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Abstract

The aim of this paper is to construct the analytic vector fields on the plane with
given as trajectories or solutions. In particular we construct the polynomial
vector field from given conics (ellipses, hyperbola, parabola, straight lines) and
determine the differential equations from a finite number of solutions.

1. Introduction

The relation between coefficients and roots of a polynomial

P (λ) = anλ
n + an−1λ

n−1 + . . .+ a0 , an �= 0 ,

is well known. In particular if λ1, . . . , λn are zeros of P (λ) such that

∆ =

∣∣∣∣∣∣∣∣
1 . . . 1

λ1 . . . λn
...

...
λn−1

1 . . . λn−1
n

∣∣∣∣∣∣∣∣
�= 0 , (1.1)
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then P admits the representation

P (λ) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
λ λ1 . . . λn
...

...
...

...
...

...
λn λn

1 . . . λn
n

∣∣∣∣∣∣∣∣∣∣∣
= det(B).

From here we can easily deduce that an, . . . , a0 coincide with the adjoints of λn, . . . , 1
in the matrix B, respectively. These relations between coefficients and solutions can
be developed by analogy for a wide variety of differential equations. In this section
we will analyze some particular cases.

Functions will be assumed smooth in their domain.

I. Let us give the differential equation

Z(n) + αn(t)Z(n−1) + . . .+ α0(t) = 0, (1.2)

where 
Z(j) =

d

dt
(Z(j−1)) , Z = x+ iy , i =

√
−1 ,

Z(1) ≡ Ż .
It can be shown that if Zj : I ⊂ R −→ C then

ω =
(
Z1(t), . . . . . . . . . , Zn+1(t)

)
,

are solutions of (1.2) such that

∆(ω) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1

Z1(t) . . . Zn+1(t)

Ż1(t) . . . Żn+1(t)
...

...

Z
(n−1)
1 (t) . . . Z

(n−1)
n+1 (t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�= 0 (1.3)

for all t ∈ I∗ ⊂ I, in which case we have the following representation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

Z Z1(t) . . . Zn+1(t)

Ż Ż1(t) . . . Żn+1(t)
...

...
...

...
...

...

Z(n) Z
(n)
1 (t) . . . Z

(n)
n+1(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≡ det(A) = 0 . (1.4)
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From here we can easily deduce the coefficient-solutions relation for the given equa-
tion

αk(t) = (−1)k+1 ∆k(ω)
∆(ω)

, k = 0, . . ., n, αn−1(t) = − d

dt
(ln∆(ω)),

where ∆k, k = 0, . . ., n are the adjoints of the (k+1)-element of the first column
in matrix A.

We observe that ∆n+1(ω) ≡ (−1)n+1∆(ω).

II. Likewise we can prove that if the functions

Zj : I ⊂ R −→ C , ω =
(
Z1(t), . . . , Zn+1(t)

)
,

such that

∆(ω) =

∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
Z1(t) . . . Zn+1(t)
Z2

1 (t) . . . Z2
n+1(t)

...
...

Zn
1 (t) . . . Zn

n+1(t)

∣∣∣∣∣∣∣∣∣∣∣
�= 0 (1.5)

for all t ∈ I∗ ⊂ I, satisfy the equation

Ż + an(t)Zn + . . .+ a0(t) = 0, (1.6)

their we can give the representation:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

Z Z1(t) . . . Zn+1(t)

Z2 Z2
1 (t) Z2

n+1(t)
...

...
...

Zn Zn
1 (t) . . . Zn

n+1(t)

Ż Ż1(t) . . . Żn+1(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≡ det(A) = 0. (1.7)

From here we can easily deduce that the coefficient an can be represented as follows

an = (−1)k+1 ∆k(ω)
∆(ω)

, k = 0, .., n. (1.8)
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III. Likewise we can look for the coefficient-solution relations for the equation of the
type

Ż +
n∑

k+j=0

akj(t)ZkZ
j

= 0, (1.9)

where Z = x− iy.
It is easy to prove that if we have (n+1)(n+2)

2 ≡ m solutions of (1.9), Zj : I ⊂
R −→ C, ω =

(
Z1(t), . . . , Zm(t)

)
, which satisfy∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1

Z1(t) . . . Zm(t)

Z1(t) . . . Zm(t)

Z2
1 (t) . . . Z2

m(t)

|Z1(t)|2 . . . |Zm(t)|2

Z
2

1(t) . . . Z
2

m(t)
...

...

Z
n

1 (t) . . . Z
n

m(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≡ ∆(ω) �= 0 (1.10)

for all t ∈ I∗ ⊂ I, then (1.9) can be rewritten as follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

Z Z1(t) . . . Zm(t)

Z Z1(t) . . . Zm(t)

Z2 Z2
1 (t) . . . Z2

m(t)

|Z|2 |Z1(t)|2 . . . |Zm(t)|2

Z
2

Z
2

1(t) . . . Z
2

m(t)
...

...
...

Z
n

Z
n

1 (t) . . . Z
n

m(t)

Ż Ż1(t) . . . Żm(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≡ det(A) = 0. (1.11)

Definition 1. The system of functions

ω =
(
Z1(t), . . . , Zm(t)

)



Differential equations on the plane with given solutions 149

will be called the fundamental solution of (1.4) or (1.7) or (1.11) if ∆(ω) �= 0 for all
t ∈ I∗ ⊂ I, and ∆(ω) is determined by the formulas (1.3), (1.5), (1.10) respectively.

Definition 2. Let ∆k, k = 1, . . .,m+ 1 be the adjoints of the elements of the
first column in matrix A defined by the formulas (1.4), (1.7) or (1.11). Then the
system of functions Ω =

(
w1(t), . . . , wn(t)

)
such that




∆(Ω) �= 0
∆j(ω)
∆(ω)

=
∆j(Ω)
∆(Ω)

, j = 1, ..,m+ 1
(1.12)

will be called fundamental solution equivalent to ω and we shall write

ω ≈ Ω,

where ∆m+1 ≡ (−1)m∆m(ω). Of course if

ω ≈ Ω and Ω ≈ Ω̃ =⇒ ω ≈ Ω̃.

As we can observe from definitions 1 and 2 we suppose that for all fundamental
solutions there is at least one solution such that

Żj(t) �= 0, ∀t ∈ I∗∗ ⊂ I. (1.13)

The aim of this article is to study the inverse problem of differential equations: the
construction of vector fields on the plane from given properties, such as a finite
number of solutions or trajectories [4].

2. Construction of an analytical vector field on the plane from given trajectories

It is well-known that for the analytic vector field on the plane:{
ẋ = P (x, y)

ẏ = Q(x, y),
(2.1)

the G domain of P (x, y) and Q(x, y) is divided into elementary regions [2], such that
their boundary is determined from a finite number of singular trajectories. In these
regions the non-singular trajectories which are topological equivalent are located.

For the structurally stable dynamic system the singular trajectories can be
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i) Stable simple critical points (saddles, nodes, foci).
ii) Stable limit cycles.
iii) α-ω-separatries which may only spread towards a node, a focus, a limit cycle

or leave the G domain.
From these results it seems interesting to state the inverse problem: the cons-

truction of (2.1) from a finite number of singular trajectories or solutions.

Problem 1 (construction of the analytic vector field from given trajectories).
Let

yj : I ⊂ R −→ R, j = 1, . . ., n+ 1

x −→ yj(x)

be the analytic functions on (I) such that

ω =
(
y1(x), . . . , yn+1(x)

)
is a system of functions for which the next relation holds

∆(ω) =

∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
y1(x) . . . yn+1(x)

...
...

...
...

yn1 (x) . . . ynn+1(x)

∣∣∣∣∣∣∣∣∣∣∣
�= 0, ∀x ∈ I∗ ⊂ I. (2.2)

We require the dynamic system to be constructed from given trajectories.
Firstly we introduce the following.

Definition 3. The analytic function Φ defined on G which vanishes on the curves
yj(x), j = 1, 2, ..., n+ 1, will be called Eruguin’s function.

Proposition 2.1

The most general first order differential equation which has the curves y =
yj , j = 1, . . ., n+ 1 as solutions can be represented as follows:

y′ = −
n∑

k=0

∆k(ω)yk(x)
∆n+1(ω)

+ Φ(x, y), (2.3)

where Φ is the Eruguin function.
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In fact, from (1.6)-(1.8) and considering the properties of Eruguin function we
deduced that (2.3) has the given curves as a solution.

Now we will prove that the equation constructed is the most general.
In fact, let us suppose that

y′ = F (x, y) (2.4)

is the other equation for which the given curves are solutions, i.e,

F (x, y)|y=yj
= y′j .

By choosing Φ as follows

Φ(x, y) =
n∑

k=0

∆k(ω)yk(x)
∆n+1(ω)

+ F (x, y)

we deduce that this Φ is the Eruguin function.
Equations (2.3) and (2.4) will be called Φ equivalents.

Proposition 2.2
Let Φ1,Φ2, ν be arbitrary analytic functions on G ⊂ R

2 such that{
Φl(x, yj(x)) ≡ 0, l = 1, 2; j = 1, . . ., n+ 1

ν(x, yj(x)) �= 0.
(2.5)

The most general analytic dynamic system with y1(x), . . . , yn+1(x), trajectories
which satisfy (2.5) is the following


ẋ = ν(x, y)∆n+1(ω) + Φ1(x, y)

ẏ = −ν(x, y)
n∑

k=0

∆k(ω)yk + Φ2(x, y),
(2.6)

where ∆0(ω), . . . ,∆n(ω),∆n+1(ω) are the adjoints of the elements in the first column
of matrix A:

A =




1 1 . . . 1

y y1(x) . . . yn+1(x)

y2 y2
1(x) . . . y2

n+1(x)
...

...
...

yn yn1 (x) . . . ynn+1(x)

y′ y′1(x) . . . y′n+1(x)



. (2.7)
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Proof. Proposition 2.2 follows from proposition 2.1 if the Eruguin function Φ(x, y)
is related to the functions Φj , j = 1, 2 by the formula

Φ =

( ∑n
k=0

∆k(ω)yk(x)
∆n+1(ω) Φ1 + Φ2

)
ν(x, y)∆n+1 + Φ1

. �

It is clear that functions Φ1, Φ2 can be represented as follows

Φl(x, y) = gl(x, y) det S, l = 1, 2 (2.8)

S =




1 1 . . . 1

y y1(x) . . . yn+1(x)

y2 y2
1(x) . . . y2

n+1(x)
...

...
...

yn yn1 (x) . . . ynn+1(x)

yn+1 yn+1
1 (x) . . . yn+1

n+1(x)




where gl, l = 1, 2 are arbitrary analytical functions. By putting (2.8) in (2.6) it is
easy to obtain the following expression for system (2.6):




ẋ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

y y1(x) . . . yn+1(x)
...

...
...

yn yn1 (x) . . . ynn+1(x)

ν + g1y
n+1 g1y

n+1
1 (x) . . . g1y

n+1
n+1(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ E1

ẏ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

y y1(x) . . . yn+1(x)
...

...
...

yn yn1 (x) . . . ynn+1(x)

g2y
n+1 h1 hn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ E2

(2.9)
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where hj ≡ −νy′j(x) + g2y
n+1
j , j = 1, 2, .., n+ 1.

The natural arbitrariness with which we constructed the dynamic system can
be restricted if we impose some complementary conditions, that (2.9) is structurally
stable, non-structurally stable, Hamiltonian, polynomial of degree n, etc.

We shall study the following particular cases:
I. Construction of the quadratic stationary vector field from given conics.

II. Construction of the polynomial vector field of degree n from given n+1 straight
lines.

3. Construction of the quadratic vector field from given conics

We shall study (2.9) for the case n = 1, m = 2 and under the restriction{
E1 = a20x

2 + a11xy + a02y
2 + α1x+ α2y + α3 ≡ P (x, y)

E2 = b20x
2 + b11xy + b02y

2 + β1x+ β2y + β3 ≡ Q(x, y),
(3.1)

As a consequence the following identity holds


∂3

∂y3

(
ν(x, y)

)
(y2 − y1) +

∂3

∂y3
Φ1(x, y) = 0

− ∂3

∂y3
(νλ) +

∂3

∂y3
Φ2(x, y) = 0,

(3.2)

where λ = y1(x)y′2(x) − y2(x)y′1(x) +
(
y′1(x) − y′2(x)

)
y, y′j(x) ≡ d

dx
yj .

These relations take place in particular in the next subcase
i) 


ν(x, y) = ν(x)

g1(x, y)
(
y2(x) − y1(x)

)
= α = const,

g2(x, y)
(
y2(x) − y1(x)

)
= β = const,

(3.3)

ii) 

ν(x, y) = q(x)(Ax+ Cy +B),

g1(x, y)
(
y2(x) − y1(x)

)
= α = const,

g2(x, y)
(
y2(x) − y1(x)

)
= β = const.

(3.4)

For i) by f we shall denote the function

f(x) = y1(x) − y2(x).
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From (2.9) and (3.1) we deduce the following equalities (we suppose that β �= 0)

y1 = −a11x+ α2

2β
+
f

2

y2 = −a11x+ α2

2β
− f

2
,

(3.5)

and


ν(x)f(x) +
β

4
f2(x) = −

(
a20 −

a2
11

4β

)
x2 −

(
α1 −

a11α2

2β

)
x− α3 +

α2
2

4β
≡ r2(x)

a11ν(x)
β

f(x) − αf2(x)
2

= −
(a11

β
b11 −

αa2
11

2β2
− 2b20

)
x2 −

(α2b11
β

+
β2a11

β
−

−αa11α2

β2
+ 2β1

)
x− α2β2

β
+
αα2

2

2β2
+ 2β3 ≡ s2(x)

ν(x)f ′(x) =
(αa11

β
− b11

)
x+

αα2

β
− β2 ≡ '1(x).

(3.6)
After some calculations, and under the conditions a11 + 2α �= 0, we deduce the
following expression for f :

f = ±2

√
a11r2(x) − βs2(x)

β(a11 + 2α)

By introducing the respective notations we obtain

f(x) = ±2

√
px2 + 2qx+ r , px2 + 2qx+ r ≥ 0

ν(x) = C
√
px2 + 2qx+ r , p, q, r, C ∈ R, C �= 0

p(q2 − pr) �= 0

(3.7)

Evidently, if
a11 + 2α1 = 0, (3.8)

then
−2αr2(x) = s2(x)β.

The functions f(x) and ν(x) have the same form as in the previous case. From (3.5)
and (3.7) we see that y1(x), y2(x), ν, g1, g2 are such that


y1(x) =

ax+ b

2
+

√
px2 + 2qx+ r

y2(x) =
ax+ b

2
−

√
px2 + 2qx+ r, p (q2 − pr) �= 0

(3.9)
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ν(x) = C

√
px2 + 2qx+ r , C �= 0

−2g1(x)
√
px2 + 2qx+ r = α = const,

−2g2(x)
√
px2 + 2qx+ r = β = const,

(3.10)

so the dynamic system which has the conics (ellipses, hyperbola) (3.9) as trajectories
is the following




ẋ = −2C(px2 + 2qx+ r) + β
((
y − ax+ b

2
)2 − (px2 + 2qx+ r)

)
≡ P (x, y)

ẏ = −2C
(
(px2 + 2qx+ r)

a

2
+ (px+ q)

(
y − ax+ b

2
))

(3.11)

+α
((
y − ax+ b

2
)2 − (px2 + 2qx+ r)

)
≡ Q(x, y).

For the proof, we put (3.9) and (3.10) into (2.9) (with n = 1).
It is interesting to observe that condition (3.8) for system (3.11) takes the form

2α = βa.

Under this restriction on the α, β parameters and introducing the notations
λ2 = 4pβC2'21 , '1 = y0 −

ax0 + b

2
,

'2 = px2
0 + 2qx0 + r,

where (x0, y0) is such that

P (x0, y0) = Q(x0, y0) = 0,

i.e, 

x0 = −q

p
,

y0 =
ax0 + b

2
±

√
(β + 2C)(pr − q2)

pβ
,

and making the change 

y = y0 +

λη

2'1
+ αξ

x = x0 + βξ

t∗ = −λt,
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we obtain the following expression for (3.9)

η1 =

2'1
λ

(−'1 +
√
pβ2ξ2 + '2)

η2 =
2'1
λ

(−'1 −
√
pβ2ξ2 + '2).

Hence we deduce that (3.11) takes the form


dη

dt∗
= ξ +

2Cpβ
λ

ξη

dξ

dt∗
= −η − Cpβ

λ
η2 +

pβ(2C + β)
λ

ξ2.

(3.12)

From the Bautin theorem [4] it is easy to prove that (x0, y0), under given conditions
are center points in (3.12).

We can study case ii) in a similar fashion.
After some calculations it is easy to prove that for n = 1,


y1 =

ax+ b

2
+

√
2qx+ r

y2 =
ax+ b

2
−

√
2qx+ r

(3.13)

and 

ν(x, y) = (Ax+ Cy +B)

√
2qx+ r

−2g1(x, y)
√

2qx+ r = α = const,

−2g2(x, y)
√

2qx+ r = β = const,

the equations (2.9) take the form


ẋ = −2(Ax+ Cy +B)(2qx+ r) + β
((
y − ax+ b

2
)2 − (2qx+ r

))
ẏ = −(Ax+ Cy +B)

(
(2qx+ r)a+ 2q

(
y − ax+ b

2
))

+α
((
y − ax+ b

2
)2 − (2qx+ r)

)
.

(3.14)

It is clear that (3.14) is the quadratic dinamical system which has the parabola
(p = 0) (3.13) as trajectories. Now we shall study the case when q2 − pr = 0, i.e.,
when the given trajectories are straight lines:{

y = k1x+ b1

y = k2x+ b2
, k1 �= k2 (3.15)



Differential equations on the plane with given solutions 157

After some calculations it is easy to deduce that the stationary dynamic system
which has the given straight lines (3.15) as trajectories is the following


ω̇1 = ω1

(
ν +

(g2 − g1k1

k2 − k1
ω2

))
ω̇2 = ω2

(
ν +

(g2 − g1k2

k2 − k1

)
ω1

)
,

where ωj ≡ y − kjx− bj , j = 1, 2. By choosing ν, g1, g2 from the equalities

ν +

g2 − g1 k1

k2 − k1
ω2 = a1ω1 + a2ω2 + a3

ν +
g2 − g1 k2

k2 − k1
ω1 = b1ω1 + b2ω2 + b3

we obtain the quadratic system which has (3.15) as trajectories.

4. Construction of the polynomial vector field of degree n

from given n+ 1 straight lines

The aim of this chapter is to state and analyze the problem of constructing the
polynomial vector field from given straight lines. We shall analyze the conjecture
about the maximum number of invariant straight lines which admit the polynomial
vector field: “The stationary vector field of degree n has 2n + 2 invariant straight
lines if n is odd and has 2n + 1 if n is even”. We give a geometrical formulation of
this conjecture (in a particular case) based on proposition 6.1 (which we will prove in
the next section) and the above method for the construction of the vector field. We
study the conjecture for the case when there are n invariant parallel straight lines.
The proposed method is illustrated for the quadratic, cubic, and quartic vector field.

Problem 2 Let

ω = (α1x+ β1, . . . , αn+1x+ βn+1), αj , βj ∈ R, (4.1)

be a system of functions which satisfies (2.2). We would like to determine the
conditions under which system (2.9) is polynomial of degree n on the variables x

and y.
We propose the solution to this problem only for the case in which

gl(x, y) ≡ 0, l = 1, 2 . . . , n+ 1 ,
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which is the case when there are n invariant parallel straight lines. Under these
conditions system (2.9) takes the form:



ẋ = (−1)n+1ν(x, y)
∏

1≤	<k≤n+1

(
(αk − α	)x+ βk − β	

)
≡ (−1)n+1ν(x, y)P (x)

ẏ = ν(x, y)
n+1∑
j=1

(−1)jαj

n+1∏
s=1
s �=j

(y − αsx− βs)
∏

1≤�<k≤n+1
�,k �=j

(
(αk − α	)x+ βk − β	

)
≡ ν(x, y)Q(x, y).

(4.2)
It is easy to prove that




max(deg P(x)) =
n(n+ 1)

2

max(deg Q(x, y)) =
n(n+ 1)

2
.

(4.3)

Let L(n) be the maximum of invariant straight lines which admit a polynomial
vector field of degree n.

We shall prove the following [4].

Proposition 4.1

L(n) ≥
{

2n+ 1 if n is even

2n+ 2 if n is odd.

Proof. We shall prove this statement by constructing a polynomial vector of degree
n with 2n + 1 invariant straight lines if n is even and 2n + 2 if n is odd [4]. If the
given straight lines are such that

α1 �= α2 = α3 = . . . = αn+1 = 0, (4.4)

then by choosing

ν(x, y) =
−1∏

2≤	<k≤n+1

(βk − β	)
,

it is easy to deduce that system (4.2) takes the form:

{
ẋ = (α1x+ β1 − β2) . . . (α1x+ β1 − βn+1)

ẏ = α1(y − β2) . . . (y − βn+1).
(4.5)
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Evidently these differential equations have the following 2n+ 1 trajectories

l1 : y = α1x+ β1, α1 �= 0

lj : y = βj , j = 2, n+ 1

lk : x =
βj − β1

α1
, k = n+ j.

If n is odd, the horizontal straight lines are equidistant and

βj < βj+1, j = 2, . . ., n.

Hence
l2n+2 : y = −α1x+ (n− 1)β + 2β2 − β1,

β ≡ βj+1 − βj , j = 2, . . ., n ,

is a trajectory of (4.5). So we show that for (4.5) it is possible to have 2n + 1 and
2n+ 2 invariant straight lines if n is even and odd respectively. �

Is well known the following

Conjecture 1.

L(n) =

{
2n+ 1 if n is even

2n+ 2 if n is odd.
(4.6)

Based on Proposition 6.1 of section 6 this assertion can be substituted in particular
case by the following geometrical conjecture.

Conjecture 2. Let ∞ > n > 1 be an integer. The maxim number of straight lines
which can be traced on the plane in such a way that

i) in every line there are at most n intersection points with the others lines,
ii) there is a direction in which exist n parallel straight lines,

is given by the formula (4.6) .
It should be pointed out that if we assume that there is a singular straight line,

it is easy to construct examples of the polynomial vector field which have an infinite
number straight lines.

To study this conjecture, the geometrical constructions given in [5] can be useful.
Now we will deal with Problem 2.
Firstly we will analyze the quadratic vector field. For n = 2 the system (4.2)

takes the form{
ẋ = ν(x, y)(e1x3 + e2x

2 + e3x+ e4)

ẏ = ν(x, y)
(
a1y

2 + (e1x2 + a2x+ a3)y + λ1x
2 + λ2x+ λ3

) (4.7)
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where ej , aj , λj are constants such that

a1 = β1(α2 − α3) + β2(α3 − α1) + β3(α1 − α2)

a2 = 2
(
α1β1(α3 − α2) + α2β2(α1 − α3) + α3β3(α2 − α1)

)
a3 = β2

1(α3 − α2) + β2
2(α1 − α3) + β2

3(α2 − α1)

λ1 =
(
β3α1α2(α1 − α2) + β1α2α3(α2 − α3) + β2α3α1(α3 − α1)

)
λ2 = 2

(
β3α1α2(β1 − β2) + β1α2α3(β2 − β3) + β2α3α1(β3 − β1)

)
λ3 = α3β1β2(β1 − β2) + α2β3β1(β3 − β1) + α1β2β3(β2 − β3)

e1 = (α1 − α2)(α2 − α3)(α3 − α1)

e2 = (α1 − α2)(α2 − α3)(β3 − β1) + (α2 − α3)(α1 − α2)(β3 − β1)

+ (α3 − α1)(α1 − α2)(β2 − β3)

e3 = (α1 − α2)(β2 − β3)(β3 − β1) + (α2 − α3)(β1 − β2)(β3 − β1)

+ (α3 − α1)(β1 − β2)(β2 − β3)

e4 = (β1 − β2)(β2 − β3)(β3 − β1).
Of course (4.7) is quadratic if and only if (we take ν = 1)

e1 = 0 ,
i.e., there must be at least 2 parallel straight lines. From Proposition 6.1 we show
that in these lines there can be 2 critical points at most.

Let us suppose that the next condition holds
α1 �= α2 = α3 (4.8)

After some calculations it is easy to obtain that
ẋ = −β32

(
α31x+ β31

)(
α21x+ β21

)
,

where βij ≡ βi − βj , αij ≡ αi − αj . As a consequence, we obtain the straight lines
lj : yj = αjx+ βj , j = 1, 2, 3

which satisfy condition (4.8). System (4.7) has complementary trajectories

l4 : x = −β21

α21
, l5 : x = −β31

α31
.

From (4.6) we obtain that L(2) = 5. In such a way the stated problem is solved for
n = 2.

Corollary 4.1.
The general integral of (4.7) is

y =
y1(x)

(
y2(x) − y1(x)

)
+ C

(
y1(x) − y3(x)

)
y2(x)

y2(x) − y3(x) + C
(
y1(x) − y3(x)

) ,

where C is an arbitrary constant.
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Now we shall analyze the case n ≥ 3.
It is clear that (4.2) is polynomial of degree n if there is a polynomial ∧(x) such

that 


deg ∧(x) ≤ n(n− 1)
2

∧(x) =
∏

1≤	<k≤n

(
(αk − α	)x− β	 + βk

)
,

(4.9)

and {
P (x) = ∧(x)P̃ (x)

Q(x, y) = ∧(x)Q̃(x, y)

where P̃ , Q̃ are polynomials such that deg P̃ = n and deg Q̃ = n .

Evidently, if
deg ∧(x) > 0,

the zeroes of ∧(x) must be zeroes of Q(x, y), i.e.,

∧(x∗) = 0,

then
Q(x∗, y) = P (x∗) = 0 .

The aim of the following assertions is to study the system{
ẋ = (−1)n+1P̃ (x)

ẏ = Q̃(x, y)
(4.10)

which can be obtained from (4.2) by choosing ν(x, y) = ∧(x)−1. For the case when

α1 �= α2 = . . . = αn = αn+1 = 0, (4.11)

we obtain
deg ∧(x) = 0 ,

and the vector field (4.2) takes the expression (4.5).
Let us now study the different configurations of (4.11). We will analyze the case

when n = 3.
1) Let us suppose that

α1 = α2 �= α3 = α4. (4.12)
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By choosing ν : ν(x, y)(β2 − β1) (αx+ β4 − β2) = 1, and requiring that

β1 − β2 = β3 − β4 (4.13)

after some calculations it can be deduced that (4.2) for n = 3, is the following system



ẋ = β21(αx+ β41) (αx+ β32) (αx+ β31)

ẏ = β21

(
α1(y − y3)(y − y4)

[
2 (y − α1x) + αx+ β41 − 2β2

]
−

−α4(y − y1)(y − y2)
[
2 (y − α4x) − αx− β41 − 2β3

])
,

(4.14)

where
α ≡ α4 − α2 = α4 − α1 = α3 − α1,

αji ≡ αj − αi,

βji ≡ βj − βi.

The system (4.14), with the given fundamental solution made up by four straight
lines

'j : y = αjx+ βj , j = 1, 2, 3, 4,

has the following complementary invariant straight lines as trajectories:

'5 : x = −β35

α
,

'6 : x = −β32

α
,

'7 : x = −β41

α
.

It is easy to prove that the line which passes through the points of intersection
of the lines 'j , j = 2, 3, 5, and 'i, i = 1, 4, 7, and such that

'8 : y =
β21(α1 + α4)
β41 − β32

x+
β2β4 − β1β3

β41 − β32

is a trajectory of (4.14). With '8 we complete the maximum number of invariant
straight lines which a cubic vector field, since L(3) = 8.

2) Now we shall study the following configuration: α1 �= α2 �= α3 = α4.
With no loss of generality we choose the coordinate in such a way that

α1 �= α2 �= α3 = α4 = 0. (4.15)
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Under this hypothesis, system (4.2) takes the form:



ẋ = ν(x)β43(β42 − α2x)(β41 − α1x)(β32 − α2x)(β31 − α1x)(β21 + α21x)

ẏ = −ν(x)β43(y − β3)(y − β4)
(
α1(y − α2 x− β2)(β42 − α2x)(β32 − α2x)−

−α2(y − α1x− β1)(β41 − α1x)(β31 − α1x)
)
.

(4.16)
It is easy to observe that in this case polynomials P (x) and Q(x, y) are of degree 5,
and so there must be a polynomial ∧ of degree 2 which satisfies the conditions given
above. Now

∧(x) = (βij + αijx)(βik + αikx) ,

where i, j, k = 1, 2, 3, 4, i �= j �= k, i+ j �= 7, i+ k �= 7.
In order to illustrate these assertions we shall study the next particular cases:

∧(x) = (β42 − α2x)(β41 + α1x)

ν(x) =
(
β43 ∧ (x)

)−1

A polynomial vector field of degree 3 and with L(3) = 8 can be constructed in this
case if the given straight lines satisfy the following conditions:

i) α2 = −α1, β4 − β2 = β1 − β4.

Equations (4.6) under these restrictions take the form:

{
ẋ = (β32 + α1x)(β31 − α1x)(β21 − 2α1x)

ẏ = 2α1(y − β3)(y − β4)(y − β1 − β2 + β3)
(4.17)

The equations of the lines which are trajectories of the field (4.17) can easily be
deduced. In particular the straight line '8 is such that y = β1 + β2 − β3.

ii) α2 = −α1, β4 − β2 = β1 − β3.

The system (4.16) takes the form

{
ẋ = (β32 + α1x)(β31 − α1x)(β21 − 2α1x),

ẏ = α1(y − β3)(y − β4)(2y − β1 − β2).
(4.18)

It is easy to observe that this vector field has 8 invariant straight lines.

iii)
α1 = 2α2, β4 − β2 = β2 − β1.
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Under these restrictions equations (4.16) takes the form{
ẋ = (β32 − α2x)(β21 − α2x)(β31 − 2α2x)

ẏ = α2(y − β3)(y − β4)(y − 3α2x− β1 − β2 + β3)
(4.19)

The straight line '8 in this case is the following y = 2α2x+ 2β2 − β3.

Likewise the other cases can be analyzed depending the form of the polynomial
∧ but it is easy to prove that all these cases do not add new configurations to the
solution of problem 2.

The configuration α1 �= α2 �= α3 �= α4 does not hold for the cubic system
with a maximum number of the invariant straight lines and with the restriction
gl(x, y) = 0, l = 1, 2.

Now we shall analyze the case when n = 4.

1. Let us suppose that α1 = α2 �= α3 = α4 = α5. With no loss of generality we
require that

α1 = α2 �= α3 = α4 = α5 = 0. (4.20)

System (4.2), under the given restrictions, can be rewritten as follows



ẋ = −ν(x, y)β54β53(β52 − α1x)(β51 − α1x)β43(β42 − α1x)×

×(β41 − α1x)(β32 − α1x)(β31 − α1x)β21 ≡ ν(x, y)P (x)

ẏ = ν(x, y)(y − β3)(y − β4)(y − β5)β54β53β43α1×

×
(
(β51 − α1x)(β41 − α1x)(β31 − α1x)(y − α1x− β1)−

−(β52 − α1x)(β42 − α1x)(β32 − α1x)(y − α1x− β2)
)
≡

≡ ν(x, y)Q(x, y),

(4.21)

The polynomials P, Q are of degree 6 and 7 respectively. By choosing ∧ as a product
of any pair of binomials of P (x) we deduce that system (4.21) is a quartic vector
field with 9 invariant straight lines as trajectories (L(4) = 9).

It is interesting to observe that in this case the configuration of the straight line
is independent of ∧. So it is sufficient to analyze, for example, the following case

∧(x) = (β52 − α1x)(β51 − α1x). (4.22)

It is easy to prove that in this case the relation Q(x∗, y∗) = 0 holds if the following
conditions take place
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i) {
β1 − β4 = β2 − β5

β1 − β5 = β2 − β3 ,
(4.23)

ii) {
β1 − β5 = β2 − β4

β1 − β3 = β2 − β5 .

From the conditions in (4.23)-i) we deduce that (similarly for (ii))


β21 = β35 = β54

β41 = β52

β51 = β32

β43 = 2β12

β42 + β13 = 3β12 .

By putting Q(x, y), P (x) and by choosing ν:

ν(x) =
1

2β3
21 (αx+ β52) (αx+ β51)

,

we obtain the quartic vector field with 9 invariant straight lines as trajectories

ẋ = −β21(β42 − α1x)(β41 − α1 x)(β32 − α1x)(β31 − α1x)

ẏ = α1(y − β3)(y − β4)(y − β5)
(
3β21(y − α1x)−

−β21α1x+ β2β42 − β1β31

)
.

(4.24)

2. Likewise we can study the case when [5] α1 �= α2 �= α3 = α4 = α5 = 0 and
0 �= α1 = α2 �= α3 �= α4 = α5 = 0.

Analogously we can study the case for n > 4. In this way it is possible to
construct the polynomial vector field of degree n from given n+ 1 straight lines.

5. Construction of the analytical vector fields in the plane from given solutions

In this section we study the problem of constructing an analytical vector field in a
certain region G ⊂ R

2 : {
ẋ = P (x, y)

ẏ = Q(x, y)
(5.1)

by using a finite number of given solutions.
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Firstly, let us introduce some necessary notations and concepts.
Let (Z,Z1(t), . . . , Zm(t), F ) ∈ C be complex such that



Z = x+ iy , Z = x− iy , i =

√
−1

Zj(t) = xj(t) + iyj(t) , j = 1, 2, ..,m

F (Z,Z) = P (x, y) + iQ(x, y),

where Zj : I ⊂ R −→ C, are curves of class Cr(I), r ≥ 1.
By D we denote the matrix:

D(Z,Z, t) =




f1(Z,Z) f1

(
Z1(t), Z1(t)

)
. . . f1

(
Zm(t), Zm(t)

)
f2(Z,Z) f2

(
Z1(t), Z1(t)

)
. . . f2

(
Zm(t), Zm(t)

)
...

fm(Z,Z) . . . . . . . . . . . . . . . fm
(
Zm(t), Zm(t)

)
Ż Ż1(t) . . . Żm(t)




(5.2)

where f1, . . . , fm are certain analytical and independent functions on G.

Definition 5. The arbitrary analytical function Φ∗ on G such that

Φ∗(Zj(t), Zj(t), t
)
≡ 0, j = 1, 2, ..,m

will be called the Eruguin function.

Proposition 5.1

The differential equations of the first order have the system of curves:

ω =
(
Z1(t), . . . , Zm(t)

)
(5.3)

as solutions such that

∆(ω) =

∣∣∣∣∣∣∣∣∣∣∣∣

f1

(
Z1(t), Z1(t)

)
. . . . . . f1

(
Zm(t), Zm(t)

)
...
...

fm
(
Z1(t), Z1(t)

)
. . . . . . fm

(
Zm(t), Zm(t)

)

∣∣∣∣∣∣∣∣∣∣∣∣
�= 0 (5.4)
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∀t ∈ I∗ ⊂ I, can be represented as follows

det D = Φ∗(Z,Z, t) (5.5)

or, expressed in another way,

Ż =
m∑
j=1

(−1)m+1 ∆j(ω)
∆(ω)

fj(Z,Z) + Φ(Z,Z, t) (5.6)

where ∆1(ω), . . . ,∆m(ω),∆m+1(ω) are the adjoints of matrix D which correspond

to the elements in the first column: f1(Z,Z), f2(Z,Z), . . . , fm(Z,Z), Ż,

Φ(Z,Z, t) =
(−1)mΦ∗(Z,Z, t)

∆(ω)
,

∆m+1(ω) = (−1)m∆(ω).

In fact, it is evident that all the functions Zj(t), j = 1, ..,m are solutions of
(5.5). If we develop detD(Z,Z, t) with respect to the first column, and considering
(5.5), we get

m∑
j=i

∆j(t)fj(Z,Z) + ∆m+1(ω) Ż = Φ∗(Z,Z, t)

By using condition (5.4) we finally obtain

Ż = −
∑
j

∆j(t)fj(Z,Z)
∆m+1(ω)

+ Φ(Z,Z, t) ≡ G(Z,Z, t) + Φ(Z,Z, t) .

We should now like to prove that the above equation is the most general first order
differential equation which has system of curves as solutions.

In fact, let Ż = F (Z,Z, t) be an arbitrary differential equation which has system
(5.3) as solutions, i.e., F (Zj , Zj , t) = Żj , j = 1, ..,m.

This equation can be rewritten in the form (5.5) if we define Φ∗ as follows

Φ∗(Z,Z, t) = (−1)m∆m(ω)Φ(Z,Z, t) = (−1)m∆m(ω)[F (Z,Z, t) −G(Z,Z, t)]

which is evidently an Eruguin function.

Definition 6. The system of curves (5.3) which satisfies (5.4) will be called the
fundamental solution of (5.5). Similar to definition 2 of section 1, the system of
curves

Wj : I ⊂ R −→ C de clase Cr(I), r ≥ 1, j = 1,m

Ω =
(
W1(t), . . . ,Wm(t)

)
,
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which in I∗ ⊂ I satisfies the condition


∆(Ω) �= 0
∆j(ω)
∆(ω)

=
∆j(Ω)
∆(Ω)

, j = 1,m,
(5.7)

will be called equivalent to ω and then we write

ω ≈ Ω.

We can observe from (5.6) that any first order differential equations for which a
finite number of solutions is known can be constructed with an arbitrariness in the
Eruguin function.

It is evident that if the following relation holds

Żj(t) = 0 , j = 1,m

then
Ż = Φ(Z,Z, t). (5.8)

The natural arbitrariness with which we construct the above equations can be re-
stricted by using complementary conditions.

In the following assertions we will construct the polynomial vector field from
given solutions. We shall also propose a formal method to construct the Eruguin
function Φ.

Firstly the Lie algebra of the matrix of order S is denoted by

M(C, S) ≡ M

Let B1, . . . , Bs ∈ M be the arbitrary matrix such that

H0(Z,Z) =
s∑

k=1

Bkfk(Z,Z) , m ≤ s < ∞.

First we introduce matrices H1(Z,Z), . . . , Hm(Z,Z) such that

Hj(Z,Z) =
[
Hj−1(Z,Z), Hj−1(Zj , Zj)

]
≡

≡ Hj−1(Z,Z)Hj−1(Zj , Zj) −Hj−1(Zj , Zj)Hj−1(Z,Z), j = 1, ..,m.

Of course Hj(Zk, Zk) ≡ 0, j = 1, ..,m, k = 1, .., j. By ξ we denote the function:

ξ(Z,Z, t) =
∑
k,j

ηkj(β)Hkj
m (Z,Z) (5.9)
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where η(β) =
(
ηkj(β)

)
is a matrix which depend on a finite number of the arbitrary

functions. It is clear that

ξ
(
Zj(t), Zj(t), t) ≡ 0 , j = 1, ...,m. (5.10)

Corollary 5.1
The Eruguin function can be represented as follows

Φ(Z,Z, t) = ξ(Z,Z, t), (5.11)

where ξ is defined by the formula (5.9).

Example1: Let us suppose that m = 2, s = 6; Z1(t), Z2(t) y f1, . . . , f6 are such
that

ω =
(
0, Z2(t)

)
,

2L(Z,Z) =
(
f1(Z,Z), . . . , f6(Z,Z)

)
=

(
1, Z, Z, Z2, |Z|2, Z2)

.

After some calculations it is easy to prove that

ξ(Z,Z, t) =
(
2L
(
Z2(t), Z2(t)

)
, B(β)2L(Z,Z)

)
, (5.12)

where

B(β) =




0 0 0 0 0 0

0 0 β1 β2 β3 β4

0 −β1 0 β5 β6 β7

0 −β2 −β5 0 β8 β9

0 −β3 −β6 −β8 0 β10

0 −β4 −β7 −β9 −β10 0



. (5.13)

6. Stationary polynomial vector fields with a finite number of given solutions

The aim of this section is to construct polynomial vector fields

ẋ =

n∑
k+j=0

akj
xkyj

ẏ =
n∑

k+j=0

bkj
xkyj

(6.1)

from a finite number of given solutions.
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Let f1, . . . , fs be the functions such that


f1(Z,Z) = 1
...

f (k+1)k
2 +(j+1)

(Z,Z) = Zk−jZ
j
, 0 ≤ j ≤ k ≤ n

...

fs(Z,Z) = Z
n
.

It is easy to deduce that

s = 1 + 2 + ...+ (n+ 1) =
(n+ 1)(n+ 2)

2
.

If 2q = (q1, . . . , qs) ∈ C
s is constant, then (6.1) can be written in the equivalent form:

Ż =
(
2q, 2L(Z,Z)

)
(6.2)

where
2L(Z,Z) =

(
f1(Z,Z), . . . , fs(Z,Z)

)
=

=
(
1, Z, Z, Z2, ZZ,Z

2
, . . . , Zn, Zn−1Z, . . . , ZZ

n−1
, Z

n
)
.

Problem 3.
Let us give the system of functions

ω =
(
Z1(t), . . . , Zm(t)

)
of class Cr(I), r ≥ 1, I ⊂ R, such that

∆(ω) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . . . . 1

Z1(t) . . . . . . Zm(t)

Z1(t) . . . . . . Zm(t)
...

...

Z
p

1(t) . . . . . . Z
p

m(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�= 0 (6.3)

∀t ∈ I∗ ⊂ I, where
(p+ 1)(p+ 2)

2
= m.



Differential equations on the plane with given solutions 171

We want to construct the vector field of degree n in the variables Z,Z, where
n ≥ p, in such a way that ω is a fundamental solution.

Solution. Firstly it can be seen that (6.3) excludes, from what has been described
in the previous section, all the solutions for which the following relations hold:

|Z1(t)| = . . . = |Zm(t)|.

By choosing the Eruguin function Φ (see for instance (5.9), (5.11))

Φ(Z,Z, t) = ξ(Z,Z, t) =
∑

ηkj(β)Hkj
m (Z,Z),

we can easily deduce that

Ż =
(
2K(t), 2L(Z,Z)

)
+ Φ(Z,Z, t), (6.4)

where
2K(t) = (k1(t), ..., km(t), 0, ..., 0),

kj(t) = (−1)m
∆j(ω)
∆(ω)

.

From the representation

ξ(Z,Z, t) =
(
2h(t), 2L(Z,Z)

)
,

we deduce the following expression for (6.4):

Ż =
(
2K(t) + 2h(t), 2L(Z,Z)

)
. (6.5)

Corollary 6.1

The dynamic system (6.5) is stationary if and only if

d

dt

(
2K(t)

)
= − d

dt

(
2h(t)

)
.

This assertion is illustrated in the following example.
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Example2: A quadratic vector field on the Z y Z variables with the fundamental
solution

ω =
(
0, Z2(t)

)
.

The solution to this problem can be easily deduced from the above results.
In fact, in this case from (6.4) we get

Ż =
(
2K(t) + 2L(Z2(t), Z2(t))B(β), 2L(Z,Z)

)

or, expressed in a different way,

Ż =
Ż2(t)
Z2(t)

Z +
(
2L
(
Z

(t)
2 , Z2(t)

)
B(β), 2L(Z,Z)

)
, (6.6)

where 2K(t) = (0, Ż2
Z2
, 0, 0, 0, 0), L and B are the matrix defined in the previous

section. So, the vector field is stationary if and only if

2K(t) + 2L
(
Z2(t), Z2(t)

)
B(β) = (c1, c2, ..., c6),

where cj , j = 1, ..., 6 are constants.
In particular, if the arbitrary functions β1, . . . , β10 in the formulas (5.12), (5.13)

and Z2 are such that

βj =

{
0 if j �= 4,

a+ ib if j = 4,

Z2 = ε ∈ R, then (6.6) take the form

Ż = −β4(ε2Z − εZ
2
),

or, what is the same,

{
ẋ = a∗(εx+ y2 − x2) − b∗∂yH,

ẏ = a∗(εy + 2xy) + b∗∂xH,

where H = ε/2(x2 + y2) + xy2 − x3/3 , a∗ = −εa , b∗ = −εb.
By continuing the study of (6.4) we will prove the following proposition
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Proposition 6.1

Let us give the fundamental solution ω of the polynomial vector field of degree

n (6.4), such that

ω =
(
α1, α2, . . . , αn+1, Zn+2(t), . . . , Zm

)
where arg αj = a , j = 1, n+ 1, and m satisfies the inequality

n+ 1 ≤ m ≤ (n+ 2)(n+ 1)
2

.

Then straight line ' where the points α1, . . . , αn+1 lie, is a singular straight line of

the vector field.

In fact, with no loss in generality we shall suppose that arg αj = 0 and αn+1 =
0, i.e. α1, . . . , αn+1 ∈ R and the point αn+1 coincides with the origin. So the line '
coincides with the real axes

Z − Z = 0. (6.7)

After some calculations it can be proved that the component F0 of (6.4)

F0 ≡
(
2K(t), 2L(Z,Z)

)
can be represented as

F0(Z,Z, t) = (Z − Z)φ1(Z,Z, t),

which evidently vanishes along (6.7).
On the other hand, if (6.7) holds, then all the elements of the matrix Hj(Z, Z)

are real.
By considering that

Hn(Zk, Zk) ≡ Hn(αk, αk) ≡ 0,

∀k ≤ n, we have the representation

Hn(Z, Z) = H(t) (Z − α1)(Z − α2)...(Z − αn),

where H is an arbitrary matrix which depends only on t, because the vector field is
a polynomial in Z, Z of degree n.
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From here we can easily deduce that

Hn+1(Z, Z) =
[
Hn(Z,Z), Hn(Zn(t), Zn(t))

]
≡ 0.

Evidently Hj(Z,Z) ≡ 0 ∀j = (n+ 1), ...,m, so

Φ(Z,Z, t) ≡ 0

if Z = Z. As a consequence we have the following representation for the Eruguin
function

Φ(Z,Z, t) = (Z − Z)φ2(Z,Z, t),

Ż = (Z − Z)
(
φ1(Z,Z, t) + φ2(Z,Z, t)

)
,

or, what is the same, 

ẋ = 2y Im

(
φ1(Z,Z, t) + φ2(Z,Z, t)

)
,

ẏ = 2yRe
(
φ1(Z,Z, t) + φ2(Z,Z, t)

)
.

Hence we obtain that y = 0 is the singular straight line of vector field (6.4). In other
words, any polynomial vector field of degree n with a finite number of critical points
can have at most n critical points in a straight line.

7. Study of the polynomial vector field of degree n with n2 critical points

Using the results in section 6 we will construct the polynomial vector field which
has the following critical points:


(aj , bk) , j = 1, n, k = 1, n,

a1 < a2 < . . . < an,

b1 < b2 < . . . < bn.

It is easy to prove that the polynomial vector field of degree n which generates
the differential equations


ẋ = α

n∏
j=1

(x− aj) − β
n∏

k=1

(y − bk)

ẏ = β

n∏
j=1

(x− aj) + α

n∏
k=1

(y − bk)

(7.1)
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has the given configuration (under some restrictions with respect to location of the
points (aj , bk)), where α, β are the parameters such that

α2 + β2 = 1.

It is interesting to observe that on the plane of the parameters (α, β), the dynamic
systems which correspond to the points (±1, 0), (0,±1) are the systems which are
diametrically opposed to the structural stability.

So, for α = 1, β = 0 the system
(
see for instance the formula (4.5)

)
{
ẋ =

∏
(x− aj)

ẏ =
∏

(y − bj)
(7.2)

is structurally stable. The singular trajectories are:
i) stable saddles and nodal points,
ii) separatrices of the saddle points which go towards the nodal points.

For α = 0, β = 1, we have the following Hamiltonian system{
ẋ = −∂yH

ẏ = ∂xH
(7.3)

where H :

H(x, y) =
∫ 

 n∏
j=1

(y − bj)dy +
n∏

j=1

(x− aj)dx


 . (7.4)

It is well-known [2] that system (7.3) is structurally unstable to an infinite degree.
The following assertion can be made [5]:

Proposition 7.1

Let C(n) be the number of centers in (7.3).

The following equalities hold

C(n) =




n2

2
if n is even,

n2 + 1
2

if n is odd.

(7.5)

Proof. By translating the origin to point (a	, bm), we obtain the following expression
for the Hamiltonian H:

H	m(x, y) =
∏
j �=m

(bm − bj)
y2

2
+

∏
j �=	

(a	 − aj)
x2

2
+ V ∗(x, y)
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where V ∗ is a polynomial in x and y of degree n

V ∗(x, y) =
n∑

j=3

vj(x, y)

vj are the homogeneous forms of degree j.
By considering that H	m is an analytical integral positive definite iff∏

j �=m

(bm − bj) ·
∏
j �=	

(a	 − aj) > 0 , j = 1, n,

from here we can easily deduce the veracity of (7.5). �
For n = 2, n = 3 the coordinates of the centers are:

(a1, b1), (a2, b2) si n = 2

(a1, b1), (a1, b3), (a2, b2), (a3, b1), (a3, b3) si n = 3.

By considering the properties of the structurally stable and unstable dynamic sys-
tems on the plane [2] we can affirm that the analytical vector field with a maximum
number of centers must be structurally unstable to an infinite degree. Hence we can
say that the maximum number of the centers for a polynomial vector field of degree
n is (7.5).

Let us give the dynamic system δ-close to the system (7.3) [2]:

ẋ = −

∏
(y − bj) + µ

(
n∑

k+j=0

akj x
kyj

)
≡

n∑
k+j=0

Akj x
kyj

ẏ =
∏

(x− aj) + µ

(
n∑

k+j=0

bkj x
kyj

)
≡

n∑
k+j=0

Bkj x
kyj ,

(7.6)

where µ is the small parameter.
From the above results we deduce that system (7.14) can be constructed if we

know (n + 1) trajectories which satisfy (2.2) or 1/2(n + 1)(n + 2) solutions which
satisfies (6.3).

We denote by B0(n) and H0(n) the maximum number of limit cycles which can
be generated by perturbations of one of the centers (7.3) and the maximum number
of limit cycles which the system (7.6) can have, respectively.

Conjecture 3.

B0(n) ≤ 1
2
(n+ 1)(n+ 2)
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Conjecture 4.

H0(n) ≤




n2

2
(n+ 1) if n is even

n2 + 1
2

(n+ 1) if n is odd.
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