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Abstract

It is proved that no convex and Fréchet differentiable function on c0(ω1),whose
derivative is locally uniformly continuous, attains its minimum at a unique point.

It is well-known that c0(ω1) admits an equivalent norm that is simultaneously LUR
and Fréchet differentiable. In fact, norms sharing these properties form a residual
set in the space of all equivalent norms on c0(ω1). There are also constructions of
equivalent LUR norms on c0(ω1) that can be approximated by C∞-smooth norms.

On the other hand, spaces that admit an equivalent LUR and C2 Fréchet dif-
ferentiable norm are automatically superreflexive. For these results and further
information on these matters we refer the reader to [1].

It is therefore a natural question (posed e.g. in [1]) whether there exists an
equivalent rotund norm on c0(ω1) having properties of some higher order of smooth-
ness. We answer this question in the negative, by showing that there is no equiv-
alent rotund and Fréchet differentiable norm on c0(ω1) whose derivative is locally
uniformly continuous.

We denote the canonical norms on c0(ω1) and l1(ω1) respectively by ‖ · ‖∞ and
‖ · ‖1. By eλ and fλ respectively we mean the λ-th unit vector in the canonical basis
of c0(ω1) and l1(ω1). For x ∈ c0(ω1) or l1(ω1) we denote by supp(x) the support of x,
that is for x =

∑∞
n=1 xneλn , supp(x) = {λn}n∈N. Using the natural well-ordering of

ω1 we introduce the supremum sup and infimum inf of subsets of ω1. For x ∈ c0(ω1)
or l1(ω1) we denote by x̄ = sup supp(x) + 1. For x1, . . . , xN in c0(ω1) satisfying:

x̄1 < inf supp(x2), . . . , x̄N−1 < inf supp(xN )
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we introduce a new vector y = (x1, . . . , xN ) in c0(ω1) as the vector satisfying yλ =
(xi)λ for λ ∈ supp(xi) and yλ = 0 otherwise.

Whenever we write (x1, . . . xN ) we automatically assume that x1, . . . , xN satisfy
the above conditions.

A Fréchet differentiable real function f on c0(ω1) is said to have locally uni-
formly continuous derivative if every x ∈ c0(ω1) has a neighborhood where the
Fréchet derivative f ′ is uniformly continuous.

Theorem

There is no convex and Fréchet differentiable function on c0(ω1) whose deriva-

tive is locally uniformly continuous and such that the function attains its minimum

at a unique point.

Proof. We will proceed by contradiction. Let us suppose that f is convex, Fréchet
differentiable function on c0(ω1) whose derivative is locally uniformly continuous
and such that f ≥ 0 and f(x) = 0 if and only if x = 0.

For arbitrary 1 > ε > 0 we will find δ > 0 such that for arbitrary τ > 0 there
exist x1, x2 ∈ c0(ω1) satisfying:

‖x1‖∞ < ε, ‖x1 − x2‖∞ < τ and ‖f ′(x1) − f ′(x2)‖1 >
δ

4
.

That is a contradiction that implies the statement of Theorem.

Step 1. The construction of an increasing transfinite sequence S = {sλ}λ∈ω1 ⊂ ω1

such that:

(1) f
(
(y1, y2)

)
≥ f(y1)

for arbitrary y1, y2 satisfying supp(y1) ⊂ S and supp(y2) ⊂ S
(
and of course ȳ1 < inf

supp(y2)
)
.

We proceed by transfinite induction. Put s1 = 1. Inductive step: Suppose we
have constructed {sλ}λ<λ0 where λ0 < ω1. Then sλ0 is chosen to satisfy: sλ0 > f ′(y)
for arbitrary y that is finitely supported by {esλ}λ<λ0 with rational coordinates.

The existence of such S = {sλ}λ∈ω1 is clear. The validity of the desired inequa-
lity (1) is a result of the continuity of f ′. Indeed, we have: sλ0 > f ′(y) for arbitrary
y ∈ c0(ω1) where y1 supported by {esλ}λ>λ0 . Consequently, f

(
(y1, y2)

)
− f(y1) ≥

f ′(y1)(y2) = 0 for y2 supported by S.

From now on, all the vectors we are going to deal with are automatically as-
sumed to be supported by S, so the inequality (1) holds true.
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Step 2. The construction of functions mA(α),mO
A(α) .

We define for A > 0, α ∈ ω1:

mA = sup
y
f(y)

where α < inf supp(y), y is finitely supported and all for its nonzero coordinates are
equivalent to A. The function mA(α) is nonincreasing in α. It is well-known, that
every nonincreasing real valued function on ω1 is eventually constant. Therefore
there exists αA ∈ ω1 such that mA(αA) = mA(β) for β > αA.

Now suppose O = {oλ}λ∈ω1 is a transfinite sequence of nonempty finite subsets
of S such that sup(oλ) < inf(oπ) for λ < π. We define a function:

mO
A(α) = sup

y
f(y)

where α < inf supp(y), y is finitely supported, all of its nonzero coordinates are
equivalent to A and supp(y) ∩ oλ �= 0 implies oλ ⊂ supp(y). Again, there exists an
αO,A ∈ ω1 such that mO

A(αO,A) = mO
A(β) for β > αO,A.

Step 3. Fix a, 0 < a < ε. Due to the uniqueness of the minimal point of f, we
have ma(αa) > 0. Choose a transfinite sequence O = {oλ}λ∈ω1 of finite subsets of
ω1 and {vλ}λ∈ω1 for vectors in c0(ω1) such that supp(vλ) = oλ, all of the nonzero
coordinates of vλ are equivalent to a, and

αa < inf(o1) ,

sup(oλ) < inf(oπ) for λ < π ,

and f(vλ) ≥
ma(αa)

2
for λ ∈ ω1 .

Due to the inequality (1), we also have:

f
(
(vλ1 , . . . , vλn)

)
≥ ma(αa)

2
for λ1, . . . λn ∈ ω1 .

Due to the convexity of f we have:

f ′((vλ1 , . . . , vλn)
)(

(vλ1 , . . . , vλn)
)
≥ f

(
(vλ1 , . . . , vλn)

)
≥ ma(αa)

2
.

Therefore: ∑
i∈

⋃n

i=1
oλi

(
f ′((vλ1 , . . . , vλn)

))
i
≥ ma(αa)

2a
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for arbitrary choice of λ1, . . . , λn. We put δ = ma(αa)
2a . Choose b, a < b < a(1+τ) < 1,

and ρ, ρ < (b−a)δ
8 . According to Step 2, there exists αO,b ∈ ω1 such that mO

b (β) =
mO
b (αO,b) for β > αO,b. Again, there exist a transfinite sequence P = {pψ}ψ∈ω1

of finite nonempty subsets of ω1 and a transfinite sequence of vectors {uψ}ψ∈ω1 in
c0(ω1) such that: supp(uψ) = pψ, all nonzero coordinates of uψ are equivalent to b,

αO,b < inf(p1) ,

sup(pλ) < inf(pπ) for λ < π ,

f(uψ) ≥ mO
b (αO,b) − aρ ,

and each pψ is a union of finitely elements of O.
Consider the vector uω0 , where ω0 is the first infinite ordinal There exists a

finite ordinal n such that: ∑
i∈pn

∣∣(f ′(uω0)
)
i

∣∣ < ρ .

Thus
f
((a

b
un, uω0

))
≥ f(uω0) + f ′(uω0)

(a
b
un

)
≥ f(uω0) − aρ .

Also,
f
((
un,

a

b
uω0

))
≥ f(un) ≥ f(uω0) − aρ .

Put y =
(
a
bun,

a
buω0

)
. Then

∑
i∈pn∪pω0

(
f ′(y)

)
i
≥ δ. Thus either

∑
i∈pn

(
f ′(y)

)
i
≥

δ
2 or

∑
i∈pω0

(
f ′(y)

)
i
≥ δ

2 . Since the rest of the proof is the same in either of the
cases, let us suppose the former case is true.

Thus g = f ′((ab un, uω0)
)
. We have

f
((a

b
un, uω0

))
≥ f(uω0) − aρ

≥ mO
b (αO,b) − 2ρ ≥

((a
b
un, uω0

))
+ g

(b− a

b
un

)
− 2ρ

= f
((a

b
un, uω0

))
+ (b = a)

∑
i∈pn

gi − 2ρ .

Thus
∑
i∈pn gi ≤

2ρ
b−a <

δ
4 . Altogether:

‖f ′(y) − g‖1 ≥
∑
i∈pn

|(f ′(y) − g)i| ≥
∑
i∈pn

(
f ′(y)

)
i
−

∑
i∈pn

gi >
δ

4
.
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But ∥∥∥(a
b
un, uω0

)
−

(a
b
un,

a

b
uω0

)∥∥∥
∞

= (b− a) <
(
b− a

a

)
< τ .

Putting x1 =
(
a
b un,

a
b uω0

)
, x2 =

(
a
b un, uω0

)
finishes the proof. �

Corollary

There is no equivalent rotund and Fréchet differentiable norm on c0(ω1) whose

derivative is locally uniformly continuous.
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