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Abstract

As an application of a theorem concerning a general stochastic process in a
finitely additive probability space, the existence of non-atomic countably addi-
tive restrictions with large range is obtained for group-valued finitely additive
measures.

1. Introduction

This paper investigates a further generalization of a problem already studied in [5],
[2], [3], [9], [1]. More precisely, given a finitely additive measure m on a set Ω, we
seek a countably additive restriction preserving some “nice” properties of m.

We refer to the Introduction of [9] and to [4] and [10] for a detailed description
of the intermediate steps toward the general solution of the problem presented here.

We mention that the techniques adopted in [3] and [9] cannot be transported to
the present setting, differently to that of [1]. Nevertheless the proof that we exhibit
here is a new, and in some sense more concrete one.
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2. Results concerning stochastic processes

Let (S,Σ, P ) be a finitely additive probability space, and let T be an infinite set of
indexes.

Definition 1. Let V denote the class of finite subsets of T . For each v ∈ V ,
v = {t1, . . . , tn}, let Rv denote the family of rectangles Rv ⊂ R

n, of the form
Rv =]a1, b1]×]a2, b2] × . . .×]an, bn], where ai ≤ bi for each i, ai ≥ −∞, bi < +∞ for
each i.

Let also Ev denote the algebra on R
v generated by Rv, and Bv the σ-

algebra generated by Rv namely the Borel σ-algebra. For every Rv ∈ Rv, let
R̃v = Rv × R

T−v ⊂ R
T , and let us denote by R̃v the family

R̃v = {R̃v : Rv ∈ Rv}.

In a similar fashion we will define the algebra Ẽv and the σ-algebra B̃v. Finally we
will set R̃ =

⋃
v∈V R̃v, Ẽ =

⋃
v∈V Ẽv,B̃ =

⋃
v∈V B̃v.

Let now a family {Xt : S → R}t∈T of random variables (r.v.) be assigned. We
shall denote with Ft : R → [0, 1] the distribution function of Xt defined as

Ft(x) = P (Xt ≤ x) = P (X−1
t (] −∞, x]))

for every x ∈ R. We shall finally denote by X : S → R
T the r.v defined as

X(s)(t) = Xt(s).

Proposition 1

Let {Xt}t∈T be a family of r.v. on S, and suppose that each distribution

function Ft is right-continuous at each x, and such that

lim
x→−∞

Ft(x) = 0 = 1 − lim
x→+∞

Ft(x) .

Then there exists a countably additive probability measure PX , defined on B̃ such

that

PX(Ẽ) = P (X−1(Ẽ)) (1)

for every Ẽ ∈ Ẽ .
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Proof. For every v ∈ V, v = (t1, . . . , tn), we set Xv = (Xt1 , . . . , Xtn). Furthermore,
let

gv(x1, . . . , xn) = P
(
X−1

v (] −∞, x1] × . . .×] −∞, xn])
)
.

It is straightforward to verify that gv is monotonic with respect to each variable,
and that limxj→−∞ gv(x1, . . . , xj , . . . , xn) = 0 for every j.

We shall now verify the marginalization properties. Let k < n be fixed and let
Xk denote the vector (Xt1 , . . . , Xtk), and let gk be the corresponding distribution

gk(x1, . . . , xk) = P
(
X−1

k (] −∞, x1] × . . .×] −∞, xk])
)
.

Let ε > 0 be fixed, and choose a x̄ in such a way that

1 − Ftj (x) <
ε

n
(2)

for every j = k + 1, . . . , n and for every x ≥ x̄. Relationship (2) is equivalent to

P
(
Xtj > x

)
<
ε

n
(3)

for every j = k + 1, . . . , n and for every x > x̄. Therefore, corresponding to ε > 0
there exists a x̄ such that

P
( n⋃

j=k+1

(Xtj > x)
)
< ε (4)

for every x ≥ x̄. Therefore, choosing xk+1, xk+2, . . . , xn greater than x̄ and without
varying x1, . . . , xk we shall find from (4)

gk(x1, . . . , xk) − gv(x1, . . . , xk, xk+1, . . . , xn) =

= P

(
(Xt1 ≤ x1) ∩ (Xt2 ≤ x2) ∩ . . . ∩ (Xtk ≤ xk) ∩

( n⋃
j=k+1

(Xtj > xj)
))

≤ ε.

Therefore, lim
(xk+1,...,xn)→+∞

gv(x1, . . . , xk, xk+1, . . . , xn) = gk(x1, . . . , xk) namely the

marginalization property of gv holds.
Furthermore, as it is easily verified, each gv is right- continuous, with respect to

every variable as well as globally, at every point, since each Ft is right-continuous.
To prove that each gv generates a unique countably additive measure Pv on

Bv it is enough to show that condition (4) of [8] (page 219-220) is satisfied. This
condition can be expressed as:
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Setting Pv(] −∞, x1] × . . .×] −∞, xn]) = gv(x1, . . . , xn) and making use of the
usual procedure (namely adding and subtracting) to extend Pv to the rectangles
Rv ∈ Rv, one necessarily finds Pv(Rv) ≥ 0, for every Rv ∈ Rv.

Then, by making use of this standard procedure to get Pv(Rv) we shall find
in this case Pv(Rv) = P (X−1

v (Rv)) for every Rv, and therefore Levine’s condition is
satisfied.

Thus, for every v ∈ V a unique countably additive measure Pv : Bv → [0, 1] can
be determined in such a way that, for every Rv ∈ Rv

Pv(Rv) = P (X−1
v (Rv))

and therefore, by finite summation, for every Ev ∈ Ev
Pv(Ev) = P (X−1

v (Ev)).

Since the measures Pv obviously verify, when v ranges in V , the compatibility con-
ditions of Kolmogoroff (see [6]), it is possible to find a (unique) probability measure
PX on B, admitting the Pv’s as finite-dimensional distributions, that is

PX(B̃v) = Pv(Bv)

for all Bv ∈ Bv and v ∈ V .
In particular, if Ev ∈ Ev it follows

PX(Ẽv) = Pv(Ev) = P (X−1
v (Ev)) = P (X−1(Ẽv)) :

by the arbitrariness of v condition (1) follows. �
Definition 2. Besides the space R

T it will be convenient to consider the space L
defined as follows: L = {f ∈ R

T : f(t) = 0 for every t ∈ T − F where F is an at
most countable set, depending upon f}.

Observe that the cardinality of L is exactly equal to max{card(T ), c}.
Over the space L we shall introduce the families RL

v , R̃L
v , R̃L defined as

RL
v = {Rv ∩ L : Rv ∈ Rv},

R̃L
v = {R̃v ∩ L : R̃v ∈ R̃v},

R̃L = {R̃ ∩ L : R̃ ∈ R̃},

and in an analogous fashion we shall define the families EL
v , ẼL

v , ẼL, BL
v , B̃L

v , B̃L.
Obviously, ẼL is an algebra on L, and B̃L is a σ-algebra on L.

We shall give another definition in the space R
T . A subset A ⊂ R

T will be
called σ-binding if there are an at most countable set F ⊂ T and a subset C ⊂ R

F

such that
A = C × R

T−F .

It is well known, for example, that all the sets in B̃ are σ-binding.
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Theorem 1

If B ∈ B̃ and B ∩ L = ∅ then B = ∅.

Proof. Since B is σ-binding there will be a finite or countable set F ⊂ T and a set
C ⊂ R

F , such that
B = C × R

T−F .

For f ∈ B we set f0 = f1F . Then f0 ∈ B ∩ L. Therefore, if B is non-empty, L ∩B
is non-empty. �

Corollary 1

If P : B̃ → [0, 1] is a countably additive probability measure, we set

PL(B ∩ L) = P (B) (5)

for every B ∈ B̃. Then PL : B̃L → [0, 1] is a countably additive probability measure.

Proof. Let B1, B2 ∈ B̃ be such that B1 ∩ L = B2 ∩ L. Then (B1∆B2) ∩ L = ∅ and
therefore, from Theorem 1, B1 = B2. Hence (5) well defines PL. Moreover, it is
obvious that PL(∅) = 0 and PL(L) = 1. Finally, if (Bn)n is a sequence in B̃ such
that the sets Bn ∩ L are pairwise disjoint, it follows, for m �= n, (Bn ∩Bm) ∩ L = ∅
and thus Bn ∩Bm = ∅. Hence

PL
( ⋃

n

(Bn ∩ L)
)

= P
( ⋃

n

Bn

)
=

∑
n

P (Bn) =
∑
n

PL(Bn ∩ L) ,

and thus PL is σ-additive. �

3. Countably additive restrictions

Throughout this section Ω will denote an infinite set with card(Ω) ≥ c, G an abelian
group and m : P(Ω) → G a finitely additive measure (f.a.m.).

Definition 3. We will say that m is continuous iff, for every neighborhood U
of the neutral element 0 in G there exists a decomposition of Ω into finitely many
sets {A1, . . . , An}, with Ai ∩Aj = ∅ when i �= j and such that m(E) ∈ U for every
E ⊆ Ai and for all i = 1, . . . , n. Let us denote by I(0) a neighborhood basis of 0 in
G.
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We will say that m is absolutely continuous with respect to a scalar f.a.m.
ν : P(Ω) → R

+
0 iff, for every U ∈ I(0) there exists δ > 0 such that for every E ⊂ Ω

with ν(E) ≤ δ it follows that m(E) ∈ U . In this case we will write m� ν.
We will say that m is singular with respect to ν iff, for every U ∈ I(0) and for

every ε > 0 a set A ⊂ Ω exists, such that m(E) ∈ U for every E ⊂ A, and ν(Ac) < ε.
This definition is symmetric with respect to m and ν. We will write then m ⊥ ν or
ν ⊥ m.

We will say that ν is absolutely continuous with respect to m, and we will write
ν � m, provided for every ε > 0 there exists a neighborhood U ∈ I(0) such that the
following implication holds:

{m(E) : E ⊂ A} ⊂ U ⇒ ν(A) < ε,

for every A ⊂ Ω.
Finally, we will say that m and ν are equivalent iff m� ν and ν � m. In this

case we will say that ν is a control for m.

We shall report a Theorem which will be needed in the sequel.

Theorem 2

(Lebesgue decomposition; [7]) Let m : P(Ω) → G and ν : P(Ω) → R
+
0 be two

f.a.m.’s. Then there are only two f.a.m. ν1, ν2 : P(Ω) → R
+
0 such that:

(i) ν1 + ν2 = ν;
(ii) ν1 ⊥ m, ν2 � m.

We mention that an analogous result holds for m with respect to ν, but we are
not going to use it in this paper.

Corollary 2

Let m : P(Ω) → G be a f.a.m., and assume that there exists a scalar f.a.m. ν

such that m� ν. Then m admits a control.

When the assumptions of Corollary 2 are satisfied we will say that m is con-
trollable.

Proof. Let (ν1, ν2) be the Lebesgue decomposition stated in Theorem 2. From (ii)
we find ν2 � m and ν1 ⊥ m. We will show that m� ν2: thus ν2 is a control for m.

Let then U ∈ I(0). Since ν2 � m there exists a δ > 0 such that ν2(E) < δ ⇒
m(E) ∈ U1 for E ⊂ Ω, where U1 ∈ I(0) is such that U1 + U1 ⊂ U . Being ν1 ⊥ m,
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corresponding to U and δ there is a set F ⊂ Ω such that ν1(F ) < δ
2 and m(E) ∈ U1

for every E ⊂ F c.
Let now A ⊂ Ω be a set such that ν2(A) < δ

2 . We have

m(A) = m(A ∩ F ) +m(A ∩ F c).

Since A ∩ F ⊂ A it has to be ν2(A ∩ F ) < δ
2 , and since A ∩ F ⊂ F it has to be

ν1(A ∩ F ) < δ
2 . Therefore it is ν(A ∩ F ) < δ whence m(A ∩ F ) ∈ U1. Furthermore,

since m(E) ∈ U1 for every E ⊂ F c, we will have m(A ∩ F c) ∈ U1. In conclusion
m(A) ∈ U1 + U1 ⊂ U .

This shows that m� ν2. �

The following two Propositions concern the continuity.

Proposition 2

Let ν : P(Ω) → R
+
0 and m : P(Ω) → G be two f.a.m.’s. If m� ν and ν is con-

tinuous, then m is continuous. If ν � m and m is continuous, then ν is continuous.

If m is continuous and controllable, then there exists a continuous control for m.

Proof. Straightforward. �

Proposition 3

([2]) Let ν : P(Ω) → R
+
0 be a continuous f.a.m. Then, for every A ⊂ Ω there

exists a family {A(t)}t∈[0,1] of subsets of A such that:
(i) A(0) = ∅, A(1) = A;
(ii) t < t′ ⇒ A(t) ⊂ A(t′);
(iii) ν(A(t)) = tν(A).

We shall assume from now on that m : P(Ω) → G is a continuous controllable
f.a.m. with range R ⊂ G infinite and card(R) ≤ card(Ω). We shall denote by ν
a continuous control for m, and we can assume, without loss of generality, that
ν(Ω) = 1.

Since card(Ω) ≥ c, and ν is defined on the whole P(Ω) there exists a subset
H ⊂ Ω such that ν(H) = 0 and card(H) = η where η = max {c, card (R)}. In this
way it is also true that m(E) = 0 for all E ⊂ H. Set S = Ω −H. Obviously H can
be chosen in such a way that S and Ω have the same cardinality. Furthermore R is
the range of m|P(S).

Let ϕ : R→ P(S) be a one-to-one map such that ϕ(m(S)) = S and also
m(ϕ(r)) = r for each r ∈ R. Let T be the range of ϕ. In this way T is a set of
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subsets of S. Let us define a family of maps {XA}A∈T , XA : S → R in the following
way: XA(s) = (1 − inf{u ∈ [0, 1] : s ∈ A(u)})1A where {A(u)}u∈[0,1] is the family
described in Proposition 3.

Lemma 1

For every A ∈ T let FA(x) = ν(XA ≤ x), x ∈ R
+
0 . Then

FA(x) =

{ 0 if x < 0
ν(Ac) + xν(A) if 0 ≤ x ≤ 1
1 if x > 1

(6)

and therefore FA is right-continuous at each point, and

lim
x→−∞

FA(x) = 0 = 1 − lim
x→+∞

FA(x)

for every A ∈ T .

Proof. For every x ∈]0, 1] we have

(XA < x) ⊂ (A(1 − x))c ⊂ (XA ≤ x). (7)

We are now going to prove that, for x ∈]0, 1], we have ν(XA = x) = 0. First,
for x = 1, (XA ≤ 1) = S and thus FA(1) = 1. Since, for every ε > 0, (XA ≤ 1− ε) ⊂
(XA < 1) from (7) it is also true that

(A(ε))c = (A(1 − (1 − ε)))c ⊂ (XA < 1).

Having ν((A(ε))c) = 1 − εν(A) for every ε > 0, we obtain ν((XA < 1)) = 1. This
shows that ν((XA = 1)) = 0.

We move now to the case 0 < x < 1.
Fix ε > 0 in such a way that 0 < x− ε < x+ ε < 1.
Then (XA = x) ⊂ (XA < x+ ε) − (XA ≤ x− ε). From (7) it follows that

(XA < x+ ε) ⊂ (A(1 − x− ε))c, and (XA ≤ x− ε)c ⊂ A(1 − x+ ε) whence

ν((XA = x)) ≤ ν(A(1 − x+ ε) ∩ (A(1 − x− ε))c) =

ν(A(1 − x+ ε) −A(1 − x− ε)) = 2εν(A).

By the arbitrariness of ε it follows ν((XA = x)) = 0.
This yields that ν((XA < x)) = ν((XA ≤ x)) for every x ∈]0, 1]. Therefore,

again from (7), we shall find

ν((XA ≤ x)) = ν((A(1 − x))c) = ν(Ac) + ν(A−A(1 − x)) = ν(Ac) + xν(A).
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Hence, relationship (6) is proven for x ∈]0, 1]. The relationship is obvious for
x < 0 and for x > 1. It remains to prove it for x = 0, namely that ν((XA ≤ 0)) =
ν(Ac). But (XA ≤ 0) = (XA = 0) and, from what has just been proven,

ν((XA = 0)) ≤ lim
ε→0

ν((XA ≤ ε)) = ν(Ac).

On the other side, if s ∈ Ac then XA(s) = 0, and hence Ac ⊂ (XA = 0) whence it is
also ν((XA = 0)) ≥ ν(Ac), which concludes the proof. �

We are now able to prove the main theorem.

Theorem 3

Let Ω and m be as in Lemma 1. Then there exists an algebra A ⊂ P(Ω) such

thatm|A is continuous and countably additive and its range coincides with the range

of m.

Proof. If T is the set previously described, T has the same cardinality as R and
the last one is underneath card(Ω). Let L be the space introduced in Section 2
corresponding to R

T . We have

card(L) = max {c, card(R)} = η = card(H).

Then there exists a bijection α between L and H, which induces a complete iso-
morphism between P(L) and P(H). Consider now the family of random variables
{XA : A ∈ T} defined as in the previous proof. From Lemma 1 and Proposition 1
there exists a countably additive probability measure νX : B → [0, 1] such that

νX(Ẽ) = ν(X−1(Ẽ)) (8)

for every Ẽ ∈ Ẽ . If we now define ϕ : Ẽ → P(Ω) as

ϕ(Ẽ) = X−1(Ẽ) ∪ α(Ẽ ∩ L),

we shall find that ϕ is a homomorphism between algebras, and that its range, which
we shall denote by A, is the required algebra.

In fact, we shall show that m|A has for range R. Let r ∈ R, and let us pick an
A ∈ T such that m(Ac) = r.

We then set Ẽ = {f ∈ R
T : f(A) ≤ 0}: here A is seen as a singleton in T , and

hence Ẽ ∈ R̃. Moreover it is

m(ϕ(Ẽ) = m(X−1(Ẽ)) = m((XA ≤ 0)).
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Since ν((XA ≤ 0)) = ν(Ac) and since Ac ⊂ (XA ≤ 0) from m� ν it follows also
m((XA ≤ 0)) = m(Ac) = r. Hence m|A ranges on the whole set R.

We are now going to prove that m|A is continuous.
Let ε > 0 be fixed, and let n ∈ N be such that n > 1

ε . Let also A1 = (XS ≤ 1
n ),

A2 = ( 1
n < XS ≤ 2

n ), . . . An = (n−1
n < XS ≤ 1). The sets Aj are pairwise disjoint,

their union coincides with S and νj(A) = 1
n < ε for every j, by (7).

Setting Ãj = {f ∈ R
T : j−1

n < f(S) ≤ j
n} (considering again S as an element

of T ), we will have Ãj ∈ Ẽ for every j, and the Ãj ’s form a decomposition of R
T .

Moreover we have
ν(ϕ(Ãj)) = ν(X−1(Ãj)) = ν(Aj) < ε

for every j. Therefore ν is continuous on A, and hence m is continuous on A, since
m� ν.

We are finally going to prove that ν|A is σ-additive. In order to do this, let
us denote by λ : B̃L → [0, 1] the countably additive probability measure λ = νLX ac-
cording to the definition given in Corollary 1.

Let now (Ẽn)n be a sequence in Ẽ such that ϕ(Ẽn) ↓ ∅. It is then

ν(ϕ(Ẽn)) = ν(X−1(Ẽn)) = νX(Ẽn) = λ(Ẽn ∩ L),

for every n. Being ϕ(Ẽn) ↓ ∅ it has to be α(Ẽn ∩ L) ↓ ∅. Since α is a complete isomor-
phism it will also hold Ẽn ∩ L ↓ ∅, and thus λ(Ẽn ∩ L) ↓ 0. This yields ν(ϕ(Ẽn)) ↓ 0,
and hence the countable additivity of ν|A. Being m� ν, this will imply the count-
able additivity of m|A. The theorem is now completely proved. �

Remark 1. A version of Theorem 3 holds true also if the continuity condition (both
in the hypotheses and in the thesis) is dropped. One can follow the same device, but
the definition of XA must be simplified: namely XA = 1A for every A and therefore
the functions FA are just right-continuous Heaviside-type functions.
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