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Abstract

We give a criterion of smoothness of Orlicz sequence spaces with Orlicz norm.

Let x �= 0 be an element of a Banach space X,x is called a smooth point if it has
the unique supporting functional f ∈ X∗, ‖f‖ = 1 and f(x) = ‖x‖ . X is smooth if
and only if all elements (�= 0) are smooth.

For Orlicz function spaces equipped with Orlicz norm and Luxemburg norm,
and for Orlicz sequence spaces with Luxemburg norm, the criteria of smoothness
were obtained by T. Wang, S. Chen, R. Grzas*lewicz, H. Hudzik and others in [1-4]
and [6-9]. But up to now no satisfied result has been seen for Orlicz sequence spaces
equipped with Orlicz norm. Here we shall fill it.

In the sequel, M and N denote a pair of complemented N -functions, p and q

their right-hand derivatives, respectively. M ∈ δ2 stands for that M satisfies δ2-con-
dition for small u.N is strictly convex if u �= v implies

N
(u + v

2
)

<
N(u) + N(v)

2
.

For a sequence x = (xj) we define a modular of x by RM (x) =
∑∞

j=1 M(xj). By an
Orlicz sequence space lM , generated by M, we understand

lM =
{
x = (xj) : RM (cx) < ∞ for some c > 0

}
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and its subspace

hM =
{
x = (xj) : RM (cx) < ∞ for all c > 0} .

Both these spaces are equipped with Orlicz norm

‖x‖ = sup
RN (y)≤1

∞∑
j=1

xjyj =
1
k


1 +

∞∑
j=1

M(kxj)


 for k ∈ K(x) = [k∗, k∗∗] .

where k∗ = inf
{
k > 0 : RN (p(kx)) ≥ 1

}
, k∗∗ = sup

{
k > 0 : RN (p(kx)) ≤

}
[1-5].

In the proof, we mainly use Theorem 2.55 of [5], as follows:

Lemma

Let 0 �= x ∈ lM , x is a smooth point if and only if for any k ∈ K(x), either A)

RN (p−(kx)) = 1 or B-1) θ(kx) < 1 , and B-2) either RN (p(kx)) = 1 or µJx ≤ 1,
where

Jx =
{
j : p−

(
k|x(j)|

)
< p

(
k|x(j)|

)}
, θ(x) = inf

{
c > 0 : RM

(x

c

)
< ∞

}
.

We denote πM = inf
{
c > 0 : N(p(c)) ≥ 1

2

}
. The main results are as follows:

Theorem 1

The following are equivalent:

(1) hM is smooth;

(2) p(u) is continuous over [0, πM ), and N(p−(πM )) = 1
2 ;

(3) q(v) is strictly increasing on [0, N−1( 1
2 )) (i.e, N(v) is strictly convex on

[0, N−1( 1
2 )]).

Proof. (1) ⇒ (2).
Suppose that p(u) has a discontinuous point in (0, πM ), i.e, there is 0 < α <

πM , p−(α) < p(α). For ε > 0 small enough we have

2N
(
p−(α)

)
+ (1 + ε)

(
1 − 2N(p(α))

)
< 1 .

Denote
β = inf

{
b > 0 : N

(
p(b)

)
≥ (1 + ε)

(
1 − 2N(p(α))

)
} .

set
x = (α, α, β, 0, 0, . . . . . .) .
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By the right-continuity of p(u) and N
(
p(α)

)
< 1

2 , it follows that RN

(
p−(x)

)
=

2N
(
p−(α)

)
+ N

(
p−(β)

)
≤ 2N

(
p−(α)

)
+ (1 + ε)

(
1 − 2N(p(α))

)
< 1 , RN

(
p(x)

)
=

2N
(
p(α)

)
+ N

(
p(β)

)
≥ 2N

(
p(α)

)
+ (1 + ε)

(
1− 2N(p(α))

)
> 1 , whence we get that

K(x) = {1}. Since µJx ≥ 2 , by the Lemma, x is not a smooth point.
Suppose now that N

(
p−(πM )

)
< 1

2 ≤ N
(
p(πM )

)
. Take 0 < s < πM with

2N
(
p−(πM )

)
+ N

(
p(s)

)
< 1

and set x = (πM , πM , s, 0, 0, . . . . . .). Then RN

(
p−(x)

)
=2N

(
p−(πM )

)
+N

(
p−(s)

)
<

1, and
RN

(
p(x)

)
= 2N

(
p(πM )

)
+ N

(
p(s)

)
≥ 1 + N

(
p(s)

)
> 1 .

Hence K(x) = {1}. Since µJx ≥ 2 , by the Lemma, x is not a smooth point.
(2) ⇒ (3).
For 0 ≤ v1 < v2 < N−1

(
1
2

)
, take v′1, v

′
2, v1 < v′1 < v′2 < v2. Since p(u) is

continuous over [0, πM ) and N
(
p−(πM )

)
= 1

2 , i.e, p−(πM ) = N−1
(

1
2

)
, there exist

u′
1 < u′

2 satisfying p(u′
1) = v′1, p(u′

2) = v′2 .

Hence
q(v1) = sup

p(u)≤v1

u ≤ u′
1 < u′

2 ≤ sup
p(u)≤v2

u = q(v2)

i.e, q(v) is strictly increasing over
[
0, N−1( 1

2 )
)
.

(3) ⇒ (1).
Let x ∈ hM , k ∈ K(x). If RN

(
p−(kx)

)
= 1, by the Lemma, x is a smooth point.

If RN

(
p−(kx)

)
< 1, we see from

1 > RN

(
p−(kx)

)
=

∞∑
j=1

N
(
p−(kx(j))

)

that there is at most one ′j′ with N
(
p−(kx(j))

)
≥ 1

2

(
i.e, p−(k|x(j)|) ≥ N−1( 1

2 )
)
.

Since q(v) is strictly increasing over
[
0, N−1( 1

2 )
)
, we know that k|x(i)| is a

continuous point of p(u) for all i with p−
(
kx(i)

)
< N−1

(
1
2 ), thus p−

(
k|x(i)|

)
=

p
(
k|x(i)|

)
. Hence µJx ≤ 1. Clearly θ(kx) = 0 < 1, by the Lemma, x is a smooth

point. �

Theorem 2

The following are equivalent:

(1) lM is smooth;

(2) p(u) is continuous over [0, πM ), N
(
p−(πM )

)
= 1

2 and M ∈ δ2;
(3) q(v) is strictly increasing over

[
0, N−1( 1

2 )
)

and M ∈ δ2.
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Proof. It is enough to derive M ∈ δ2 from (1). Suppose that M �∈ δ2. Then there
exist un ↘ 0 such that

unp(un) <
1
2n

and p
((

1 +
1
n

)
un

)
> 2np(un) (n = 1, 2, . . .) .

Choose natural numbers mn satisfying 1
2n+1 ≤ mnunp(un) < 1

2n (n = 1, 2, . . .), and
define

x =
( m1︷︸︸︷

u1, . . . u1 ,

m2︷︸︸︷
u2, . . . u2 ,

m3︷︸︸︷
u3, . . . u3 , . . . . . .

)
.

Then, we have

〈x, p(x)〉 =
∞∑

n=1

mnunp(un) <
∞∑

n=1

1
2n

= 1 ,

whence by 〈x, p(x)〉 = RM (x) + RN (p(x)) we get RN (p(x)) < 1 and RM (x) < 1 .

Moreover RN (p−(x)) < 1 .

Notice that for any λ > 0,

RN

(
p((1 + λ)x)

)
+ RM (x) ≥ 〈x, p

(
(1 + λ)x

)
〉 =

∞∑
n=1

mnunp
(
(1 + λ)un

)

≥
∑
n≥ 1

λ

mnunp
((

1 +
1
n

)
un

)
≥

∑
n≥ 1

λ

mnun2np(un) ≥
∑
n≥ 1

λ

1
2

= ∞ ,

so we derive that RN

(
p((1 + λ)x)

)
= ∞ , which shows K(x) = {1} .

We also have that for any λ > 0 ,

RM

(
(1 + 2λ)x

)
=

∞∑
n=1

mnM
(
(1 + 2λ)un

)
≥

∞∑
n=1

mn

∫ (1+2λ)un

(1+λ)un

p(s) ds

≥
∞∑

n=1

mnλunp
(
(1 + λ)un

)
≥ λ

1 + λ
RN

(
p(1 + λ)x

)
= ∞ .

So θ(x) = 1 and by the Lemma, x is not a smooth point. �
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