Collect. Math. 47, 1 (1996), 23-33
(c) 1996 Universitat de Barcelona

Stochastic processes and applications to countably additive restrictions of group-valued finitely additive measures

D. Candeloro and A. Martellotti
Dipartimento di Matematica, Università di Perugia, 06100 Perugia, Italy

Received December 19, 1994. Revised May 8, 1995

Abstract

As an application of a theorem concerning a general stochastic process in a finitely additive probability space, the existence of non-atomic countably additive restrictions with large range is obtained for group-valued finitely additive measures.

1. Introduction

This paper investigates a further generalization of a problem already studied in [5], [2], [3], [9], [1]. More precisely, given a finitely additive measure m on a set Ω, we seek a countably additive restriction preserving some "nice" properties of m.

We refer to the Introduction of [9] and to [4] and [10] for a detailed description of the intermediate steps toward the general solution of the problem presented here.

We mention that the techniques adopted in [3] and [9] cannot be transported to the present setting, differently to that of [1]. Nevertheless the proof that we exhibit here is a new, and in some sense more concrete one.

2. Results concerning stochastic processes

Let (S, Σ, P) be a finitely additive probability space, and let T be an infinite set of indexes.

Definition 1. Let V denote the class of finite subsets of T. For each $v \in V$, $v=\left\{t_{1}, \ldots, t_{n}\right\}$, let \mathcal{R}_{v} denote the family of rectangles $R_{v} \subset \mathbb{R}^{n}$, of the form $\left.\left.\left.\left.\left.\left.R_{v}=\right] a_{1}, b_{1}\right] \times\right] a_{2}, b_{2}\right] \times \ldots \times\right] a_{n}, b_{n}\right]$, where $a_{i} \leq b_{i}$ for each $i, a_{i} \geq-\infty, b_{i}<+\infty$ for each i.

Let also \mathcal{E}_{v} denote the algebra on \mathbb{R}^{v} generated by \mathcal{R}_{v}, and \mathcal{B}_{v} the σ algebra generated by \mathcal{R}_{v} namely the Borel σ-algebra. For every $R_{v} \in \mathcal{R}_{v}$, let $\widetilde{R}_{v}=R_{v} \times \mathbb{R}^{T-v} \subset \mathbb{R}^{T}$, and let us denote by $\widetilde{\mathcal{R}}_{v}$ the family

$$
\widetilde{\mathcal{R}}_{v}=\left\{\widetilde{R}_{v}: R_{v} \in \mathcal{R}_{v}\right\}
$$

In a similar fashion we will define the algebra $\widetilde{\mathcal{E}}_{v}$ and the σ-algebra $\widetilde{\mathcal{B}}_{v}$. Finally we will set $\widetilde{\mathcal{R}}=\bigcup_{v \in V} \widetilde{\mathcal{R}}_{v}, \widetilde{\mathcal{E}}=\bigcup_{v \in V} \widetilde{\mathcal{E}}_{v}, \widetilde{\mathcal{B}}=\bigcup_{v \in V} \widetilde{\mathcal{B}}_{v}$.

Let now a family $\left\{X_{t}: S \rightarrow \mathbb{R}\right\}_{t \in T}$ of random variables (r.v.) be assigned. We shall denote with $F_{t}: \mathbb{R} \rightarrow[0,1]$ the distribution function of X_{t} defined as

$$
\left.\left.F_{t}(x)=P\left(X_{t} \leq x\right)=P\left(X_{t}^{-1}(]-\infty, x\right]\right)\right)
$$

for every $x \in \mathbb{R}$. We shall finally denote by $\mathbf{X}: S \rightarrow \mathbb{R}^{T}$ the r.v defined as $\mathbf{X}(\mathrm{s})(\mathrm{t})=\mathrm{X}_{\mathrm{t}}(\mathrm{s})$.

Proposition 1

Let $\left\{X_{t}\right\}_{t \in T}$ be a family of r.v. on S, and suppose that each distribution function F_{t} is right-continuous at each x, and such that

$$
\lim _{x \rightarrow-\infty} F_{t}(x)=0=1-\lim _{x \rightarrow+\infty} F_{t}(x)
$$

Then there exists a countably additive probability measure P_{X}, defined on $\widetilde{\mathcal{B}}$ such that

$$
\begin{equation*}
P_{\mathbf{X}}(\widetilde{E})=P\left(\mathbf{X}^{-1}(\widetilde{E})\right) \tag{1}
\end{equation*}
$$

for every $\widetilde{E} \in \widetilde{\mathcal{E}}$.

Proof. For every $v \in V, v=\left(t_{1}, \ldots, t_{n}\right)$, we set $X_{v}=\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$. Furthermore, let

$$
\left.\left.\left.\left.g_{v}\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{v}^{-1}(]-\infty, x_{1}\right] \times \ldots \times\right]-\infty, x_{n}\right]\right)\right) .
$$

It is straightforward to verify that g_{v} is monotonic with respect to each variable, and that $\lim _{x_{j} \rightarrow-\infty} g_{v}\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right)=0$ for every j.

We shall now verify the marginalization properties. Let $k<n$ be fixed and let X_{k} denote the vector $\left(X_{t_{1}}, \ldots, X_{t_{k}}\right)$, and let g^{k} be the corresponding distribution

$$
\left.\left.\left.\left.g^{k}\left(x_{1}, \ldots, x_{k}\right)=P\left(X_{k}^{-1}(]-\infty, x_{1}\right] \times \ldots \times\right]-\infty, x_{k}\right]\right)\right) .
$$

Let $\varepsilon>0$ be fixed, and choose a \bar{x} in such a way that

$$
\begin{equation*}
1-F_{t_{j}}(x)<\frac{\varepsilon}{n} \tag{2}
\end{equation*}
$$

for every $j=k+1, \ldots, n$ and for every $x \geq \bar{x}$. Relationship (2) is equivalent to

$$
\begin{equation*}
P\left(X_{t_{j}}>x\right)<\frac{\varepsilon}{n} \tag{3}
\end{equation*}
$$

for every $j=k+1, \ldots, n$ and for every $x>\bar{x}$. Therefore, corresponding to $\varepsilon>0$ there exists a \bar{x} such that

$$
\begin{equation*}
P\left(\bigcup_{j=k+1}^{n}\left(X_{t_{j}}>x\right)\right)<\varepsilon \tag{4}
\end{equation*}
$$

for every $x \geq \bar{x}$. Therefore, choosing $x_{k+1}, x_{k+2}, \ldots, x_{n}$ greater than \bar{x} and without varying x_{1}, \ldots, x_{k} we shall find from (4)

$$
\begin{aligned}
& g^{k}\left(x_{1}, \ldots, x_{k}\right)-g_{v}\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)= \\
& =P\left(\left(X_{t_{1}} \leq x_{1}\right) \cap\left(X_{t_{2}} \leq x_{2}\right) \cap \ldots \cap\left(X_{t_{k}} \leq x_{k}\right) \cap\left(\bigcup_{j=k+1}^{n}\left(X_{t_{j}}>x_{j}\right)\right)\right) \leq \varepsilon .
\end{aligned}
$$

Therefore, $\lim _{\left(x_{k+1}, \ldots, x_{n}\right) \rightarrow+\infty} g_{v}\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)=g^{k}\left(x_{1}, \ldots, x_{k}\right)$ namely the marginalization property of g_{v} holds.

Furthermore, as it is easily verified, each g_{v} is right- continuous, with respect to every variable as well as globally, at every point, since each F_{t} is right-continuous.

To prove that each g_{v} generates a unique countably additive measure P_{v} on \mathcal{B}_{v} it is enough to show that condition (4) of [8] (page 219-220) is satisfied. This condition can be expressed as:

Setting $\left.\left.\left.\left.P_{v}(]-\infty, x_{1}\right] \times \ldots \times\right]-\infty, x_{n}\right]\right)=g_{v}\left(x_{1}, \ldots, x_{n}\right)$ and making use of the usual procedure (namely adding and subtracting) to extend P_{v} to the rectangles $R_{v} \in \mathcal{R}_{v}$, one necessarily finds $P_{v}\left(R_{v}\right) \geq 0$, for every $R_{v} \in \mathcal{R}_{v}$.

Then, by making use of this standard procedure to get $P_{v}\left(R_{v}\right)$ we shall find in this case $P_{v}\left(R_{v}\right)=P\left(X_{v}^{-1}\left(R_{v}\right)\right)$ for every R_{v}, and therefore Levine's condition is satisfied.

Thus, for every $v \in V$ a unique countably additive measure $P_{v}: \mathcal{B}_{v} \rightarrow[0,1]$ can be determined in such a way that, for every $R_{v} \in \mathcal{R}_{v}$

$$
P_{v}\left(R_{v}\right)=P\left(X_{v}^{-1}\left(R_{v}\right)\right)
$$

and therefore, by finite summation, for every $E_{v} \in \mathcal{E}_{v}$

$$
P_{v}\left(E_{v}\right)=P\left(X_{v}^{-1}\left(E_{v}\right)\right)
$$

Since the measures P_{v} obviously verify, when v ranges in V, the compatibility conditions of Kolmogoroff (see [6]), it is possible to find a (unique) probability measure $P_{\mathbf{X}}$ on \mathcal{B}, admitting the P_{v} 's as finite-dimensional distributions, that is

$$
P_{\mathbf{X}}\left(\widetilde{B}_{v}\right)=P_{v}\left(B_{v}\right)
$$

for all $B_{v} \in \mathcal{B}_{v}$ and $v \in V$.
In particular, if $E_{v} \in \mathcal{E}_{v}$ it follows

$$
P_{\mathbf{X}}\left(\widetilde{E}_{v}\right)=P_{v}\left(E_{v}\right)=P\left(X_{v}^{-1}\left(E_{v}\right)\right)=P\left(\mathbf{X}^{-1}\left(\widetilde{E}_{v}\right)\right):
$$

by the arbitrariness of v condition (1) follows.
Definition 2. Besides the space \mathbb{R}^{T} it will be convenient to consider the space L defined as follows: $L=\left\{f \in \mathbb{R}^{T}: f(t)=0\right.$ for every $t \in T-F$ where F is an at most countable set, depending upon $f\}$.

Observe that the cardinality of L is exactly equal to $\max \{\operatorname{card}(T), c\}$.
Over the space L we shall introduce the families $\mathcal{R}_{v}^{L}, \widetilde{\mathcal{R}}_{v}^{L}, \widetilde{\mathcal{R}}^{L}$ defined as

$$
\begin{aligned}
& \mathcal{R}_{v}^{L}=\left\{R_{v} \cap L: R_{v} \in \mathcal{R}_{v}\right\}, \\
& \widetilde{\mathcal{R}}_{v}^{L}=\left\{\widetilde{R}_{v} \cap L: \widetilde{R}_{v} \in \widetilde{\mathcal{R}}_{v}\right\}, \\
& \widetilde{\mathcal{R}}^{L}=\{\widetilde{R} \cap L: \widetilde{R} \in \widetilde{\mathcal{R}}\},
\end{aligned}
$$

and in an analogous fashion we shall define the families $\widetilde{\mathcal{E}}_{v}^{L}, \widetilde{\mathcal{E}}_{v}^{L}, \widetilde{\mathcal{E}}^{L}, \mathcal{B}_{v}^{L}, \widetilde{\mathcal{B}}_{v}^{L}, \widetilde{\mathcal{B}}^{L}$. Obviously, $\widetilde{\mathcal{E}}^{L}$ is an algebra on L, and $\widetilde{\mathcal{B}}^{L}$ is a σ-algebra on L.

We shall give another definition in the space \mathbb{R}^{T}. A subset $A \subset \mathbb{R}^{T}$ will be called σ-binding if there are an at most countable set $F \subset T$ and a subset $C \subset \mathbb{R}^{F}$ such that

$$
A=C \times \mathbb{R}^{T-F}
$$

It is well known, for example, that all the sets in $\widetilde{\mathcal{B}}$ are σ-binding.

Theorem 1

If $B \in \widetilde{\mathcal{B}}$ and $B \cap L=\emptyset$ then $B=\emptyset$.

Proof. Since B is σ-binding there will be a finite or countable set $F \subset T$ and a set $C \subset \mathbb{R}^{F}$, such that

$$
B=C \times \mathbb{R}^{T-F}
$$

For $f \in B$ we set $f_{0}=f 1_{F}$. Then $f_{0} \in B \cap L$. Therefore, if B is non-empty, $L \cap B$ is non-empty.

Corollary 1

If $P: \widetilde{\mathcal{B}} \rightarrow[0,1]$ is a countably additive probability measure, we set

$$
\begin{equation*}
P^{L}(B \cap L)=P(B) \tag{5}
\end{equation*}
$$

for every $B \in \widetilde{\mathcal{B}}$. Then $P^{L}: \widetilde{\mathcal{B}}^{L} \rightarrow[0,1]$ is a countably additive probability measure.
Proof. Let $B_{1}, B_{2} \in \widetilde{\mathcal{B}}$ be such that $B_{1} \cap L=B_{2} \cap L$. Then $\left(B_{1} \Delta B_{2}\right) \cap L=\emptyset$ and therefore, from Theorem 1, $B_{1}=B_{2}$. Hence (5) well defines P^{L}. Moreover, it is obvious that $P^{L}(\emptyset)=0$ and $P^{L}(L)=1$. Finally, if $\left(B_{n}\right)_{n}$ is a sequence in $\widetilde{\mathcal{B}}$ such that the sets $B_{n} \cap L$ are pairwise disjoint, it follows, for $m \neq n,\left(B_{n} \cap B_{m}\right) \cap L=\emptyset$ and thus $B_{n} \cap B_{m}=\emptyset$. Hence

$$
P^{L}\left(\bigcup_{n}\left(B_{n} \cap L\right)\right)=P\left(\bigcup_{n} B_{n}\right)=\sum_{n} P\left(B_{n}\right)=\sum_{n} P^{L}\left(B_{n} \cap L\right)
$$

and thus P^{L} is σ-additive.

3. Countably additive restrictions

Throughout this section Ω will denote an infinite set with $\operatorname{card}(\Omega) \geq c, G$ an abelian group and $m: \mathcal{P}(\Omega) \rightarrow G$ a finitely additive measure (f.a.m.).

Definition 3. We will say that m is continuous iff, for every neighborhood U of the neutral element 0 in G there exists a decomposition of Ω into finitely many sets $\left\{A_{1}, \ldots, A_{n}\right\}$, with $A_{i} \cap A_{j}=\emptyset$ when $i \neq j$ and such that $m(E) \in U$ for every $E \subseteq A_{i}$ and for all $i=1, \ldots, n$. Let us denote by $\mathcal{I}(0)$ a neighborhood basis of 0 in G.

We will say that m is absolutely continuous with respect to a scalar f.a.m. $\nu: \mathcal{P}(\Omega) \rightarrow \mathbb{R}_{0}^{+}$iff, for every $U \in \mathcal{I}(0)$ there exists $\delta>0$ such that for every $E \subset \Omega$ with $\nu(E) \leq \delta$ it follows that $m(E) \in U$. In this case we will write $m \ll \nu$.

We will say that m is singular with respect to ν iff, for every $U \in \mathcal{I}(0)$ and for every $\varepsilon>0$ a set $A \subset \Omega$ exists, such that $m(E) \in U$ for every $E \subset A$, and $\nu\left(A^{c}\right)<\varepsilon$. This definition is symmetric with respect to m and ν. We will write then $m \perp \nu$ or $\nu \perp m$.

We will say that ν is absolutely continuous with respect to m, and we will write $\nu \ll m$, provided for every $\varepsilon>0$ there exists a neighborhood $U \in \mathcal{I}(0)$ such that the following implication holds:

$$
\{m(E): E \subset A\} \subset U \Rightarrow \nu(A)<\varepsilon
$$

for every $A \subset \Omega$.
Finally, we will say that m and ν are equivalent iff $m \ll \nu$ and $\nu \ll m$. In this case we will say that ν is a control for m.

We shall report a Theorem which will be needed in the sequel.

Theorem 2

(Lebesgue decomposition; [7]) Let $m: \mathcal{P}(\Omega) \rightarrow G$ and $\nu: \mathcal{P}(\Omega) \rightarrow \mathbb{R}_{0}^{+}$be two f.a.m.'s. Then there are only two f.a.m. $\nu_{1}, \nu_{2}: \mathcal{P}(\Omega) \rightarrow \mathbb{R}_{0}^{+}$such that:
(i) $\nu_{1}+\nu_{2}=\nu$;
(ii) $\nu_{1} \perp m, \quad \nu_{2} \ll m$.

We mention that an analogous result holds for m with respect to ν, but we are not going to use it in this paper.

Corollary 2

Let $m: \mathcal{P}(\Omega) \rightarrow G$ be a f.a.m., and assume that there exists a scalar f.a.m. ν such that $m \ll \nu$. Then m admits a control.

When the assumptions of Corollary 2 are satisfied we will say that m is controllable.

Proof. Let $\left(\nu_{1}, \nu_{2}\right)$ be the Lebesgue decomposition stated in Theorem 2. From (ii) we find $\nu_{2} \ll m$ and $\nu_{1} \perp m$. We will show that $m \ll \nu_{2}$: thus ν_{2} is a control for m.

Let then $U \in \mathcal{I}(0)$. Since $\nu_{2} \ll m$ there exists a $\delta>0$ such that $\nu_{2}(E)<\delta \Rightarrow$ $m(E) \in U_{1}$ for $E \subset \Omega$, where $U_{1} \in \mathcal{I}(0)$ is such that $U_{1}+U_{1} \subset U$. Being $\nu_{1} \perp m$,
corresponding to U and δ there is a set $F \subset \Omega$ such that $\nu_{1}(F)<\frac{\delta}{2}$ and $m(E) \in U_{1}$ for every $E \subset F^{c}$.

Let now $A \subset \Omega$ be a set such that $\nu_{2}(A)<\frac{\delta}{2}$. We have

$$
m(A)=m(A \cap F)+m\left(A \cap F^{c}\right) .
$$

Since $A \cap F \subset A$ it has to be $\nu_{2}(A \cap F)<\frac{\delta}{2}$, and since $A \cap F \subset F$ it has to be $\nu_{1}(A \cap F)<\frac{\delta}{2}$. Therefore it is $\nu(A \cap F)<\delta$ whence $m(A \cap F) \in U_{1}$. Furthermore, since $m(E) \in U_{1}$ for every $E \subset F^{c}$, we will have $m\left(A \cap F^{c}\right) \in U_{1}$. In conclusion $m(A) \in U_{1}+U_{1} \subset U$.

This shows that $m \ll \nu_{2}$.
The following two Propositions concern the continuity.

Proposition 2

Let $\nu: \mathcal{P}(\Omega) \rightarrow \mathbb{R}_{0}^{+}$and $m: \mathcal{P}(\Omega) \rightarrow G$ be two f.a.m.'s. If $m \ll \nu$ and ν is continuous, then m is continuous. If $\nu \ll m$ and m is continuous, then ν is continuous. If m is continuous and controllable, then there exists a continuous control for m.

Proof. Straightforward.

Proposition 3

([2]) Let $\nu: \mathcal{P}(\Omega) \rightarrow \mathbb{R}_{0}^{+}$be a continuous f.a.m. Then, for every $A \subset \Omega$ there exists a family $\{A(t)\}_{t \in[0,1]}$ of subsets of A such that:
(i) $A(0)=\emptyset, A(1)=A$;
(ii) $t<t^{\prime} \Rightarrow A(t) \subset A\left(t^{\prime}\right)$;
(iii) $\nu(A(t))=t \nu(A)$.

We shall assume from now on that $m: \mathcal{P}(\Omega) \rightarrow G$ is a continuous controllable f.a.m. with range $R \subset G$ infinite and $\operatorname{card}(R) \leq \operatorname{card}(\Omega)$. We shall denote by ν a continuous control for m, and we can assume, without loss of generality, that $\nu(\Omega)=1$.

Since $\operatorname{card}(\Omega) \geq c$, and ν is defined on the whole $\mathcal{P}(\Omega)$ there exists a subset $H \subset \Omega$ such that $\nu(H)=0$ and $\operatorname{card}(H)=\eta$ where $\eta=\max \{c, \operatorname{card}(R)\}$. In this way it is also true that $m(E)=0$ for all $E \subset H$. Set $S=\Omega-H$. Obviously H can be chosen in such a way that S and Ω have the same cardinality. Furthermore R is the range of $\left.m\right|_{\mathcal{P}(S)}$.

Let $\varphi: R \rightarrow \mathcal{P}(S)$ be a one-to-one map such that $\varphi(m(S))=S$ and also $m(\varphi(r))=r$ for each $r \in R$. Let T be the range of φ. In this way T is a set of
subsets of S. Let us define a family of maps $\left\{X_{A}\right\}_{A \in T}, X_{A}: S \rightarrow \mathbb{R}$ in the following way: $X_{A}(s)=(1-\inf \{u \in[0,1]: s \in A(u)\}) 1_{A}$ where $\{A(u)\}_{u \in[0,1]}$ is the family described in Proposition 3.

Lemma 1

For every $A \in T$ let $F_{A}(x)=\nu\left(X_{A} \leq x\right), \quad x \in \mathbb{R}_{0}^{+}$. Then

$$
F_{A}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<0 \tag{6}\\
\nu\left(A^{c}\right)+x \nu(A) & \text { if } & 0 \leq x \leq 1 \\
1 & \text { if } & x>1
\end{array}\right.
$$

and therefore F_{A} is right-continuous at each point, and

$$
\lim _{x \rightarrow-\infty} F_{A}(x)=0=1-\lim _{x \rightarrow+\infty} F_{A}(x)
$$

for every $A \in T$.
Proof. For every $x \in] 0,1]$ we have

$$
\begin{equation*}
\left(X_{A}<x\right) \subset(A(1-x))^{c} \subset\left(X_{A} \leq x\right) \tag{7}
\end{equation*}
$$

We are now going to prove that, for $x \in] 0,1]$, we have $\nu\left(X_{A}=x\right)=0$. First, for $x=1,\left(X_{A} \leq 1\right)=S$ and thus $F_{A}(1)=1$. Since, for every $\varepsilon>0,\left(X_{A} \leq 1-\varepsilon\right) \subset$ ($X_{A}<1$) from (7) it is also true that

$$
(A(\varepsilon))^{c}=(A(1-(1-\varepsilon)))^{c} \subset\left(X_{A}<1\right) .
$$

Having $\nu\left((A(\varepsilon))^{c}\right)=1-\varepsilon \nu(A)$ for every $\varepsilon>0$, we obtain $\nu\left(\left(X_{A}<1\right)\right)=1$. This shows that $\nu\left(\left(X_{A}=1\right)\right)=0$.

We move now to the case $0<x<1$.
Fix $\varepsilon>0$ in such a way that $0<x-\varepsilon<x+\varepsilon<1$.
Then $\left(X_{A}=x\right) \subset\left(X_{A}<x+\varepsilon\right)-\left(X_{A} \leq x-\varepsilon\right)$. From (7) it follows that $\left(X_{A}<x+\varepsilon\right) \subset(A(1-x-\varepsilon))^{c}$, and $\left(X_{A} \leq x-\varepsilon\right)^{c} \subset A(1-x+\varepsilon)$ whence

$$
\begin{aligned}
& \nu\left(\left(X_{A}=x\right)\right) \leq \nu\left(A(1-x+\varepsilon) \cap(A(1-x-\varepsilon))^{c}\right)= \\
& \nu(A(1-x+\varepsilon)-A(1-x-\varepsilon))=2 \varepsilon \nu(A)
\end{aligned}
$$

By the arbitrariness of ε it follows $\nu\left(\left(X_{A}=x\right)\right)=0$.
This yields that $\nu\left(\left(X_{A}<x\right)\right)=\nu\left(\left(X_{A} \leq x\right)\right)$ for every $\left.\left.x \in\right] 0,1\right]$. Therefore, again from (7), we shall find

$$
\nu\left(\left(X_{A} \leq x\right)\right)=\nu\left((A(1-x))^{c}\right)=\nu\left(A^{c}\right)+\nu(A-A(1-x))=\nu\left(A^{c}\right)+x \nu(A) .
$$

Hence, relationship (6) is proven for $x \in] 0,1]$. The relationship is obvious for $x<0$ and for $x>1$. It remains to prove it for $x=0$, namely that $\nu\left(\left(X_{A} \leq 0\right)\right)=$ $\nu\left(A^{c}\right)$. But $\left(X_{A} \leq 0\right)=\left(X_{A}=0\right)$ and, from what has just been proven,

$$
\nu\left(\left(X_{A}=0\right)\right) \leq \lim _{\varepsilon \rightarrow 0} \nu\left(\left(X_{A} \leq \varepsilon\right)\right)=\nu\left(A^{c}\right)
$$

On the other side, if $s \in A^{c}$ then $X_{A}(s)=0$, and hence $A^{c} \subset\left(X_{A}=0\right)$ whence it is also $\nu\left(\left(X_{A}=0\right)\right) \geq \nu\left(A^{c}\right)$, which concludes the proof.

We are now able to prove the main theorem.

Theorem 3

Let Ω and m be as in Lemma 1. Then there exists an algebra $\mathcal{A} \subset \mathcal{P}(\Omega)$ such that $\left.m\right|_{\mathcal{A}}$ is continuous and countably additive and its range coincides with the range of m.

Proof. If T is the set previously described, T has the same cardinality as R and the last one is underneath $\operatorname{card}(\Omega)$. Let L be the space introduced in Section 2 corresponding to \mathbb{R}^{T}. We have

$$
\operatorname{card}(L)=\max \{c, \operatorname{card}(R)\}=\eta=\operatorname{card}(H) .
$$

Then there exists a bijection α between L and H, which induces a complete isomorphism between $\mathcal{P}(L)$ and $\mathcal{P}(H)$. Consider now the family of random variables $\left\{X_{A}: A \in T\right\}$ defined as in the previous proof. From Lemma 1 and Proposition 1 there exists a countably additive probability measure $\nu_{\mathbf{X}}: \mathcal{B} \rightarrow[0,1]$ such that

$$
\begin{equation*}
\nu_{\mathbf{X}}(\widetilde{E})=\nu\left(\mathbf{X}^{-1}(\widetilde{E})\right) \tag{8}
\end{equation*}
$$

for every $\widetilde{E} \in \widetilde{\mathcal{E}}$. If we now define $\varphi: \widetilde{\mathcal{E}} \rightarrow \mathcal{P}(\Omega)$ as

$$
\varphi(\widetilde{E})=\mathbf{X}^{-1}(\widetilde{E}) \cup \alpha(\widetilde{E} \cap L)
$$

we shall find that φ is a homomorphism between algebras, and that its range, which we shall denote by \mathcal{A}, is the required algebra.

In fact, we shall show that $\left.m\right|_{\mathcal{A}}$ has for range R. Let $r \in R$, and let us pick an $A \in T$ such that $m\left(A^{c}\right)=r$.

We then set $\widetilde{E}=\left\{f \in \mathbb{R}^{T}: f(A) \leq 0\right\}$: here A is seen as a singleton in T, and hence $\widetilde{E} \in \widetilde{\mathcal{R}}$. Moreover it is

$$
m\left(\varphi(\widetilde{E})=m\left(\mathbf{X}^{-1}(\widetilde{E})\right)=m\left(\left(X_{A} \leq 0\right)\right) .\right.
$$

Since $\nu\left(\left(X_{A} \leq 0\right)\right)=\nu\left(A^{c}\right)$ and since $A^{c} \subset\left(X_{A} \leq 0\right)$ from $m \ll \nu$ it follows also $m\left(\left(X_{A} \leq 0\right)\right)=m\left(A^{c}\right)=r$. Hence $\left.m\right|_{\mathcal{A}}$ ranges on the whole set R.

We are now going to prove that $\left.m\right|_{\mathcal{A}}$ is continuous.
Let $\varepsilon>0$ be fixed, and let $n \in \mathbb{N}$ be such that $n>\frac{1}{\varepsilon}$. Let also $A_{1}=\left(X_{S} \leq \frac{1}{n}\right)$, $A_{2}=\left(\frac{1}{n}<X_{S} \leq \frac{2}{n}\right), \ldots A_{n}=\left(\frac{n-1}{n}<X_{S} \leq 1\right)$. The sets A_{j} are pairwise disjoint, their union coincides with S and $\nu_{j}(A)=\frac{1}{n}<\varepsilon$ for every j, by (7).

Setting $\widetilde{A}_{j}=\left\{f \in \mathbb{R}^{T}: \frac{j-1}{n}<f(S) \leq \frac{j}{n}\right\}$ (considering again S as an element of T), we will have $\widetilde{A}_{j} \in \widetilde{\mathcal{E}}$ for every j, and the \widetilde{A}_{j} 's form a decomposition of \mathbb{R}^{T}. Moreover we have

$$
\nu\left(\varphi\left(\widetilde{A}_{j}\right)\right)=\nu\left(\mathbf{X}^{-1}\left(\widetilde{A}_{j}\right)\right)=\nu\left(A_{j}\right)<\varepsilon
$$

for every j. Therefore ν is continuous on \mathcal{A}, and hence m is continuous on \mathcal{A}, since $m \ll \nu$.

We are finally going to prove that $\left.\nu\right|_{\mathcal{A}}$ is σ-additive. In order to do this, let us denote by $\lambda: \widetilde{\mathcal{B}}^{L} \rightarrow[0,1]$ the countably additive probability measure $\lambda=\nu_{\mathbf{X}}^{L}$ according to the definition given in Corollary 1.

Let now $\left(\widetilde{E}_{n}\right)_{n}$ be a sequence in $\widetilde{\mathcal{E}}$ such that $\varphi\left(\widetilde{E}_{n}\right) \downarrow \emptyset$. It is then

$$
\nu\left(\varphi\left(\widetilde{E}_{n}\right)\right)=\nu\left(\mathbf{X}^{-1}\left(\widetilde{E}_{n}\right)\right)=\nu_{\mathbf{X}}\left(\widetilde{E}_{n}\right)=\lambda\left(\widetilde{E}_{n} \cap L\right)
$$

for every n. Being $\varphi\left(\widetilde{E}_{n}\right) \downarrow \emptyset$ it has to be $\alpha\left(\widetilde{E}_{n} \cap L\right) \downarrow \emptyset$. Since α is a complete isomorphism it will also hold $\widetilde{E}_{n} \cap L \downarrow \emptyset$, and thus $\lambda\left(\widetilde{E}_{n} \cap L\right) \downarrow 0$. This yields $\nu\left(\varphi\left(\widetilde{E}_{n}\right)\right) \downarrow 0$, and hence the countable additivity of $\left.\nu\right|_{\mathcal{A}}$. Being $m \ll \nu$, this will imply the countable additivity of $\left.m\right|_{\mathcal{A}}$. The theorem is now completely proved.

Remark 1. A version of Theorem 3 holds true also if the continuity condition (both in the hypotheses and in the thesis) is dropped. One can follow the same device, but the definition of X_{A} must be simplified: namely $X_{A}=1_{A}$ for every A and therefore the functions F_{A} are just right-continuous Heaviside-type functions.

References

1. K. P. S. Bhaskara Rao, D. Candeloro and A. Martellotti, \mathbb{R}^{n}-valued finitely additive measures admitting countably additive restrictions with large range, J. Math. Anal. Appl. 177 (1993), 166-169.
2. D. Candeloro and A. Martellotti, Su alcuni problemi relativi a misure scalari sub-additive e applicazioni al caso dell'additività finita, Atti Sem. Mat. Fis. Univ. Modena 27 (1978), 284-296.
3. D. Candeloro and A. Martellotti, Continuous finitely additive measures which are extensions of non-atomic measures, Atti Sem. Mat. Fis. Univ. Modena 29 (1980), 328-344.
4. D. Candeloro and A. Martellotti, Una panoramica su alcuni recenti risultati relativi a misure finitamente additive, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 327-334.
5. G. Coletti and G. Regoli, Sulla funzione di distribuzione di una misura di probabilità finitamente additiva, Rend. Mat. Appl. (7) 1 (1981), 319-329.
6. J. L. Doob, Stochastic Processes, New York, J. Wiley and Sons, 1953.
7. L. Drewnoski, Decomposition of set functions, Studia Math. 48 (1973), 23-48.
8. A. Levine, Theory of Probability, Addison-Wesley, 1971.
9. A. Martellotti, Countably additive restrictions of vector-valued quasi-measures with respect to range preservation, Boll. Un. Mat. Ital. B (7) 2 (1988), 445-458.
10. C. Vinti, Problemi connessi con la teoria delle misure finitamente additive: alcuni recenti risultati della Scuola Matematica Perugina, Rend. Mat. Appl. (7) 10 (1990), 551-566.
