
Collect. Math. 47, 1 (1996), 91–104

c© 1996 Universitat de Barcelona

Nilpotent elements and solvable actions (∗)

Mihai Sabac

Department of Mathematics, University of Bucharest

Str. Academiei 14, Bucharest, Romania

Received October 25, 1995

To Pablo Casals and George Enescu

Abstract

In what follows we shall describe, in terms of some commutation properties,
a method which gives nilpotent elements. Using this method we shall des-
cribe, as in [9] the irreducibility for Lie algebras which have Levi-Malçev de-
composition property.

In 1935 N. Jacobson gave in [5] “a development by rational methods of that part
of the theory of Lie algebras which centers around the Lie-Engel theorems”. The
proofs are based on nilpotent property for some elements and subalgebras of the
enveloping of a Lie algebra.

We have proved in [7], [2], [8] an infinite-dimensional analogue of Lie Theorem
concerning irreducible finite dimensional representations of solvable Lie algebra. The
proofs of this results are based as in [5] on a method which gives nilpotent elements.

In the same time D. L. Gurarii and Ju. I. Lubich have proved in [4] a theorem
analogous to Lie’s weight theorem. Using this result and the ideas of [7], [2], [8] D. L.
Gurarii and M. Sabac in [3], [9] gives some characterizations of irreducible represen-
tations on a Banach space for Lie algebras which have Levi-Malçev decomposition
property (see [9] Definition 2).

(∗) This research was partially supported by Dept. of Mathematics “Guido Castelnuovo” of Univer-
sity of Roma “La Sapienza” according to the agreement between the University of Roma and Bucharest
University.
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In what follows we shall describe, in terms of some commutation properties, a
method which gives nilpotent elements. Using this method we shall describe, as in [9]
the irreducibility for Lie algebras which have Levi-Malçev decomposition property.

The paper has two parts. The first part contains algebraic results (concerning
Lie subalgebras of an associative algebra). In the second part we give analogous
results for Lie subalgebra of a normed associative algebra respectively for Lie algebra
of operators on some complex Banach space.

1. Nilpotency and solvability for Lie subalgebras of an associative algebra

In the following A will be an associative algebra over complex field C (or a field of
characteristic 0).

We denote in a standard way,

ad a(b) = [a, b] = ab− ba, for a, b ∈ A

Definition 1. For a, b ∈ A we say that b polynomially commutes with a if there
exist a nonconstant polynomial P ∈ C[X] so that P (b) commute with a i.e.

[
P (b), a

]
= 0.

Definition 2. For b ∈ M ⊂ A we say that b is polynomial central in M, if b
polynomially commutes with a for every a ∈ M.

Remark. If q ∈ A is nilpotent, then q is polynomial central in A.

Lemma 1

Let x, q, a ∈ A so that [x, q] = a. If [q, a] = 0 and q polynomially commutes

with x, then a is nilpotent.

Proof. We have by induction [x, qn] = nqn−1a, n ∈ N because [q, a] = 0. Hence we
can write

(1) [x, P (q)] = P ′(q)a, for P ∈ C[X]

where P ′ denotes the derivative of P.
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But q polynomially commutes with x. Then, there exists P ∈ C[X], [x, P (q)] =
0 and by (1) we have,

(2) P ′(q)a = 0.

If P1 ∈ C[X], k ≥ 1 and P1(q)ak = 0, we can write

[
x, P1(q)ak

]
= [x, P1(q)]ak + P1(q)[x, ak]

0 = P ′
1(q)a

k+1 + P1(q)xak .

We multiply at left the last relation by ak and we have:

P1(q)ak = 0 ⇒ P ′
1(q)a

2k+1 = 0

because [a, q] = 0. Hence by (2) we deduce,

P ′(q)a = 0 ⇒ P ′′(q)a2+1 = 0 . . .⇒ n!a

∑n−1

i=0
2i

= 0

where n is the degree of P . Lemma 1 is proved. �

Remark. If A has finite dimension or q is nilpotent, then q polynomially commutes
with x for every x ∈ A. In this case the hypothesis of Lemma 1 is more simple and
in this form Lemma can be found in [5] and [8].

Theorem 1

Let L ⊂ A be a Lie subalgebra of A, ZL the center of L. If I is a Lie ideal of

L,dim I < +∞ and ad x|I is nilpotent for any x ∈ L, then one of the following

assertions is true:

(i) [q, I] = 0 for every polynomial central q in L.

(ii) There exists q �= 0, q nilpotent, q ∈ I ∩ ZL.

Proof. Using the Engel’s Theorem we can find {0} = I0 ⊂ I1 ⊂ . . . ⊂ Ik ⊂ . . . ⊂
In = I, Ik Lie ideal of L,dim Ik = k, ad x(Ik) ⊂ Ik−1 for every k = 1, . . . n and
x ∈ L.
Obviously, ad x(I1) = {0} for every x ∈ L and we have,

(i) [q, I1] = 0 for every polynomial central q in L
or

(ii) there exists q �= 0, q nilpotent, q ∈ I1 ∩ ZL.
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Now, we suppose that (i) or (ii) holds for Ik i.e.
(i) [q, Ik] = 0 for every polynomial central q in L

or
(ii) there exists q �= 0, q nilpotent, q ∈ Ik ∩ ZL.

Obviously, if (ii) holds for Ik, then (ii) holds for I. It remains to study the case
when (i) holds for Ik. In this case let ak+1 be so that Ik+1 = Ik + C ak+1.

We can write
[q, ak+1] = qk ∈ Ik for every q ∈ L

because [q, Ik+1] ⊂ Ik. If q is a polynomial central in L, then [q, qk] = 0 because Ik
verifies (i).

Obviously, we have
(1) [q, ak+1] = 0 for every polynomial central q in L

or
(2) there exists polynomial central q in L so that [q, ak+1] = qk �= 0 .

If we have (1), then (i) holds for Ik+1, because Ik+1 = Ik +C ak+1 and Ik verifies (i).
If we have (2), there exists polynomial central q in L.

0 �= [q, ak+1] = qk ∈ Ik, [q, qk] = 0

and by Lemma 1 we deduce qk nilpotent.
Hence, in the case (2) there exists qk ∈ Ik, qk �= 0, qk nilpotent. For any x ∈ L

we have [x, qk] = qk−1 ∈ Ik−1 and one of the following is true:
α) [x, qk] = 0 for every x ∈ L i.e. (ii) is true for Ik hence for I
β) there exists x ∈ L, [x, qk] = qk−1 �= 0, qk nilpotent.
Ik verifies (i), hence Ik−1 verifies (i) because Ik−1 ⊂ Ik.

We have [qk, qk−1] = 0, because qk is nilpotent (hence polynomial central in L).
From β) and by Lemma 1 we deduce qk−1 nilpotent, 0 �= qk−1 ∈ Ik−1 and we can
repeat the proof with α) and β) for qk−1 etc.

Clearly we obtain that (ii) holds for some Ij , 1 ≤ j ≤ k. Hence, in the case (2),
(ii) holds for I. �

Corollary

Let L ⊂ A be a quasinilpotent Lie subalgebra of A (i.e. L =
∑
Iα, Iα Lie

finite dimensional nilpotent ideals of L, see [8]). If ZL (the center of L) contains no

nilpotent elements, then every polynomial central element in L is central in L.
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We can prove an analogue of Theorem 1 if the adjoint representation of L
restricted to the ideal I of L is solvable. For this purpose, firstly we shall observe
another nilpotent property in A.

Lemma 2

Let x, a ∈ A so that [x, a] = λa, λ �= 0, λ ∈ C.

If the set of all eigenvalues of ad x|span
{
an|n ∈ N

}
is bounded, then a is

nilpotent.

Proof. We observe that λ �= 0 and

[x, an] = nλ an n = 1, 2 . . . �

Definition 2. We say that L ⊂ A has the property (m) if for every x, a ∈ L
with ad x

(
span {an|n ∈ N}

)
⊂ span {an|n ∈ N}, the set of all eigenvalues of

ad x|span {an|n ∈ N} is bounded.

Remark. A has the property (m), particularly every L ⊂ A has the property (m)
in the following cases:

1. dimA <∞
2. A = B(X) the algebra of all bounded linear operators on some Banach space.

Corollary

Let L ⊂ A be a Lie subalgebra of A and L has the property (m). The following

implication is true:

x, a ∈ L , [x, a] = λa , λ �= 0 ⇒ a nilpotent.

Theorem 2

Let L ⊂ A be a Lie subalgebra with property (m). If I1 ⊂ I2 ⊂ . . . ⊂ In ⊂
In+1 ⊂ . . . ⊂ L is an increasing sequence of Lie ideals in L and dim In = n for every

n = 1, 2 . . . then one of the following assertions holds for every n:

(i) [q, In] = 0 for every polynomial central q in L.
(ii) There exists q �= 0, q nilpotent, q ∈ In ∩ ZL.

(iii) There exists an N , 0 �= N ⊂ [L, In], a commutative ideal of L so that every

a ∈ N is nilpotent.
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Proof. Let us consider the following assertion:
(γ) ad x|In is nilpotent for every x ∈ L.
If one of (γ), (ii), (iii) is true for In, we have by Theorem 1 for In one of (i),

(ii), (iii). We shall prove by induction that for every n, one of (γ), (ii), (iii) holds
for In.

We have I1 = Ca1, a1 ∈ L [x, a1] = λ(x)a1, λ(x) ∈ C.

If λ(x) = 0 for every x ∈ L, then (γ) holds for I1.
If λ(x) �= 0 for some x ∈ L, then by Corollary Lemma 2, N = I1 verifies (iii).
Now let us suppose that one of (γ), (ii), (iii) holds for In. It will be proved the

same for In+1. Obviously (ii) or (iii) for In implies (ii) or (iii) for In+1. Hence it
remains to be study the case when (γ) holds for In, (ii) and (iii) are not true for any
k ≤ n.

Let an+1 ∈ L be so that In+1 = In + C an+1. For any x ∈ L we can write

[x, an+1] = bn + λn+1(x)an+1, bn ∈ In, λn+1(x) ∈ C .

From (γ) we have (ad x)m|In = 0 and

(adx)m+1(an+1) = λn+1(x)(adx)m(an+1) .

If for every x ∈ L, we have λn+1(x) = 0 or (ad x)m(an+1) ∈ In then (γ) holds for
In+1. The following case remains to be studied:

there exists x0 ∈ L, 0 �= adx0

[(
adx0

)m(
an+1

)]
= λn+1(x0)(adx0)m(an+1) �∈ In .

Hence a′n+1 = (adx0)m(an+1) �= 0 is nilpotent in virtue of Corollary Lemma 2 and
a′n+1 �∈ In. But (iii) is not true for In and ad x|In is nilpotent for every x ∈ L; by
Theorem 1 we have

q polynomially central in L ⇒ q commutes with In.
Particularly,

(*) q ∈ L, q nilpotent ⇒ q commutes with In.
Hence a′n+1 commutes with In and a′n+1 commutes with In+1, because a′n+1 �∈
In, a

′
n+1 ∈ In+1 implies In+1 = In + C a′n+1. We can write,
q ∈ In+1, q nilpotent ⇒ q commutes with a′n+1.

By (*) we deduce,
q ∈ In+1, q nilpotent ⇒ q commutes with In+1.

Hence,
0 �= a′n+1 ∈ N =

{
q|q ∈ [L, In+1], q nilpotent

}
⊂ ZIn+1 .
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If n ∈ N , x ∈ L we have [x, n] = n′ ∈ In+1 and [n, n′] = 0. By Lemma 1 n′ is
nilpotent. We deduce that N is a commutative Lie ideal of L because [L, In+1]
is a Lie ideal of L. Hence N is a commutative Lie ideal of L, 0 �= N ⊂ [L, In+1],
consisting of nilpotent elements and (iii) holds for In+1. �

A nil-ideal is an ideal consisting of nilpotent elements. We remember also
(see [9]) that R is quasisolvable Lie algebra, if R =

∑
α∈Λ Iα, Iα finite dimensional

solvable Lie ideals of R. We have the following corollary.

Corollary

Let R ⊂ A be a Lie subalgebra with property (m) and quasisolvable. If R
contains no non-zero Lie nil-ideal then every polynomial central element in R is

central.

We can prove as in [9] an analogue of this result for Lie subalgebra U ⊂ A with
property (m) and LM-decomposable.

We remember (see [9]) that a LM-decomposable Lie algebra is a Lie algebra
U = R+ J , R =

∑
α∈Λ Iα, Iα finite dimensional ideals of U and J is a Lie algebra

so that every ideal of J is primitive. An ideal P of J is primitive if P contains any
ideal I of J with [I, I] ⊂ P.

Every finite dimensional Lie algebra is LM-decomposable (Levi-Malçev Theo-
rem). Every ideally-finite Lie algebra ([11]) is LM-decomposable ([9]).

Now let us consider U ⊂ A a Lie subalgebra of A with property (m) and LM-
decomposable; U = R + J , R =

∑
α∈Λ Iα as before. We denote

Uα = ad U |Iα =
{
adx|Iα; x ∈ U

}
, Rα = adR|Iα .

Because dim Uα < ∞,dimRα < ∞ and Rα is a solvable ideal of Uα, it is
well-known (see [6], Corollary 2 Theorem 8 sect. 5 Chap II) that the nil-radical of
the associative algebra generated by Uα contains [Uα,Rα]. Then [Iα,U ] is finite
dimensional nilpotent ideal of U . We have,

Bα = [Iα,U ] ⊂ Iα

and the representation of J g �−→ ad g|Bα is semisimple, because every ideal of J
is primitive.

By Weyl’s Theorem Bα splits into the direct sum

Bα = B0
α + B1

α
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B0
α,B1

α vector spaces which are invariant to ad J |B0
α and ∩

g∈J ker(ad g|B1
α) = {0}.

If Zα is the center of Bα, by Theorem 1 we deduce that one of the following
assertions holds:

1. q ∈ Zα for every polynomial central q ∈ Bα.

2. There exists q nilpotent, 0 �= q ∈ Zα.
We discuss the following cases: B1

α �= {0}, B1
α = {0}.

If B1
α �= {0}, by Corollary Lemma 2 we deduce that B1

α contains nonzero nilpo-
tent because U has property (m). In this case 1 or 2 proves that there exist nonzero
nilpotent elements in Zα the center of Bα. Then

Nα =
{
q ∈ Zα|q nilpotent

}
�= 0

is an ideal in U . This is an easy consequence of Lemma 1, because Zα is an ideal
in U .

Therefore B1
α �= {0} implies the following assertion:

(N) there exists a finite dimensional commutative nonzero Lie ideal of U consisting
of nilpotent elements.
If B1

α = {0}, we have Bα = B0
α and

[
J , [U , Iα]

]
= 0 .

Since R is quasisolvable and U has the property (m), by the proof of Theorem 2
one of the following assertions is true for Iα:

a) ad x|Iα is nilpotent for every x ∈ R
b) there exists N a commutative nil-ideal of R, 0 �= N ⊂ [R, Iα]
c) there exists q �= 0, q nilpotent, q ∈ ZR ∩ Iα.

By Theorem 1 we deduce in the case (a) one of the following assertions:
(a1) [q, Iα] = 0 for every polynomial central q in R.
(a2) there exists q �= 0, q nilpotent, q ∈ ZR ∩ Iα.

Therefore, if B1
α = {0} one of (a1), (b), (c) is true. Obviously (b) ⇒ (N),

because B1
α = {0} shows that N is an ideal of U .

Also we have (c)⇒ (N), because

0 �= {q|q nilpotent, q ∈ ZIα}

is a finite dimensional Lie ideal in U , in virtue of Lemma 1.
Hence there exists two possibilities:

A) (N) is true.
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B)
[
J , [U , Iα]

]
= 0, ad x|Iα nilpotent for every x ∈ R, R verifies (a1) for every

α ∈ Λ.
In the case B) we can eliminate the situation when R contains nilpotent elements.
Indeed, by (a1) for any α ∈ Λ we can find I =

∑p
k=1 Iαk

a finite-dimensional ideal
of U so that ZR ∩ I contains non zero nilpotent elements and by Lemma 1,

0 �= {q|q nilpotent, q ∈ ZI} = N

verifies (N).
If R contains no non zero nilpotent elements, we obtain [J , Iα] = 0 for any

α ∈ Λ. Indeed, we can write by virtue of the semisimplicity of the representation
ad J |Iα, Iα = I0α + I1α ad J |I0α = 0 and ∩g∈J ker (ad g|I1α) = 0. By Lemma 1 we
deduce I1α = 0 so [J , Iα] = 0.

We have proved the following theorem:

Theorem 3

Let U ⊂ A be a LM-decomposable Lie subalgebra which has the property (m).
If U = R + J is the decomposition of U , then one of the following statements is

true:

(I) there exists N a finite dimensional commutative non zero ideal of U , consisting

of nilpotent elements.

(II) [J ,R] = 0, R is a quasi nilpotent Lie algebra, R contains no non zero nilpotent

elements and every polynomial central element in R is central in R.

Corollary

Let U ⊂ A be a finite dimensional Lie subalgebra and U = R + J its Levi-

Malçev decomposition. If U contains no non zero commutative nil-ideals, then

[J ,R] = 0, R is a nilpotent Lie algebra, R contains no non zero nilpotent elements

and every polynomial central element in R is central in R.

2. Nilpotent and solvable Lie algebra of bounded operators
on a complex Banach space

In that which follows X will be a complex Banach space, B(X ) the algebra of all
linear bounded operators on X with standard structure of Lie algebra given by

ad A(B) = [A,B] = AB −BA for A,B ∈ B(X ).
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For T ∈ B(X ), σ(T ) will be the spectrum of T, f(T ) denotes the value of
analytic functional calculus of T for f ∈ O

(
σ(T )

)
. For every spectral set σ of T

we denote E(σ) the spectral projection of T associated to σ by analytic functional
calculus of T .

Firstly we prove a useful formula for ad x, x ∈ B(X ).

Lemma

Let X,Q, A ∈ B(X ). If [X,Q] = A and [Q,A] = 0, then [X, f(Q)] = f ′(Q)A
for every f ∈ O

(
σ(Q)

)
, where f ′ is the derivative of f .

Proof. Let be f ∈ O
(
σ(Q)

)
belong to analytic functional calculus of Q and γ an

admissible curve for f such that

f(Q) =
1

2πi

∫
γ

f(λ)R(λ,Q)dλ, R(λ,Q) = (λI −Q)−1.

Obviously we have

[X, f(Q)] =
1

2πi

∫
γ

f(λ)[X,R(λ,Q)]dλ

[X,R(λ,Q)] = −R(λ,Q)[X,λI −Q] R(λ,Q) = R (λ,Q) [X,Q]R(λ,Q).

But Q commutes with A, hence we have

[X,R(λ,Q)] = [R(λ,Q)]2A

and

[X, f(Q)] =
1

2πi

[ ∫
γ

f(λ)[R(λ,Q)]2dλ
]
A =

1
2πi

∫
γ

f ′(λ)R(λ,Q)dλA = f ′(Q)A

because d
dλR(λ,A) = −[R(λ,A)]2. �

We can prove an analogue of Lemma 1 §1.

Lemma 1

Let X,Q,A ∈ B(X ) be so that [X,Q] = A, [Q,A] = 0. If there exists an open

set V ⊃ σ(Q) and f ∈ O (V ) so that [X, f(Q)] = 0, then we have:

A|E(σ)X is nilpotent for every spectral set σ in σ(Q), σ ⊂ W , where W is a

connected component of V so that f |W is nonconstant.



Nilpotent elements and solvable actions 101

Proof. Let σ be a spectral set for Q. By the preceding Lemma we have,

[X,E(σ)] = e′σ(Q)A = 0

where eσ ∈ O
(
σ(Q)

)
so that E(σ) = eσ(Q).

It is well known that E(σ) commutes with A and with every value ϕ(Q) of
analytic functional calculus of Q. Therefore E(σ)X = Xσ is invariant to X,A,ϕ(Q)
for every ϕ ∈ O

(
σ(Q)

)
.

Now we consider V ⊃ σ(Q), f ∈ O(V ), [X, f(Q)] = 0 and a non empty
σ = σ(Q)∩W , whereW is a connected component of V so that f |W is non constant.

Let W1 be a relative compact open set so that

W ⊃W1 ⊃ σ = σ(Q) ∩W.

Obviously f ′ has in W1 a finite number of zeros because f |W is nonconstant. There-
fore f ′|W1 = Pg where g ∈ O(W1), g(z) �= 0 for every z ∈ W1 and P ∈ C[X] is a
polynomial.

We have by the preceding lemma,

0 = [X, f(Q)] = f ′(Q)A.

It is well known that

f ′(Q)|Xσ = f ′(Q|Xσ) = g(Q|Xσ) P (Q|Xσ).

Hence
0 = f ′(Q)A|Xσ = g(Q|Xσ) P (Q|Xσ)A|Xσ.

But g(Q|Xσ) is invertible because g(z) �= 0 for z ∈ σ. Therefore P (Q|Xσ) A|Xσ =
0, [X|Xσ, Q|Xσ] = 0 and [A|Xσ, Q|Xσ] = 0. As in the last part of the proof of
Lemma 1 §1 we deduce that A|Xσ is nilpotent. �
Corollary

Let X,Q,A ∈ B(X ), [X,Q] = A, [Q,A] = 0. If there exists an open set

V ⊃ σ(Q), f ∈ O(V ) so that [X, f(Q)] = 0 and f is non constant on every W

connected component of V with property W ∩ σ(Q) �= ∅, then A is nilpotent.

We put the following definition

Definition 1. For A,B ∈ B(X ) we say that B analytically commutes with A

if there exists f ∈ O
(
σ(B)

)
, f nonconstant on every connected open set D with

D ∩ σ(B) �= ∅, so that [A, f(B)] = 0.
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Obviously, the above Corollary may be rewritten as follows.

Corollary 1
Let X,Q,A ∈ B(X ) so that [X,Q] = A, [Q,A] = 0. If Q analytically commutes

with X, then A is nilpotent.

Remarks. 1) B polynomially commutes with A⇒ B analytically commutes with A.
2) Q ∈ B(X ), Q nilpotent ⇒ Q analytically commutes with every A ∈ B(X ).
3) Corollary 1 is an extension of Lemma 1 §1 when A = B(X ).

Definition 2. We say thatB ∈ M ⊂ B(X ) is analytic central in M ifB analytically
commutes with every A ∈ M.

Remarks. 1) B polynomial central in M ⇒ B analytic central in M.
2) Q ∈ B(X ), Q nilpotent ⇒ Q analytic central in every M which contains Q.

The results of §1 can be extended for Lie subalgebras in B(X ) if we change “poly-
nomial central” by “analytic central” by using Corollary 1 §2 instead of Lemma 1
§1, and the following consequence of the property (m) of B(X ), instead of Corollary
Lemma 2 §1.

Corollary 2
If X,A ∈ B(X ) and [X,A] = λA, λ ∈ C, λ �= 0, then A is nilpotent.

L ⊂ B(X ) is topologically irreducible if there are no closed invariant to L
subspaces different from 0 and X . Also we mention the possibility to eliminate
a part of conclusions of these results when the Lie subalgebras are topologically
irreducible.

Theorem 1
Let L ⊂ B(X ) be a Lie subalgebra of B(X ), ZL the centre of L. If I is a Lie

ideal of L, dim I < +∞ and ad x|I is nilpotent for any x ∈ L, then one of the
following assertions is true:
(i) [Q, I] = 0 for every analytic central Q in L.
(ii) There exists Q �= 0, Q nilpotent, Q ∈ I ∩ ZL.

Obviously, if 0 �= Q ∈ I ∩ ZL, Q nilpotent, then 0 �= ker Q �= X is a closed
subspace which is invariant to L.

Corollary
Let L ⊂ B(X ) be a quasinilpotent Lie subalgebra of B(X ). If L is topologically

irreducible then every analytic central element of L is central in L.
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Theorem 2

Let L ⊂ B(X ) be a quasisolvable Lie subalgebra of B(X ). If I1 ⊂ I2 ⊂ . . . In ⊂
In+1 ⊂ . . . ⊂ L is an increasing sequence of Lie ideals in L and dim In = n for every

n = 1, 2, . . . , then one of the following statements holds for every n:

(i) [Q, In] = 0 for every Q analytic central in L.

(ii) There exists Q �= 0, Q nilpotent, Q ∈ In ∩ ZL.

(iii) There exists an N , 0 �= N ⊂ [L, In] a commutative Lie ideal of L so that every

Q ∈ N , is nilpotent.

An irreducible variant of this result is the following

Corollary

Let L ⊂ B(X ) be a quasisolvable Lie subalgebra of B(X ). If L is topologically

irreducible then the following statements are equivalent:

(ac) Q is analytic central in L.

(c) Q is central in L.

Proof. L quasisolvable means that L =
∑

α∈Λ Iα, Iα finite dimensional solvable
ideals of L. By the irreducibility of L we can eliminate in conclusion of Theorem 2
(ii) and (iii) because kerQ respectively ∩Q∈N ker Q are closed invariant subspaces
to L. �

Theorem 3

Let U ⊂ B(X ) be a LM-decomposable Lie subalgebra of B(X ),U = R + J the

decomposition of U . One of the following statements holds:

(I) there exists N a finite dimensional commutative non zero Lie ideal of U , con-

sisting of nilpotent elements.

(II) [J ,R] = 0,R is a quasinilpotent Lie algebra R contains no nonzero nilpotent

operators and every analytic central element in R is central in R.

Corollary

Let U ⊂ B(X ) be a finite dimensional Lie sub algebra of B(X ). If U is topo-

logically irreducible and U = R + J is the Levi-Malçev decomposition of U , then

[J ,R] = 0, R is a nilpotent Lie algebra, R contains no non zero nilpotent operators

and every analytic central element in R is central in R.
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