αp0 = νL(z0),
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where νL(z0) is the Lelong number of ln |L(z)| at the point z0. Thus, for every
p ∈ N, we have αp = np, where np ∈ N. For Ω1 ⊂⊂ Ω we set

g(Ω1, z) =
L(z)∏

(tp,wp)∈I(Ω1)

(tp − 〈P (z), wp〉)np
.

It follows from (24) that ln |g(Ω1, z)| is pluriharmonic on Ω1. Therefore the function
g(Ω1, z) is holomorphic and nowhere zero on Ω1. Theorem 3 is proved. �

Corollary 1

Let P (z) be a holomorphic polynomial whose degree equals m,m > 1. Then

P (z) is reducible if and only if ln |P (z)| is an (m− 1)-log-potential.

In [19] it is shown that every smooth strictly plurisubharmonic function is an
1-log-potential on some neighborhood of every point. On the other hand, it is easy
to find such a function which is not an 1-log-potential on the whole space C

n. This
means that the statement of Theorem 2 is not of local nature. However, if we
consider a function of the form u(z) = ln |L(z)|, where L(z) is an entire function,
then the situation turns out to be quite different:

Corollary 2

Let Ω be a domain in C
n, and let L(z) �≡ 0 be an entire function. Then the

function ln |L(z)| is an m-log-potential on Ω if and only if it is an m-log-potential

on some neighborhood of every z ∈ Ω.

It is easy to see that Corollary 2 is a consequence of the following result:

Lemma 7

Let L(z) �≡ 0 be an entire function. Let D1, D2 be domains such that D1∩D2 �=
∅. Suppose that the function ln |L(z)| is an m-log-potential both on D1 and on D2.

Then it is an m-log-potential on D1 ∪D2.

Proof of Lemma 7. By Theorem 3 we have

(25) Z(L) ∩Dj =
⋃
k∈Ij

(Z(Pk) ∩Dj) , j = 1, 2,
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where I1 and I2 are countable sets and Pk(z) are irreducible polynomials of degrees
≤ m. As remarked above, the relation Z(Pk) ∩ Dj ⊂ Z(L) ∩ Dj implies Z(Pk) ⊂
Z(L). Therefore we have

Z(L) ⊃
⋃

k∈I1∪I2

Z(Pk).

It then follows from (25) that

Z(L) ∩ (D1 ∪D2) =
⋃

k∈I1∪I2

Z(Pk) ∩ (D1 ∪D2) .

Then by Remark 3, ln |L(z)| is an m-log-potential on D1 ∪D2. Lemma 7 is proved,
and with it also Corollary 2. �

Corollary 2 and its proof remain valid if we assume only that the function L(z) is
holomorphic on a domain Ω such that, for every irreducible polynomial P of degree
≤ m, the intersection Ω ∩ Z(p) is an irreducible analytic subset of Ω (instead of
assuming that L(z) is entire). We then have the following result.

Corollary 3

L(z) �≡ 0 be a holomorphic function on a convex domain Ω in C
n. Then the

function ln |L(z)| is an 1-log-potential on Ω if and only if it is an 1-log-potential on

some neighborhood of every z ∈ Ω.

We now show that Corollary 3 is false if Ω is not convex. Let D1 and D2 be
simply connected plane domains such that D1 ∩ D2 = S1 ∪ S2, where S1 and S2

are convex open sets with S̄1 ∩ S̄2 = ∅. Let l = {(z1, z2) ∈ C
2| z1 = z2} and

D = D1 × D2 ⊂ C
2. The intersection l ∩ D is an analytic subset of D consisting

of two irreducible components Aj = {(λ, λ) ∈ C
2| λ ∈ Sj}, j = 1, 2. Then [10,

Theorem 6.1.8] there exists a function L(z) ∈ H(D) such that A1 = Z(L) ∩D and
L divides every function g ∈ H(Ω) which vanishes on A1. Then ln |L(z)| is an 1-
log-potential on some neighborhood of every z ∈ D because for every z ∈ A1 the
functions L(z)/(z1 − z2) and (z1 − z2)/L(z) are holomorphic on some neighborhood
of z. Suppose that ln |L(z)| is an 1-log potential on D. Then from Theorem 3 it
follows that L(z) vanishes on A2 which contradicts the equality A1 = Z(L) ∩D.
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