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ABSTRACT

The aim of this paper is to construct the analytic vector fields on the plane with
given as trajectories or solutions. In particular we construct the polynomial
vector field from given conics (ellipses, hyperbola, parabola, straight lines) and
determine the differential equations from a finite number of solutions.

1. Introduction

The relation between coeflicients and roots of a polynomial

P =ap\" +an_ i\ P ag . an #0,

is well known. In particular if A1,..., A, are zeros of P(\) such that
1 ... 1
M A
A=| | .| #0,
APt
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(1.1)


Servicio de Textos



146 RAMIREZ AND SADOVSKAIA

then P admits the representation

1 1 ... 1
A A
PN =|: © | = det(B).
AT AT
From here we can easily deduce that a,, ..., ag coincide with the adjoints of A™,...,1

in the matrix B, respectively. These relations between coefficients and solutions can
be developed by analogy for a wide variety of differential equations. In this section
we will analyze some particular cases.

Functions will be assumed smooth in their domain.

I. Let us give the differential equation

ZM 4 a, ()2 Y 4 4 ao(t) =0, (1.2)
where p
20 =—(207)  Z=a+iy,i=V-1,
7MW =7,
It can be shown that if Z; : I C R — C then
w = (Z1 (t), ......... ,Zn+1(t)),
are solutions of (1.2) such that
1 . 1
Zl (t) Zn—‘,—l(t)
Aw)=| Z) Zusa(t) | £0 (13)
2Rl () N AT ()
for all t € I* C I, in which case we have the following representation
1 1 e 1
Z Zi(t) ... Zpa(t)
Z  Z(t) ... Zpga(t)
) ) ] = det(A) =0. (1.4)
ARIARI() B AN ()
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From here we can easily deduce the coefficient-solutions relation for the given equa-
tion

ag(t) = (—1)’““%&?, E=0,...n, a,1(t)= —%(lnA(w)),

where Ag, k=0,...,n are the adjoints of the (k+1)-element of the first column
in matrix A.

We observe that A, 41 (w) = (—1)" 1A (w).

II. Likewise we can prove that if the functions
Zi:ICR—C , w=(Zi(t),..., Znt1(t)),

such that

—_

1
Z) . Zn(l)
Aw) =210 - Zoa®)] 20 (1.5)

20 ... Zna()

for all t € I* C I, satisfy the equation
Z+an(t)Z" + ... +ag(t) =0, (1.6)

their we can give the representation:

1 1.1
Z 2t ... Znalt)
z? Z3(t) Z34(t)

= det(A) = 0. (1.7)

Z0 Zp() . ZE ()

Z  Zi(t) ... Znp(t)

From here we can easily deduce that the coefficient a,, can be represented as follows

an = (—1)’““2—&?, k=0,.,n. (1.8)
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III. Likewise we can look for the coefficient-solution relations for the equation of the
type
n .
Z+ Y a()Z¥Z7 =0, (1.9)
k+j=0
where Z = x — iy.

It is easy to prove that if we have W =

m solutions of (1.9), Z; : I C

DEFINITION 1. The system of functions

w=(Z1(t),..., Zn(t))

R—C, w=(Z(t),..., Zn(t)), which satisfy
1 U |
Z1(t) Zm (t)
Z1(t) Zp(t)
Z3(t) Z3,(t) — AW) 20 1.10)
Z1(1)? Zn (| |
Zi(t) 0
Zi (1) Z(t)
for all t € I* C I, then (1.9) can be rewritten as follows
1 1 1
Z Z1(t) Zm (1)
7 Zi(t) Zm(t)
zz  Z3() Z3,(t)
|Z|? | Z1(1)]? | Zm ()% | = det(A4) = 0. (1.11)
A0 40
A0 Z, (1)
Z(1) Zm (1)
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will be called the fundamental solution of (1.4) or (1.7) or (1.11) if A(w) # 0 for all
t € I* C I, and A(w) is determined by the formulas (1.3), (1.5), (1.10) respectively.

DEFINITION 2. Let Ay, k=1,...,m+ 1 be the adjoints of the elements of the
first column in matrix A defined by the formulas (1.4), (1.7) or (1.11). Then the
system of functions Q = (w1 (t),...,w,(t)) such that

A(Q) #0
D8Oy (112

will be called fundamental solution equivalent to w and we shall write
w = (),

where A, 11 = (—1)™A,, (w). Of course if

wa~Q and Q~Q=— w~Q.

As we can observe from definitions 1 and 2 we suppose that for all fundamental
solutions there is at least one solution such that

Zj(t)#0, Vtel™CI. (1.13)

The aim of this article is to study the inverse problem of differential equations: the
construction of vector fields on the plane from given properties, such as a finite
number of solutions or trajectories [4].

2. Construction of an analytical vector field on the plane from given trajectories

It is well-known that for the analytic vector field on the plane:

{ &= P(z,y)
y=Q(z,y),
the G domain of P(z,y) and Q(z,y) is divided into elementary regions [2], such that
their boundary is determined from a finite number of singular trajectories. In these

regions the non-singular trajectories which are topological equivalent are located.
For the structurally stable dynamic system the singular trajectories can be

(2.1)
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i) Stable simple critical points (saddles, nodes, foci).
ii) Stable limit cycles.
iii) a-w-separatries which may only spread towards a node, a focus, a limit cycle
or leave the G domain.
From these results it seems interesting to state the inverse problem: the cons-
truction of (2.1) from a finite number of singular trajectories or solutions.

Problem 1 (construction of the analytic vector field from given trajectories).

Let
yi:ICR—R, j=1,...,n+1

z — y;(x)
be the analytic functions on (I) such that

w = (yl(x>7 s 7yn+1(x))

is a system of functions for which the next relation holds

1 o 1
yi(r) o Ynsr()
Aw) =] : #0, Vezel ClI. (2.2)
@) e gl

We require the dynamic system to be constructed from given trajectories.
Firstly we introduce the following.

DEFINITION 3. The analytic function ® defined on G which vanishes on the curves
yi(z), j=1,2,...,n+ 1, will be called Eruguin’s function.

Proposition 2.1

The most general first order differential equation which has the curves y =
yj, J=1,...,n+1 as solutions can be represented as follows:

- w k x
y/ _ kzzo % + O(x,y), (2.3)

where ® is the Eruguin function.
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In fact, from (1.6)-(1.8) and considering the properties of Eruguin function we

deduced that (2.3) has the given curves as a solution.

Now we will prove that the equation constructed is the most general.

In fact, let us suppose that

y' = F(z,y) (2.4)
is the other equation for which the given curves are solutions, i.e,
F(may)’y:yj = y;
By choosing @ as follows
"L A (w)yF(z
E—0 An+1(w)
we deduce that this ® is the Eruguin function.
Equations (2.3) and (2.4) will be called ® equivalents.
Proposition 2.2
Let &, ®,, v be arbitrary analytic functions on G C R? such that
Q)(z,y;(x) =0, 1=1,2; j=1,...,n+1
(2.5)
v(z,y;(x)) # 0.
The most general analytic dynamic system with y,(x), . .., yn+1(x), trajectories
which satisfy (2.5) is the following
&= V(‘rvy)AnJrl(w) + (pl(xay)
. - 2.6
§=—v(a,y) S Apw)y + B (z,y), (2:6)
k=0
where Ag(w), ..., An(w), Ay +1(w) are the adjoints of the elements in the first column
of matrix A:
M1 1 . 1 7
y @ .. Yaga(z)
y* yi(@) . ynga(@)
A= (2.7)
y"oyt(e) - yna(a)
Ly wi() - Y ()]
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Proof. Proposition 2.2 follows from proposition 2.1 if the Eruguin function ®(z,y)
is related to the functions ®;, j = 1,2 by the formula

(Zk=o

d =

Ak (w)y”

Apti(w)

(I)(I)l +

B,)

It is clear that functions ®;, ®5 can be represented as follows

@lﬂt

v(z,y)Aps1 + O1

y) = qi(z,y) det S,
1 1
Y y1(z)
¥ yi(x)
y" o yi(e)
yrt oy (@)

ygﬂ(x)

ynti(x)

where g;, [ = 1,2 are arbitrary analytical functions. By putting (2.8) in (2.6) it is
easy to obtain the following expression for system (2.6):

1
y
=
"
v+ g1y
1
y
g'/ =
"
9oyt

n—+1 g

1

y1(z)

Yy ()

1y?+1(

z)

yn+1(x)

yﬁ+1(a:)

hn+l

1

Ynt1(x

Ynt1 (z

n+1
91Yp 1\ X

)

)
()
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where hj = —vy/(x) + g2y§‘+1, j=1,2,..,n+1.
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The natural arbitrariness with which we constructed the dynamic system can
be restricted if we impose some complementary conditions, that (2.9) is structurally

stable, non-structurally stable, Hamiltonian, polynomial of degree n, etc.

We shall study the following particular cases:

I. Construction of the quadratic stationary vector field from given conics.

II. Construction of the polynomial vector field of degree n from given n+1 straight

lines.

3. Construction of the quadratic vector field from given conics

We shall study (2.9) for the case n = 1, m = 2 and under the restriction
{ By = a07® + anzy + aoey® + 1w + agy + a3 = P(x,y)

Ey = byox® + biixy + boay® + Srx + foy + 03 = Q(z,y),
As a consequence the following identity holds

93 93

a—yg(V(»’Uay))(m —y1) + 8—y3,q:)1($7y) =0
o3 03

_a—yg(y)‘) + a—yg(I)Z(:I:?y) - 07

d
where A = y1(@)y3(2) — y2(@)yi () + (41(2) = va(2))y,  ¥i(@) = —y;.
These relations take place in particular in the next subcase
i)

(v(x,y) = v(z)

g1(z,y) (yz(m) -1 (:r)) o = const,
92(z,y) (y2(z) — y1(z)) = B = const,

ii)
(v(z,y) = q(z)(Ax + Cy + B),

g1(z,y) (y2(x) — y1(x)) = a = const,

92(z,y) (y2(z) — y1(z)) = B = const.
For i) by f we shall denote the function

(3.1)

(3.4)
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From (2.9) and (3.1) we deduce the following equalities (we suppose that 5 # 0)

a11x + Qo

20 2
anatas S (3.5)
Y2 = —2ﬁ 9’
and
()70 + 120 = ~(om = §3)a? = (o1 = 2552)a =0+ T = o)

4 = 20 43 1 23 o3 18- 2
all’/(x) Oéf2($) . all aa? by ﬂ2a11
5 f(x)—72 __(7[)11_#_%20)372_( 3 + 7
—aa;zaz +26 ) - 0‘2;2 + % + 285 = 5(2)

V(@) f (@) = (5 —bu e+ 5~ o = h(x).

(3.6)
After some calculations, and under the conditions a;; + 2a # 0, we deduce the

following expression for f:
f =+ ayrra(z) — Bsa(x)
B(a11 + 2a)

By introducing the respective notations we obtain

f(z) = px? +2qr+r, pr’+2qx+r>0
v(iz)=C \/px?+2qx+r, p,qr,CeR, C#0 (3.7)
p(¢* —pr) #0
Evidently, if
a1 + 2a7 =0, (3.8)

then

—2ary(x) = sa(x) 5.
The functions f(x) and v(z) have the same form as in the previous case. From (3.5)
and (3.7) we see that y1(x), y2(z), v, g1, g2 are such that

axr +b
yi(z) = +Vpr? +2qx + 7

2

ar +b
ya(z) = —Vpr2+2qz+r, plg® —pr)#0

2

(3.9)
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v(z) =Cy/pz?2+2qx+r, C#0
—2g1(x)\/pr? 4+ 2qz +r = a = const, (3.10)
—2g2(x)\/pr? +2qx +r = 3 = const,

so the dynamic system which has the conics (ellipses, hyperbola) (3.9) as trajectories
is the following

i=-2C(pz® +2qz +7) + 5<(y - aw; b)2 — (pa® + 2qz + 7“)) = P(z,y)
y= —20((19:62 + 2qz + 1")% + (pz+q)(y — ax; b)) (3.11)

—|—a<(y B aa:2—|— b)z ~ (pa? + 2z _,_7«)) = Q(z,v).

For the proof, we put (3.9) and (3.10) into (2.9) (with n =1).
It is interesting to observe that condition (3.8) for system (3.11) takes the form

2a = (a.
Under this restriction on the «, 8 parameters and introducing the notations

b
M= 4]9502@ > by =yo — aﬂ?o;‘ )

EQ = pl‘% + 2(]1’0 + T,

where (xg,yp) is such that

P(z0,y0) = Q(z0,y0) = 0,

i.e,
. q
o= ——,
p
axg + b (B4 2C)(pr — ¢?)
Yo = + ’
2 pB

and making the change

An
y—y0+2—€1+a§

xr =z + P&
t* = —\t,
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we obtain the following expression for (3.9)

m= 2L+ VP T )
m =2t~ VoPE D)

Hence we deduce that (3.11) takes the form

d C
ey X,
(3.12)
¢  ~ CpB 2+pﬂ(20+ﬂ)§2
a1 a ) '

From the Bautin theorem [4] it is easy to prove that (xg, yo), under given conditions
are center points in (3.12).

We can study case ii) in a similar fashion.

After some calculations it is easy to prove that for n =1,

ar +b
n=-— +v2qx +r
ar +b (3.13)
Y2 =5 T V2t
and
v(z,y) = (Az + Cy + B)\/2qz +r
—2¢1(z,y)\v/2qx + r = a = const,
—2g2(z,y)\v/2qr +r = 3 = const,
the equations (2.9) take the form
. ax + b2
a::—2(A:c+C’y+B)(2qa;+r)+ﬁ<(y— 5 ) —(2qx+r))
b
y = —(Aa:+Cy+B)<(2qm+r)a—i—2q(y— ax2+ )) (3.14)

—f—a((y — aq:2—|— b)2 — (2qz + 7“))

It is clear that (3.14) is the quadratic dinamical system which has the parabola
(p = 0) (3.13) as trajectories. Now we shall study the case when ¢? — pr = 0, i.e.,
when the given trajectories are straight lines:

{y:k1:1:+b1
Yy = kox + b

Lk ks (3.15)
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After some calculations it is easy to deduce that the stationary dynamic system
which has the given straight lines (3.15) as trajectories is the following

— g1k

in = (v + (54 ))
— g1k

s = wav + (T )wn),

where w; =y — kjxz —b;, j =1,2. By choosing v, g1, g2 from the equalities

—q1 k
y+ww2:a1w1+a2w2+a3

ko — Ky

—q1 k
V—i-wwl:blwl-i-bgbu2+b3

ko — Ky

we obtain the quadratic system which has (3.15) as trajectories.

4. Construction of the polynomial vector field of degree n
from given n + 1 straight lines

The aim of this chapter is to state and analyze the problem of constructing the
polynomial vector field from given straight lines. We shall analyze the conjecture
about the maximum number of invariant straight lines which admit the polynomial
vector field: “The stationary vector field of degree n has 2n + 2 invariant straight
lines if n is odd and has 2n + 1 if n is even”. We give a geometrical formulation of
this conjecture (in a particular case) based on proposition 6.1 (which we will prove in
the next section) and the above method for the construction of the vector field. We
study the conjecture for the case when there are n invariant parallel straight lines.
The proposed method is illustrated for the quadratic, cubic, and quartic vector field.

Problem 2 Let

w=(x+Pi,...,0n412 + Pnt1), a;,5; €R, (4.1)

be a system of functions which satisfies (2.2). We would like to determine the
conditions under which system (2.9) is polynomial of degree n on the variables z
and y.

We propose the solution to this problem only for the case in which

g(x,y)=0, 1=1,2...,n+1,
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which is the case when there are n invariant parallel straight lines. Under these
conditions system (2.9) takes the form:

r = (_1)n+1y($’ Y) H1§e<k§n+1 ((ak —ag)r + B — B@) = (_1)n+1y($’ y)P(x)

n+1 n+1
g=v(e,y) Y (—Va; [[w—aw -8 J[ (- )z + 8 —B)
j=1 s=1 1<t<k<n+1
s#j L k#j
= v(z,y)Q(z,y).
(4.2)
It is easy to prove that

max(deg P(x)) = @

2 (4.3)
max(deg Qx.v)) = "1,

Let L(n) be the maximum of invariant straight lines which admit a polynomial
vector field of degree n.

We shall prove the following [4].

Proposition 4.1

2n+1 ifn is even
L(n) >
2n +2 ifn is odd.

Proof. We shall prove this statement by constructing a polynomial vector of degree

n with 2n + 1 invariant straight lines if n is even and 2n + 2 if n is odd [4]. If the
given straight lines are such that

o Fay=az3=...=apy1 =0, (4.4)
then by choosing

—1

[T -5

2<0<k<n+1
it is easy to deduce that system (4.2) takes the form:

U(ZL‘,y) =

{Z'UZ (uz + f1— B2) ... (a1 + B1 — Brt1)
(4.5)
y=ai(y—02)..- (Y= Bn+1)-
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Evidently these differential equations have the following 2n + 1 trajectories

L: y=ax+ B, a1 #0
ljl y:ﬂj, 3:2,n+1
Bj — B

ly: z2=——, k=n+j.
€3]

If n is odd, the horizontal straight lines are equidistant and

/8j<ﬁj+1> ]:27an

Hence
lont2: y=—a1x+(n—1)3+28; — B,

ﬁzﬁj—i-l_ﬁja j:27"'7n7

is a trajectory of (4.5). So we show that for (4.5) it is possible to have 2n + 1 and
2n + 2 invariant straight lines if n is even and odd respectively. [J

Is well known the following

Conjecture 1.

2n+1 if n is even
L(n) = (4.6)

2n+2 if n is odd.

Based on Proposition 6.1 of section 6 this assertion can be substituted in particular
case by the following geometrical conjecture.

Conjecture 2. Let co > n > 1 be an integer. The maxim number of straight lines
which can be traced on the plane in such a way that

i) in every line there are at most n intersection points with the others lines,

ii) there is a direction in which exist n parallel straight lines,
is given by the formula (4.6) .

It should be pointed out that if we assume that there is a singular straight line,
it is easy to construct examples of the polynomial vector field which have an infinite
number straight lines.

To study this conjecture, the geometrical constructions given in [5] can be useful.

Now we will deal with Problem 2.

Firstly we will analyze the quadratic vector field. For n = 2 the system (4.2)
takes the form

{ i =v(z,y)(e12® + eax? + ez + e4) @
4.7

y=v(z,y) (a1y2 + (€122 + agx + az)y + M2 + dow + )\3)
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where €;,a;, \; are constants such that
a1 = fi(ag — ag) + ooz — a1) + Bz(ar — o)
Qg = 2(04151(013 —ag) + azfa(ar — az) + azfs(az — Oél))
az = 7 (a3 — az) + B3 (a1 — az) + B3 (as — a1)
A = (Bsanaa(ar — ag) + frasas(ag — as) + Paazar (as — aq))
A2 = 2(Bza102(B1 — B2) + Brazas(B2 — Bs) + Boasan (B3 — B1))
Az = a3f182(B1 — B2) + a28361(83 — B1) + a182083(B2 — B3)
e1 = (a1 — ag)(az — az)(az — ay)
e2 = (a1 — az)(az — a3) (B3 — f1) + (@2 — az) (a1 — a2)(Bs — B1)
+ (a3 — a1)(a1 — az)(B2 — B3)
e3 = (a1 — ag)(B2 — B3) (B3 — B1) + (a2 — a3)(B1 — B2)(Bs — B1)
+ (az — a1)(B1 — B2)(B2 — B3)
eq = (61— B2)(B2 — B3)(Bs — B1).
Of course (4.7) is quadratic if and only if (we take v = 1)
e1 =0,
i.e., there must be at least 2 parallel straight lines. From Proposition 6.1 we show

that in these lines there can be 2 critical points at most.
Let us suppose that the next condition holds

ar #ay = a3 (4.8)
After some calculations it is easy to obtain that
i = —Ps2 (a1 + Bs1) (@212 + B21)
where 3;; = 8; — 3;, aij = a; — . As a consequence, we obtain the straight lines
i y=o2+08;, j=1,2,3
which satisfy condition (4.8). System (4.7) has complementary trajectories

__bBn B
ly: ©z=——" ls: ©=——".
Q91 31
From (4.6) we obtain that L(2) = 5. In such a way the stated problem is solved for

n = 2.

Corollary 4.1.
The general integral of (4.7) is
(@) (y2(x) — i (2)) + Cyi(x) — ya(x))ya(z)
- y2(2) = ys(2) + C(y1(z) — y3(2))
where C is an arbitrary constant.

)
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Now we shall analyze the case n > 3.
It is clear that (4.2) is polynomial of degree n if there is a polynomial A(x) such
that

—1
deg A(z) < n(n — 1)
’ (49)
Nz) = H ((ax — )z = Be + B),
1<t<k<n
and .
{ P(z) = Nz)P(x)
Q,y) = A2)Q(z,y)
where P, Q are polynomials such that deg P = n and deg Q = n.
Evidently, if
deg A(z) >0,
the zeroes of A(z) must be zeroes of Q(zx,y), i.e.,
A(z*) =0,
then
Q(z",y) = P(z") = 0.
The aim of the following assertions is to study the system
i = (—1)"t1P(x)
{ _ (4.10)
J=Q(z,y)

which can be obtained from (4.2) by choosing v(x, y) = A(z)”". For the case when
a1 Fay=...=ap, =apt1 =0, (4.11)

we obtain

deg A(x) =0,

and the vector field (4.2) takes the expression (4.5).

Let us now study the different configurations of (4.11). We will analyze the case
when n = 3.

1) Let us suppose that

a1 = (9 7& a3 = 0y4. (412)
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By choosing v : v(z, y)(B2 — 1) (ax + B4 — (2) = 1, and requiring that
Br— B2 =03 — Pa (4.13)
after some calculations it can be deduced that (4.2) for n = 3, is the following system
& = Bor(ax + Ba1) (ax + B32) (ax + B31)
9= P11y —y3)(y — ya) [2(y — arz) + ax + Bar — 2]~ (4.14)
—au(y —y1)(y — v2) [2 (y — quz) — ax — Ba1 — 205]),

where
=04 — Qg =0y — Q1] =03 — 7,

aji
Bji = B; — Bi-

The system (4.14), with the given fundamental solution made up by four straight
lines

Qj — Qy,

éj: y:oajac—i—ﬂj, j=1,2,3,4,

has the following complementary invariant straight lines as trajectories:

652 I‘:—@,
(6

662 .Z':—@,
«

€7Z l':—@.
«

It is easy to prove that the line which passes through the points of intersection
of the lines ¢;, j = 2,3,5, and ¢;, ¢ =1,4,7, and such that

Bo1 (o + ay) Bofs — 133
lg =
B Y Ba1 — P32 v Ba1 — P32

is a trajectory of (4.14). With ¢g we complete the maximum number of invariant
straight lines which a cubic vector field, since L(3) = 8.

2) Now we shall study the following configuration: a; # as # a3 = ay.
With no loss of generality we choose the coordinate in such a way that

a1 # ag # az =a4 =0. (4.15)
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Under this hypothesis, system (4.2) takes the form:

& = v(2)B43(Baz — o) (Bar — c1x)(Bs2 — azx)(f31 — a1x) (P21 + ao12)
y=—v(2)bas(y — B3)(y — B1) (1 (y — az @ — B2)(Baz — o) (B32 — o) —

—Oéz(y — T — 51)(541 - 04153)(531 - 041$))~
(4.16)

It is easy to observe that in this case polynomials P(x) and Q(z,y) are of degree 5,
and so there must be a polynomial A of degree 2 which satisfies the conditions given
above. Now

AN() = (Bij + aijz)(Bix + airr),
where 4,5,k =1,2,3,4, i £ j £k, i+j#T7,i+k#T.
In order to illustrate these assertions we shall study the next particular cases:
Nz) = (Baz — a2x) (B + o)
-1
v(z) = (Baz A (z))

A polynomial vector field of degree 3 and with L(3) = 8 can be constructed in this
case if the given straight lines satisfy the following conditions:

i) ay = —a, B4 — P2 = B — Ba.

Equations (4.6) under these restrictions take the form:

{ & = (832 + a12)(B31 — onx) (P21 — 201 )
(4.17)

v =201y — B3)(y — Ba)(y — Br — B2+ B3)

The equations of the lines which are trajectories of the field (4.17) can easily be
deduced. In particular the straight line fg is such that y = 61 + B2 — (5.

ii) ag = —aq, Bs— P2 = 1 — Bs.
The system (4.16) takes the form

{ & = (P32 + a12)(B31 — a1x)(f21 — 201 2),
(4.18)

y=oa1(y—Bs)(y — B1)(2y — B1 — B2).
It is easy to observe that this vector field has 8 invariant straight lines.

iii)

a1 = 2ag, By — o = P2 — B1.
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Under these restrictions equations (4.16) takes the form

{56 = (f32 — o) (P21 — a2x)(f31 — 2000)
¥ =y — B3)(y — Ba)(y — 3az2z — B1 — B2 + B3)

The straight line £g in this case is the following y = 2asz + 2062 — (3.

Likewise the other cases can be analyzed depending the form of the polynomial
A but it is easy to prove that all these cases do not add new configurations to the
solution of problem 2.

The configuration oy # ag # as # a4 does not hold for the cubic system
with a maximum number of the invariant straight lines and with the restriction
g(x,y) =0, 1=12.

(4.19)

Now we shall analyze the case when n = 4.

1. Let us suppose that a1 = as # a3 = ag = as. With no loss of generality we
require that
a1 =ay #Fag =a4 =a; =0. (4.20)

System (4.2), under the given restrictions, can be rewritten as follows
(&= —v(x,y)B54053 (052 — a12)(B51 — 1) Baz(Baz — a1x) x
X (Ba1 — arx) (P32 — a1z)(Bs1 — anz)far = v(z, y) P(z)
y=v(z,y)(y — B3)(y — Ba)(y — B5)B54 85381301 %
X ((B51 — 1) (Bar — a1z)(Bs1 — arz)(y — arx — Br)—
—(Bs2 — 1) (Baz — n@) (P32 — a1z)(y — aqw — B2)) =
= v(z,y)Q(z,y),

The polynomials P, () are of degree 6 and 7 respectively. By choosing A as a product
of any pair of binomials of P(x) we deduce that system (4.21) is a quartic vector

(4.21)

field with 9 invariant straight lines as trajectories (L(4) = 9).
It is interesting to observe that in this case the configuration of the straight line
is independent of A. So it is sufficient to analyze, for example, the following case

Nz) = (Bs2 — a12)(f51 — aq ). (4.22)

It is easy to prove that in this case the relation Q(z*,y*) = 0 holds if the following
conditions take place
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{ﬁl—ﬂ4—52—55
(4.23)
P — Bs = P2 — Ps,
ii)
{51—ﬁ5:ﬁz—54
fr—Bs=P2—05.
From the conditions in (4.23)-i) we deduce that (similarly for (ii))
P21 = B35 = Bsa
Bar = Bs2
P51 = B2
Paz = 2 P12

Baz + P13 = 3 P12
By putting Q(z,y), P(z) and by choosing v:
1

v(w) = 2033, (ax + Bs2) (ax + B51)’

we obtain the quartic vector field with 9 invariant straight lines as trajectories

T = —521(542 - all’)(ﬁu — o fU)(ﬂ32 - a1$)(ﬂ31 - Oélw)
g=ai(y—03)(y — Ba)(y — B5) (3021 (y — arz)— (4.24)
—faran + B2 42 — 51531)-

2. Likewise we can study the case when [5] oy # a9 # a3 = a4 = a5 = 0 and
O0Far=as#az3#ay=a5=0.

Analogously we can study the case for n > 4. In this way it is possible to
construct the polynomial vector field of degree n from given n + 1 straight lines.

5. Construction of the analytical vector fields in the plane from given solutions
In this section we study the problem of constructing an analytical vector field in a

certain region G C R? :
{ &= P(z,y)

by using a finite number of given solutions.

(5.1)
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Firstly, let us introduce some necessary notations and concepts.
Let (Z,Z1(t),...,Zn(t), F) € C be complex such that

Z=x+iy, Z=x—1iy, i=+—1
Zj(t) = xj(t) —i—z'yj(t) , J=12,..,m
F(Z,Z) = P(x,y) +iQ(x,y),

where Z; : I C R — C, are curves of class C"(I),r > 1.
By D we denote the matrix:

[ [1(Z,Z2) [1(Z0(t), Z1(t) .. [1(Z(t), Zi(t)) T
22, Z)  fo(Z1(1), Z1(t)) ... fo(Zin(t), Zim(t))

D(Z,Z,t) =
fm(Z2,2) fn(Zm (), Z (1))
L Z Z1(1) Z(t) ]
where f1,..., fi, are certain analytical and independent functions on G.

DEFINITION 5. The arbitrary analytical function ®* on G such that

will be called the Eruguin function.

Proposition 5.1

The differential equations of the first order have the system of curves:

w=(Z1(t),..., Zp(t))
as solutions such that

f1(Z1(t), Z1(8) ... J1(Zn(t), Z (1))

Aw) = #0

(5.3)

(5.4)
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Vt € I* C I, can be represented as follows

det D = ®*(Z,Z,t) (5.5)
or, expressed in another way,
L= A — —
where Aq(w), ..., Ap(w), Apt1(w) are the adjoints of matrix D which correspond

to the elements in the first column: f1(Z,Z), f2(Z,Z), ..., fm(Z,Z), Z,
—-1)m®*(Z, Z,t)
Aw) 7
A1 (@) = (1) Aw).
In fact, it is evident that all the functions Z;(t), j = 1,..,m are solutions of

(5.5). If we develop det D(Z, Z,t) with respect to the first column, and considering
(5.5), we get

®(Z,7Z,t) = (

iAJ'(t)fj(Zv?) + Am-Q—l(W) Z = (I)*(Z777 t)

By using condition (5.4) we finally obtain

AJA fi(Z, Z) +®(2,7,t) = G(Z,7,1) + ®(Z,Z,1).
m+1

We should now like to prove that the above equation is the most general first order
differential equation which has system of curves as solutions.

In fact, let Z = F(Z, Z,t) be an arbitrary differential equation which has system
(5.3) as solutions, i.e., F(Z;,Z;,t) = Z;, j = 1,..,m.

This equation can be rewritten in the form (5.5) if we define ®* as follows

O (Z,Z,t) = (—1)"Ap(W)®(Z,Z,t) = (-1)" A (W)[F(Z,Z,t) — G(Z,Z, )]

which is evidently an Eruguin function.

DEFINITION 6. The system of curves (5.3) which satisfies (5.4) will be called the
fundamental solution of (5.5). Similar to definition 2 of section 1, the system of
curves

W;:ICR—C declase C"(I),r>1,j=1m
Q= (Wi(t),...,Wn(t),
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which in I* C I satisfies the condition

A(Q) #£ 0
Ajlw) _ A (5.7)
A(w) - A(Q) ) .]_ ) )

will be called equivalent to w and then we write
w ~ Q.

We can observe from (5.6) that any first order differential equations for which a
finite number of solutions is known can be constructed with an arbitrariness in the
Eruguin function.

It is evident that if the following relation holds

Z;t)=0, j=1,m
then .
Z=8(Z,Z,1). (5.8)

The natural arbitrariness with which we construct the above equations can be re-
stricted by using complementary conditions.

In the following assertions we will construct the polynomial vector field from
given solutions. We shall also propose a formal method to construct the Eruguin
function .

Firstly the Lie algebra of the matrix of order S is denoted by

M(C, S) = M

Let Bq,...,Bs € 9 be the arbitrary matrix such that

Hy(Z,2) =) Bife(Z2,Z), m<s<o.
k=1

First we introduce matrices H1(Z, Z), ..., Hy(Z, Z) such that

HJ(Z77) = [Hj—l(Zvj)vH (Z Z, )]
Zj) -

j—l(Zvi)H]’— ( (Z Z )Hj—l(Z77)7 ]: 17"7m'

Of course H;(Zy,Zr) =0, j=1,..,mk=1,.,j. By £ we denote the function:

€(2.Z,1) an 1(2,2) (5.9)
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where () = (nk;(8)) is a matrix which depend on a finite number of the arbitrary
functions. It is clear that

é(Zj (t)v 7j (t)’ t)

0, j=1,..,m. (5.10)

Corollary 5.1

The Eruguin function can be represented as follows
®(Z,Z,t) =E&(Z, Z, ), (5.11)
where ¢ is defined by the formula (5.9).

EXAMPLEL: Let us suppose that m =2, s = 6; Z1(t), Z2(t) y fi1,..., f¢ are such
that
w = (07 Zg(t)),

R - - - =2
L(2,Z) = (fi(2,2),.... [s(2,2)) = (1,2,2, 2,12, Z").
After some calculations it is easy to prove that
§2,2,) = (L(%(), Z2(), BB)L(2,7) ). (5.12)

where

0 0 0 0 0 0
0 0 B B Bz B
0 -B1 O Bs Be  Br
(5.13)
0 =B =B 0 Bs Do

0 —B3 —Bs —Bs 0  Bro
0

—Bs —P7 By —Pio O

6. Stationary polynomial vector fields with a finite number of given solutions
The aim of this section is to construct polynomial vector fields

n
T = E aijkyj

k+j=0

g= by

k+j=0

(6.1)

from a finite number of given solutions.
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Let f1,..., fs be the functions such that

f1(Z,2)=1

f(kJrzl)k:_i_(j_i_l)(Z,?) = Zkiij, 0<j<k<n

f:(2,2)=7".
It is easy to deduce that

s=142+ .4 (nt1) = 2 DOE2)

2
If = (q1,-..,qs) € C*®is constant, then (6.1) can be written in the equivalent form:
Z = ((j’, iz, 7)) (6.2)
where
L2.2)= (h(2.2),.... £:(2.2)) =
- (1, 2.7.2%. 22,7, 7" 2" 7, . 77" 1,2")
Problem 3.

Let us give the system of functions

w=(Z1(t),..., Zp(t))

of class C"(I),r > 1,1 C R, such that

1 1
Zyt) ... Zm ()

Aw)=|Z1(t) ...... Zm(t)| #0 (6.3)
A0 Z0 (t)

VteI* C I, where ————————= =m
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We want to construct the vector field of degree n in the variables Z, Z, where
n > p, in such a way that w is a fundamental solution.

Solution. Firstly it can be seen that (6.3) excludes, from what has been described
in the previous section, all the solutions for which the following relations hold:

21O = .. = |Zm (D).
By choosing the Eruguin function ® (see for instance (5.9), (5.11))
(Z2,Z,t) =2, Z,t) = > e (BHN (2, Z),

we can easily deduce that

where

From the representation
§2.2,t) = (h(1). L(2.7)),
we deduce the following expression for (6.4):

Z = (f?(t) +R(t), L(Z, 7)). (6.5)

Corollary 6.1
The dynamic system (6.5) is stationary if and only if

(£ 0) =5 (7).

This assertion is illustrated in the following example.
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EXAMPLE2: A quadratic vector field on the Z y Z variables with the fundamental

solution

w = (07 Zg(t))

The solution to this problem can be easily deduced from the above results.

In fact, in this case from (6.4) we get
72 = (R(t) + L(Z(), Z:(0) B(9), L(2, 7))

or, expressed in a different way,

Z + (E(Zé”,z(t))B(ﬁ), Lz, 7)), (6.6)

where I?(t) = (0, %,0,0,0,0), L and B are the matrix defined in the previous

section. So, the vector field is stationary if and only if
I?(t) + E<22(t)772(t))3(5) = (Cla €2, .-+ Cﬁ)a

where cj, 7 = 1,...,6 are constants.
In particular, if the arbitrary functions i, ..., #1o in the formulas (5.12), (5.13)
and Z5 are such that
0 if j # 4,
Bj = {
a+ib if j =4,

Zy =€ € R, then (6.6) take the form
Z = —Pu(e®Z — 572),
or, what is the same,

{a’: =a*(ex +y* — %) — b* O, H,

Y =a*(ey + 2zy) +b*0, H,

where H = ¢/2(2? + y?) + 2y*> — 23/3 , a* = —ea , b* = —¢b.
By continuing the study of (6.4) we will prove the following proposition
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Proposition 6.1

Let us give the fundamental solution w of the polynomial vector field of degree
n (6.4), such that

W = (Oél, a2y, 0n41, Zn+2(t), PPN Zm)
where arg a; =a, j=1,n+1, and m satisfies the inequality

Then straight line ¢ where the points aq, ..., a,+1 lie, is a singular straight line of
the vector field.

In fact, with no loss in generality we shall suppose that arg a; = 0 and o411 =
0, ie. aig,...,apt1 € R and the point au,+1 coincides with the origin. So the line ¢

coincides with the real axes
Z—7=0. (6.7)

After some calculations it can be proved that the component F of (6.4)
Fo= (X(t), L(z, 7))
can be represented as
Fo(2,Z,t) =(Z - Z)p1(Z, Z, 1),
which evidently vanishes along (6.7). B
On the other hand, if (6.7) holds, then all the elements of the matrix H;(Z, Z)

are real.
By considering that

H,.(Zy, Z1) = Hy (o, o) = 0,
Vk < n, we have the representation
H,(Z,Z)=H®t)(Z —a1)(Z — a3)...(Z — o),

where H is an arbitrary matrix which depends only on ¢, because the vector field is
a polynomial in Z, Z of degree n.
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From here we can easily deduce that
Hy41(2, Z) = [ Ha(Z,Z), Ha(Za(0), Z0(1))| = 0.

Evidently H;(Z,Z) =0Vj = (n+1),...,m, so
®(2,Z,1) =0

if Z = Z. As a consequence we have the following representation for the Eruguin
function

O(Z,Z,t) = (Z — 2)pa(Z, Z, 1),
2 =(Z~7) (¢1(Z, Z,t) + ¢2(Z, Z, t)),

or, what is the same,
i =2y Im<¢1(Z, Z.t) + 62(2,Z, t)),
7 = 2y Re (¢1(Z, Z,t) + 62(2, Z, t)).

Hence we obtain that y = 0 is the singular straight line of vector field (6.4). In other
words, any polynomial vector field of degree n with a finite number of critical points
can have at most n critical points in a straight line.

7. Study of the polynomial vector field of degree n with n? critical points

Using the results in section 6 we will construct the polynomial vector field which
has the following critical points:

(aj7bk)7 j:17n7 k:17n7
a; < ag < ...< Gp,

by <by <...<b,.

It is easy to prove that the polynomial vector field of degree n which generates
the differential equations

8

I

Q
—=

(x—a;) = B[] w—bx)

o o (7.1)
g=p][@—a)+a]w—btw
j=1 k=1
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has the given configuration (under some restrictions with respect to location of the
points (aj, b)), where a, 3 are the parameters such that

a2+ﬂ2:1.

It is interesting to observe that on the plane of the parameters («, 3), the dynamic
systems which correspond to the points (+1,0), (0, £1) are the systems which are
diametrically opposed to the structural stability.

So, for « =1, B = 0 the system (see for instance the formula (4.5))

{ & =][(z —a;)
g =TIy —b)
is structurally stable. The singular trajectories are:

i) stable saddles and nodal points,
ii) separatrices of the saddle points which go towards the nodal points.

For a =0, [ =1, we have the following Hamiltonian system

i=—0,H
(7.3)
§=0,H

where H :

:/ H(y—bj)derH(x—aj)dx . (7.4)

Jj=1

It is well-known [2] that system (7.3) is structurally unstable to an infinite degree.
The following assertion can be made [5]:

Proposition 7.1

Let C(n) be the number of centers in (7.3).
The following equalities hold

n2
— if n is even,
Cn) =1 2

7.5
n®+1 (7.5)

if n is odd.

Proof. By translating the origin to point (ay, b, ), we obtain the following expression
for the Hamiltonian H:

He(z,y) = [ (bm +H +V( y)

i#m L
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where V* is a polynomial in z and y of degree n
n
Ve (z,y) =Y vj(z,y)
j=3

v; are the homogeneous forms of degree j.
By considering that Hy,, is an analytical integral positive definite iff

I ®m—0) - [Jac—a;) >0, j=Tn

j#m J#l

from here we can easily deduce the veracity of (7.5). O

For n = 2, n = 3 the coordinates of the centers are:
(a1,b1), (az,b2) sin=2

(a1,b1), (a1,b3), (az,b2), (a3, b1), (as,b3) sin=3.

By considering the properties of the structurally stable and unstable dynamic sys-
tems on the plane [2] we can affirm that the analytical vector field with a maximum
number of centers must be structurally unstable to an infinite degree. Hence we can
say that the maximum number of the centers for a polynomial vector field of degree
n is (7.5).

Let us give the dynamic system é-close to the system (7.3) [2]:

:t:—H(y—bj)+,u< Z ak;j azkyj) = Z Ay xFyd

k4j=0 k+j=0

y—H(x—amu( > bk mkyj> = > By,

k+35=0 k-+5=0

(7.6)

where p is the small parameter.

From the above results we deduce that system (7.14) can be constructed if we
know (n + 1) trajectories which satisfy (2.2) or 1/2(n + 1)(n + 2) solutions which
satisfies (6.3).

We denote by B°(n) and H°(n) the maximum number of limit cycles which can
be generated by perturbations of one of the centers (7.3) and the maximum number
of limit cycles which the system (7.6) can have, respectively.

Conjecture 3.

B°(n) < —(n+1)(n+2)

1
2
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Conjecture 4.
2

n—(n +1) if nis even
HO(’I’L) § 22
n®+1 e
(n+1) ifnis odd.
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