Collect. Math. 47, 1 (1996), 1-21
(c) 1996 Universitat de Barcelona

Range of the generalized Radon transform associated with partial differential operators

M. Mili
Department of Mathematics, Faculty of Sciences of Monastir, Monastir 5019, Tunisia K. Trimeche
Department of Mathematics, Faculty of Sciences of Tunis, Campus, Tunis 1060, Tunisia

Received October 28, 1994. Revised April 6, 1995

Abstract

In this work we consider two partial differential operators, define a generalized Radon transform and its dual associated with these operators and characterize its range.

Introduction

K. Trimèche has proved in [10] that we can construct the classical Radon transform and its dual on \mathbb{R}^{2} by using two partial differential operators on $] 0,+\infty[\times] 0,2 \pi[$ and the integral representation of Mehler type of their eigenfunction regular at the point $(0,0)$. More precisely he considers the operators

$$
\begin{cases}\Delta_{1}=\frac{\partial}{\partial \theta} & , \theta \in] 0,2 \pi[\\ \Delta_{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} & , r \in] 0,+\infty[\end{cases}
$$

The operator Δ_{2} is the Laplacian on \mathbb{R}^{2}.

The eigenfunction regular at the point $(0,0)$ of these operators is the solution denoted $\varphi_{\mu, k}$ of the following system

$$
\left\{\begin{array}{l}
\Delta_{1} u(r, \theta)=i \quad k \quad u(r, \theta) \quad, k \in \mathbb{Z} \\
\Delta_{2} u(r, \theta)=-\mu^{2} \quad u(r, \theta) \quad, \mu \in \mathbb{C} \\
-I f \quad k \neq 0 \\
\quad u(r, 0) \underset{r \rightarrow 0}{\sim} \frac{(i \mu)^{|k|} r^{|k|}}{2^{|k|}|k|!}, \frac{\partial u}{\partial r}(r, 0) \underset{r \rightarrow 0}{\sim} \frac{(i \mu)^{|k|} r^{|k|-1}}{2^{|k|}(|k|-1)!} \\
-I f \quad k=0 \\
u(0,0)=1, \quad \frac{\partial u}{\partial r}(0,0)=0
\end{array}\right.
$$

The function $\varphi_{\mu, k}$ is given by

$$
\forall(r, \theta) \in\left[0,+\infty\left[\times[0,2 \pi], \quad \varphi_{\mu, k}(r, \theta)=i^{|k|} e^{i k \theta} J_{|k|}(\mu r)\right.\right.
$$

where $J_{|k|}$ is the Bessel function of the first kind and index $|k|$.
The function $\varphi_{\mu, k}$ possesses the following integral representation of Mehler type:

$$
\varphi_{\mu, k}(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i k \psi} e^{i \mu r \cos (\psi-\theta)} d \psi
$$

This integral representation can also be written in the form

$$
\varphi_{\mu, k}(r, \theta)=\varphi_{\mu, k}\left(r e^{i \theta}\right)=\varphi_{\mu, k}(y)=\frac{1}{2 \pi} \int_{S^{1}} e^{i \mu<y, \omega>} \chi_{k}(\omega) d \omega
$$

where $\chi_{k}\left(e^{i \theta}\right)=e^{i k \theta}, \mathrm{~d} w$ the measure on the unit circle S^{1} and $<., .>$ the euclidian scalar product on \mathbb{R}^{2}.

From this last integral representation we define the operator \Re, on the space $\mathcal{E}_{*}\left(\mathbb{R} \times S^{1}\right)$ (the space of C^{∞}-functions f on $\mathbb{R} \times S^{1}$ such that $\left.f(-p,-\omega)=f(p, \omega)\right)$ by

$$
\forall y \in \mathbb{R}^{2}, \quad \Re(f)(y)=\frac{1}{2 \pi} \int_{S^{1}} f(<y, \omega>, \omega) d \omega
$$

The operator \Re is the classical dual Radon transform on \mathbb{R}^{2}.
For $(\mu, k) \in \mathbb{C} \times \mathbb{Z}$, we have

$$
\forall y \in \mathbb{R}^{2}, \quad \varphi_{\mu, k}(y)=\Re\left(e^{i \mu<,, .>} \chi_{k}\right)(y)
$$

Let g be a function in $\mathcal{E}_{*}\left(\mathbb{R} \times S^{1}\right)$ and f a function in $\mathcal{D}\left(\mathbb{R}^{2}\right)$ (the space of C^{∞}-functions, with compact support). We have

$$
\int_{\mathbb{R}^{2}} f(y) \Re(g)(y) d y=\frac{1}{2 \pi} \int_{\mathbb{R}} \int_{S^{1}} g(p, \omega)^{t} \Re(f)(p, \omega) d p d \omega
$$

where

$$
\begin{equation*}
{ }^{t} \Re(f)(p, \omega)=\int_{<x, \omega>=p} f(x) d x \tag{1}
\end{equation*}
$$

The operator ${ }^{t} \Re$ is the classical Radon transform on \mathbb{R}^{2}.
We denote by \mathbb{P}^{2} the space of all straight lines of \mathbb{R}^{2}. Each straight line $\xi \in \mathbb{R}^{2}$ is written

$$
\xi=\left\{x \in \mathbb{R}^{2} /<x, \omega>=p\right\}
$$

where ω is a unit vector of \mathbb{R}^{2} and $p \in \mathbb{R}$. If we write ${ }^{t} \Re(f)(\xi)$, instead of ${ }^{t} \Re(f)(p, \omega)$, the relation (1) becomes

$$
{ }^{t} \Re(f)(\xi)=\int_{\xi} f(x) d x
$$

where $d x$ is the Lebesgue measure on the straight line ξ (See [3]).
D. Ludwig and S. Helgason have studied in [3] , [4] the ranges of the transforms \Re and ${ }^{t} \Re$.

In this paper we consider the partial differential operators

$$
\left\{\begin{array}{l}
D_{1}=\frac{\partial^{2}}{\partial \theta^{2}}+4 \alpha \cot g \theta \frac{\partial}{\partial \theta} \\
D_{2}=\frac{\partial^{2}}{\partial y^{2}}+[2(2 \alpha+1) \operatorname{coth} 2 y] \frac{\partial}{\partial y}-\frac{1}{\operatorname{ch}^{2} y} D_{1}+(2 \alpha+1)^{2} \\
\alpha \in \mathbb{R}, \alpha \geq 0 \text { and }(y, \theta) \in] 0,+\infty[\times] 0, \frac{\pi}{2}[.
\end{array}\right.
$$

The operator D_{2} is a part of the radial part of the Laplace-Beltrami operator on the homogeneous space $X=G / K$ where:

- For $\alpha=1, G=S p(1,1), K=S p(1) \times S p(2)$.
- For $\alpha=2, G=\operatorname{Spin}_{0}(1,8), K=\operatorname{Spin}(7)$.
(See [1] and [6]).

Using the precedent method which we have applied to construct the classical Radon transform and its dual on \mathbb{R}^{2}, we define the generalized Radon transform ${ }^{t} \Re_{\alpha}$ and its dual \Re_{α} associated with the operators D_{1}, D_{2}, and we study their properties. Next we characterize the image by the transform ${ }^{t} \Re_{\alpha}$ of the space $L_{1}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$ of square integrable functions on $\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[\right.\right.\right.$ with respect to the measure $W_{p, \alpha}(y, \theta) d y d \theta$, where

$$
W_{p, \alpha}(y, \theta)=(\sin 2 \theta)^{2 \alpha}(\operatorname{ch} y)^{4 \alpha+3}\left[1-(\operatorname{ch} y)^{-2}\right]^{p+\frac{1}{2}} ; p \in \mathbb{R}, p>-\frac{1}{2}, \alpha \geq 0
$$

R. M. Perry has studied in [5] the same question for the Radon transform on the exterior of the unit disk. We can see that this transform which is denoted ${ }^{t} \mathcal{X}_{0}$ in [8], is associated with the following partial differential operators

$$
\begin{cases}\tilde{D}_{1}=\frac{\partial}{\partial \theta} & , \theta \in] 0,2 \pi[\\ \tilde{D}_{2}=\frac{\partial^{2}}{\partial y^{2}}+[2 \operatorname{coth} 2 y] \frac{\partial}{\partial y}-\frac{1}{\operatorname{ch}^{2} y} \tilde{D}_{1}^{2}+1 & , y \in] 0,+\infty[\end{cases}
$$

For other generalized Radon transforms and their duals associated with partial differential operators we can see [8] [9] [10].

The content of this paper is as follow
In the first section we give the solution $\varphi_{n, \mu}$ of the system

$$
\left\{\begin{array}{l}
D_{1} u(y, \theta)=-4 n(n+2 \alpha) u(y, \theta) ; n \in \mathbb{N} \\
D_{2} u(y, \theta)=-\mu^{2} u(y, \theta) ; \mu \in \mathbb{C} \\
u(0,0)=1, \frac{\partial}{\partial \theta} u(y, 0)=0, \frac{\partial}{\partial y} u(0, \theta)=0, \text { for all }(y, \theta) \in\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[\right.\right.\right.
\end{array}\right.
$$

and an integral representation of Mehler type of this solution.
The second section is devoted to the definition of the generalized dual Radon transform \Re_{α} associated with the operators D_{1}, D_{2}.

We define in the third section the generalized Radon transform ${ }^{t} \Re_{\alpha}$ associated with the operators D_{1}, D_{2} and we study its properties.

The last section is reserved for the characterization of the image of the space $L_{1}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$ by the generalized Radon transform ${ }^{t} \Re_{\alpha}$.

1. Eigenfunction of the operators D_{1}, D_{2}

In this section we determine the eigenfunction of the operators D_{1}, D_{2}, regular at the point $(0,0)$, and we give its integral representation of Mehler type using the generalized translation operator associated with the operator D_{1} and the translation operator associated with the operator $\frac{d^{2}}{d \theta^{2}}$.

We consider the partial differential operators

$$
\left\{\begin{array}{l}
D_{1}=\frac{\partial^{2}}{\partial \theta^{2}}+4 \alpha \cot g \theta \frac{\partial}{\partial \theta} \\
D_{2}=\frac{\partial^{2}}{\partial y^{2}}+[2(2 \alpha+1) \operatorname{coth} 2 y] \frac{\partial}{\partial y}-\frac{1}{\operatorname{ch}^{2} y} D_{1}+(2 \alpha+1)^{2} \\
\alpha \in \mathbb{R}, \alpha \geq 0,(y, \theta) \in] 0,+\infty[\times] 0, \frac{\pi}{2}[
\end{array}\right.
$$

Theorem 1-1

The system of partial differential operators

$$
(1-1)\left\{\begin{array}{l}
D_{1} u(y, \theta)=-4 n(n+2 \alpha) u(y, \theta) ; n \in \mathbb{N} . \\
D_{2} u(y, \theta)=-\mu^{2} u(y, \theta) ; \mu \in \mathbb{C} . \\
u(0,0)=1, \frac{\partial}{\partial \theta} u(y, 0)=0, \frac{\partial}{\partial y} u(0, \theta)=0, \text { for all }(y, \theta) \in\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[;\right.\right.\right.
\end{array}\right.
$$

admits an unique solution $\varphi_{n, \mu}$ given by:

$$
\varphi_{n, \mu}(y, \theta)=R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \theta))(\operatorname{ch} y)^{n} \varphi_{\mu}^{(\alpha, \alpha+n)}(y)
$$

with $R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}$ is the Gegenbauer polynomial of degree n such that

$$
R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(1)=1
$$

and $\varphi_{\mu}^{(\alpha, \alpha+n)}$ is the Jacobi function defined by:
$\psi(y)=\varphi_{\mu}^{(\alpha, \alpha+n)}(y)={ }_{2} F_{1}\left(\frac{1}{2}(2 \alpha+n+1+i \mu), \frac{1}{2}(2 \alpha+n+1-i \mu) ; \alpha+1 ;-\operatorname{sh}^{2} y\right)$,
where ${ }_{2} F_{1}$ is the Gauss hypergeometric function.

Proof. We put $\varphi_{n, \mu}(y, \theta)=R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \theta))(\operatorname{ch} y)^{n} \psi(y)$, then the function $\varphi_{n, \mu}$ is a solution of the system (1-1) if and only if the function ψ is a solution of the differential equation:

$$
\left\{\begin{aligned}
& \frac{\partial^{2}}{\partial y^{2}} \psi(y)+ {[(2 \alpha+1) \operatorname{coth} y+(2 \alpha+2 n+1) \operatorname{th} y] \frac{\partial}{\partial y} \psi(y) } \\
&=-\left[\mu^{2}+(2 \alpha+2 n+1)^{2}\right] \psi(y) \\
& \psi(0)=1, \frac{\partial}{\partial y} \psi(0)=0
\end{aligned}\right.
$$

or in [1] page 86 , this differential equation admits an unique solution given by:

$$
\psi(y)=\varphi_{\mu}^{(\alpha, \alpha+n)}(y)={ }_{2} F_{1}\left(\frac{1}{2}(2 \alpha+n+1+i \mu), \frac{1}{2}(2 \alpha+n+1-i \mu) ; \alpha+1 ;-\operatorname{sh}^{2} y\right)
$$

where ${ }_{2} F_{1}$ is the Gauss hypergeometric function.
Remark 1-1. For $\alpha \geq 0$, the polynomial $R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos \omega)$, has the following expression using the Gauss hypergeometric function:
i) If $\alpha>0$:

$$
R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos \omega)={ }_{2} F_{1}\left(2 \alpha+n,-n ; \alpha+\frac{1}{2} ;-\sin ^{2} \frac{\omega}{2}\right), \omega \in\left[0, \frac{\pi}{2}[\right.
$$

ii) If $\alpha=0$:

$$
R_{n}^{(-1 / 2,-1 / 2)}(\cos \omega)={ }_{2} F_{1}\left(n,-n ; \frac{1}{2} ;-\sin ^{2} \frac{\omega}{2}\right)=T_{n}(\cos \omega), \omega \in\left[0, \frac{\pi}{2}[\right.
$$

where T_{n}, is the Tchebycheff polynomial of the first kind and degree n.

Proposition 1-1

For $\alpha \geq 0, n \in \mathbb{N}$ and $\mu \in \mathbb{C}$, the function $(\operatorname{ch} y)^{n} \varphi_{\mu}^{(\alpha, \alpha+n)}(y)$ possess the following integral representations of Mehler type:
i) If $\alpha>0$:

$$
\begin{gathered}
(\operatorname{ch} y)^{n} \varphi_{\mu}^{(\alpha, \alpha+n)}(y)=\frac{2^{-\alpha+3 / 2} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)(\operatorname{sh} 2 y)^{2 \alpha}} \int_{0}^{y}(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{\alpha-1 / 2} \cos (\mu s) \\
\times R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}\left(\frac{\operatorname{chs}}{\operatorname{ch} y}\right) d s
\end{gathered}
$$

ii) If $\alpha=0$:

$$
(\operatorname{ch} y)^{n} \varphi_{\mu}^{(0, n)}(y)=\frac{2 \sqrt{2}}{\pi} \int_{0}^{y}(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{-1 / 2} \cos (\mu s) \cos \left[n \operatorname{Arccos}\left(\frac{\operatorname{ch} s}{\operatorname{ch} y}\right)\right] d s
$$

Proof. i) If $\alpha>0$:
From [6] page 8, for $n \in \mathbb{N}, \mu \in \mathbb{C}$ and $y>0$, the function $(\operatorname{ch} y)^{n} \varphi_{\mu}^{(\alpha, \alpha+n)}(y)$ possess the integral representation:

$$
\begin{aligned}
(\operatorname{ch} y)^{n} \varphi_{\mu}^{(\alpha, \alpha+n)}(y)= & \frac{2^{-\alpha+3 / 2} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)(\operatorname{sh} y)^{2 \alpha}(\operatorname{ch} y)^{2 \alpha}} \int_{0}^{y}(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{\alpha-1 / 2} \cos (\mu s) \\
& \times{ }_{2} F_{1}\left(2 \alpha+n,-n ; \alpha+\frac{1}{2} ; \frac{\operatorname{ch} y-\operatorname{ch} s}{2 \operatorname{ch} y}\right) d s
\end{aligned}
$$

Using the precedent remark we have:

$$
R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos \omega)={ }_{2} F_{1}\left(2 \alpha+n,-n ; \alpha+\frac{1}{2} ;-\sin ^{2}\left(\frac{\omega}{2}\right)\right), \omega \in\left[0, \frac{\pi}{2}[\right.
$$

Taking $\omega=\operatorname{Arccos} \frac{\mathrm{ch} s}{\operatorname{ch} y}$, we have:

$$
\sin ^{2}\left(\frac{\omega}{2}\right)=\frac{\operatorname{ch} y-\operatorname{ch} s}{2 \operatorname{ch} y}
$$

so that

$$
{ }_{2} F_{1}\left(2 \alpha+n,-n ; \alpha+\frac{1}{2} ; \operatorname{ch} y-\operatorname{ch} s 2 \operatorname{ch} y\right)=R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}\left(\frac{\operatorname{ch} s}{\operatorname{ch} y}\right) .
$$

ii) Similarly we get the result for $\alpha=0$.

Theorem 1-2

The function $\varphi_{n, \mu}, n \in \mathbb{N}, \mu \in \mathbb{C}$, possess the following integral representations of Mehler type:
i) If $\alpha>0$:
$(1-2) \varphi_{n, \mu}(y, \theta)=$
ii) If $\alpha=0$:

$$
(1-3) \varphi_{n, \mu}(y, \theta)= \begin{cases}\frac{\sqrt{2}}{\pi} \int_{0}^{y}(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{-1 / 2} \cos (\mu s) T_{n}(\cos 2 \theta) T_{n}(\cos \omega) d s \\ & ; \text { if } y>0, \theta \in\left[0, \frac{\pi}{2}[\right. \\ T_{n}(\cos (2 \theta)) & \text {; if } y=0, \theta \in\left[0, \frac{\pi}{2}[\right.\end{cases}
$$

with $\omega=\operatorname{Arccos} \frac{\mathrm{ch} s}{\operatorname{ch} y}$.

Proof. We deduce the result from proposition 1-1 and theorem 1-1.
Notations. We denote by

* $L^{1}\left(\sin ^{2 \alpha}(2 \theta) d \theta\right)$ the space of measurable functions φ on $\left[0, \frac{\pi}{2}[\right.$, satisfying

$$
\int_{0}^{\pi / 2}|\varphi(\theta)| \sin ^{2 \alpha}(2 \theta) d \theta<+\infty
$$

* $L^{1}\left(\left[0, \frac{\pi}{2}[)\right.\right.$ the space of integrable functions φ on $\left[0, \frac{\pi}{2}[\right.$ with respect to the measure $\mathrm{d} \theta$.
* $\tau_{\theta}^{(\alpha)}, \alpha>0$, the generalized translation operator associated with the operator D_{1} is defined on $L^{1}\left(\sin ^{2 \alpha}(2 \theta) d \theta\right)$ by

$$
\begin{equation*}
\tau_{\theta}^{(\alpha)}(\varphi)(\xi)=\int_{0}^{\pi / 2} \varphi(\psi) K(\cos 2 \theta, \cos 2 \xi, \cos 2 \psi) \sin ^{2 \alpha}(2 \psi) d \psi \tag{1-4}
\end{equation*}
$$

where the kernel K is given by:

$$
K(\cos 2 \theta, \cos 2 \omega, \cos 2 \psi)= \begin{cases}\frac{\Gamma\left(\alpha+\frac{1}{2}\right)\left[1-\cos ^{2} 2 \theta-\cos ^{2} 2 \omega-\cos ^{2} 2 \psi+2 \cos 2 \theta \cos 2 \omega \cos 2 \psi\right]^{\alpha-1}}{(\sin 2 \theta \sin 2 \omega \sin 2 \psi)^{2 \alpha-1}} \\ \quad & \text { if }|\theta-\omega|<\omega<\theta+\omega \\ 0 & \text {; otherwise }\end{cases}
$$

(See [2], [7], page 116).

* $\tau_{\theta}^{(0)}$ the translation operator associated with the operator $\frac{d^{2}}{d \theta^{2}}$ is defined on $L^{1}\left(\left[0, \frac{\pi}{2}[)\right.\right.$ by:

$$
\begin{equation*}
\tau_{\theta}^{(0)}(f)(\xi)=\frac{1}{2}[f(\theta+\xi)+f(\theta-\xi)] \tag{1-5}
\end{equation*}
$$

Properties of $\tau_{\theta}^{(\alpha)}, \alpha \geq 0$:
i) For every functions φ and Φ in $\mathrm{L}^{1}\left(\sin ^{2 \alpha}(2 \theta) d \theta\right)$, we have for $\alpha \geq 0$:

$$
\int_{0}^{\pi / 2} \varphi(\theta) \tau_{\theta}^{(\alpha)}(\Phi)(\xi) \sin ^{2 \alpha}(2 \theta) d \theta=\int_{0}^{\pi / 2} \Phi(\theta) \tau_{\theta}^{(\alpha)}(\varphi)(\xi) \sin ^{2 \alpha}(2 \theta) d \theta
$$

ii) If $\alpha>0$:

$$
\tau_{\theta}^{(\alpha)}\left(R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}\right)(\xi)=R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos 2 \theta) R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos 2 \xi)
$$

iii) If $\alpha=0$:

$$
\tau_{\theta}^{(0)}\left(T_{n}\right)(\xi)=T_{n}(\cos 2 \theta) T_{n}(\cos 2 \xi)
$$

(See [2] page 113).

Theorem 1-3

For every $n \in \mathbb{N}$, the relations(1-2),(1-3) can be written as follow
i) If $\alpha>0$:

$$
\varphi_{n, \mu}(y, \theta)=\left\{\begin{aligned}
\frac{2^{\alpha+3 / 2} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}(\operatorname{sh} 2 y)^{-2 \alpha} & \int_{0}^{y}(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{\alpha-1 / 2} \cos (\mu s) \\
\times \tau_{\theta}^{(\alpha)}\left(R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}\right)\left(\frac{\omega}{2}\right) d s & ; \text { if } y>0, \theta \in\left[0, \frac{\pi}{2}[\right. \\
R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \theta)) & ; \text { if } y=0, \theta \in\left[0, \frac{\pi}{2}[\right.
\end{aligned}\right.
$$

ii) If $\alpha=0$:

$$
\varphi_{n, \mu}(y, \theta)= \begin{cases}\frac{2 \sqrt{2}}{\pi} \int_{0}^{y}(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{-1 / 2} \cos (\mu s) & \\ & \times \tau_{\theta}^{(0)}\left(T_{n}\right)\left(\frac{\omega}{2}\right) d s \\ & ; \text { if } y>0, \theta \in\left[0, \frac{\pi}{2}[\right. \\ T_{n}(\cos (2 \theta)) & ; \text { if } y=0, \theta \in\left[0, \frac{\pi}{2}[\right.\end{cases}
$$

with $\omega=\operatorname{Arccos} \frac{\mathrm{ch} s}{\mathrm{ch} y}$.

2. The generalized dual Radon transform associated with the operators D_{1}, D_{2}.

Using the integral representations of Mehler type of the function $\varphi_{n, \mu}$, we define in this section the generalized dual Radon transform associated with the operators D_{1}, D_{2}.

Notation. We denote by $C_{*}(\mathbb{R} \times]-\frac{\pi}{2}, \frac{\pi}{2}[)$. The space of functions $f(y, \theta)$, which are continuous on $\mathbb{R} \times]-\frac{\pi}{2}, \frac{\pi}{2}[$ and even with respect to y and θ.

Definition 2-1. For $\alpha \geq 0$, we define the generalized dual Radon transform \Re_{α} associated with the operators D_{1}, D_{2} on $C_{*}(\mathbb{R} \times]-\frac{\pi}{2}, \frac{\pi}{2}[)$ by:

$$
\Re_{\alpha}(f)(y, \theta)=\left\{\begin{aligned}
& \frac{2^{\alpha+3 / 2} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}(\operatorname{sh} 2 y)^{-2 \alpha} \int_{0}^{y}(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{\alpha-1 / 2} \\
& \times \tau_{\theta}^{(\alpha)}(f(s, .))\left(\frac{\omega}{2}\right) d s \\
& ; \text { if } y>0, \theta \in\left[0, \frac{\pi}{2}[\right. \\
& f(0, \theta) \quad ; \text { if } y=0, \theta \in\left[0, \frac{\pi}{2}[\right.
\end{aligned}\right.
$$

with $\omega=\operatorname{Arccos} \frac{\mathrm{ch} s}{\mathrm{ch} y}$.
Remark 2-1. From theorem 1-2, we have for every $\alpha \geq 0, n \in \mathbb{N}, \mu \in \mathbb{C}$ and $(y, \theta) \in \mathbb{R} \times]-\frac{\pi}{2}, \frac{\pi}{2}[:$
i) If $\alpha>0$:

$$
\varphi_{n, \mu}(y, \theta)=\Re_{\alpha}\left(\cos (\mu .) R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(.)\right)(y, \theta) .
$$

ii) If $\alpha=0$:

$$
\varphi_{n, \mu}(y, \theta)=\Re_{0}\left(\cos (\mu .) T_{n}(.)\right)(y, \theta)
$$

Proposition 2-1

If $f(y, \theta)=R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \theta)) h(y)$, with $n \in \mathbb{N}$ and h an even continuous function on \mathbb{R}, then we have
i) If $\alpha>0$:
$(2-1) \Re_{\alpha}(f)(y, \theta)=\frac{2^{\alpha+3 / 2} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}(\operatorname{sh} 2 y)^{-2 \alpha} R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \theta))$

$$
\times \int_{0}^{y} h(s)(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{\alpha-1 / 2} R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}\left(\frac{\operatorname{ch} s}{\operatorname{ch} y}\right) d s
$$

ii) If $\alpha=0$:
$(2-2) \quad \Re_{0}(f)(y, \theta)=\frac{2 \sqrt{2}}{\pi} T_{n}(\cos (2 \theta)) \int_{0}^{y} h(s)(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{-1 / 2} T_{n}\left(\frac{\operatorname{ch} s}{\operatorname{ch} y}\right) d s$

Proof. The result is a consequence of the definition 2-1 and the properties of the generalized translation operator $\tau_{\theta}^{(\alpha)}, \alpha \geq 0$.
3. The generalized Radon transform associated with the operators D_{1}, D_{2}.

In this section we define the generalized Radon transform associated with the operators D_{1}, D_{2} and we give its expression.

Notation. We denote by $C_{*, c}(\mathbb{R} \times]-\frac{\pi}{2}, \frac{\pi}{2}[)$ the subspace of $C_{*}(\mathbb{R} \times]-\frac{\pi}{2}, \frac{\pi}{2}[)$ consists of compact support functions.

Proposition 3-1

Let $g \in C_{*}(\mathbb{R} \times]-\frac{\pi}{2}, \frac{\pi}{2}[)$ and $f \in C_{*, c}(\mathbb{R} \times]-\frac{\pi}{2}, \frac{\pi}{2}[)$, then for every $\alpha \geq 0$, we have:

$$
\begin{aligned}
& \int_{0}^{+\infty} \int_{0}^{\pi / 2} f(y, \theta) \Re_{\alpha}(g)(y, \theta)(\sin 2 \theta)^{2 \alpha}(\operatorname{sh} 2 y)^{2 \alpha+1} d \theta d y= \\
& \int_{0}^{+\infty} \int_{0}^{\pi / 2} g(s, \psi)\left[\frac{2^{\alpha+3 / 2} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}(\operatorname{sh} 2 y)^{-2 \alpha}\right. \\
& \left.\quad \times \int_{s}^{+\infty}(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{\alpha-1 / 2} \tau_{\psi}^{(\alpha)}(f(y, .))\left(\frac{\omega}{2}\right) \operatorname{sh} 2 y d y\right](\sin 2 \psi)^{2 \alpha} d \psi d s
\end{aligned}
$$

with $\omega=\operatorname{Arc} \cos \left(\frac{\mathrm{chs}}{\mathrm{ch} y}\right)$.
Proof. We put

$$
\begin{aligned}
K_{\alpha}(s, y) & =\frac{2^{\alpha+3 / 2} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{\alpha-1 / 2}(\operatorname{sh} 2 y)^{-2 \alpha} \\
A_{\alpha}(y) & =(\operatorname{sh} 2 y)^{2 \alpha+1}
\end{aligned}
$$

From the definition 2-1, we have

$$
\begin{aligned}
I & =\int_{0}^{+\infty} \int_{0}^{\pi / 2} f(y, \theta) \Re_{\alpha}(g)(y, \theta)(\sin 2 \theta)^{2 \alpha} A_{\alpha}(y) d \theta d y \\
& =\int_{0}^{+\infty} \int_{0}^{\pi / 2} f(y, \theta)\left[\int_{0}^{y} K_{\alpha}(s, y) \tau_{\theta}^{(\alpha)}(g(s, .))\left(\frac{\omega}{2}\right) d s\right](\sin 2 \theta)^{2 \alpha} A_{\alpha}(y) d \theta d y .
\end{aligned}
$$

Using Fubini's theorem, we get
$I=\int_{0}^{+\infty} \int_{0}^{y}\left[\int_{0}^{\pi / 2} f(y, \theta) \tau_{\theta}^{(\alpha)}(g(s,)).\left(\frac{\omega}{2}\right)(\sin 2 \theta)^{2 \alpha} d \theta\right] K_{\alpha}(s, y) A_{\alpha}(y) d s d y$.
From the property 1 of $\tau_{\theta}^{(\alpha)}$, it follows

$$
I=\int_{0}^{+\infty} \int_{0}^{y}\left[\int_{0}^{\pi / 2} g(s, \theta) \tau_{\theta}^{(\alpha)}(f(y, .))\left(\frac{\omega}{2}\right)(\sin 2 \theta)^{2 \alpha} d \theta\right] K_{\alpha}(s, y) A_{\alpha}(y) d s d y
$$

By the theorem of changing variables, we deduce

$$
I=\int_{0}^{+\infty} \int_{0}^{+\infty} \int_{0}^{\pi / 2} g(s, \theta) \tau_{\theta}^{(\alpha)}(f(y, .))\left(\frac{\omega}{2}\right)(\sin 2 \theta)^{2 \alpha} K_{\alpha}(s, y) A_{\alpha}(y) d \theta d s d y
$$

The Fubini's theorem implies

$$
I=\int_{0}^{+\infty} \int_{0}^{\pi / 2} g(s, \theta)\left[\int_{s}^{+\infty} \tau_{\theta}^{(\alpha)}(f(y, .))\left(\frac{\omega}{2}\right) K_{\alpha}(s, y) A_{\alpha}(y) d y\right](\sin 2 \theta)^{2 \alpha} d \theta d s
$$

We get the result by replacing K_{α} and A_{α} by their expressions.
Definition 3-1. For $\alpha \geq 0$, we define the generalized Radon transform ${ }^{t} \Re_{\alpha}$ associated with the operators D_{1}, D_{2} on $C_{*, c}(\mathbb{R} \times]-\frac{\pi}{2}, \frac{\pi}{2}[)$ by

$$
\begin{gathered}
(3-1){ }^{t} \Re_{\alpha}(f)(s, \gamma)=\frac{2^{\alpha+1 / 2} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}(\operatorname{sh} 2 s)^{-2 \alpha} \int_{s}^{+\infty}(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{\alpha-1 / 2} \\
\times \tau_{\gamma}^{(\alpha)}(f(y, .))\left(\frac{\omega}{2}\right) \operatorname{sh} 2 y d y
\end{gathered}
$$

with $\omega=\operatorname{Arccos}\left(\frac{\operatorname{ch} s}{\operatorname{ch} y}\right)$.

Proposition 3-2

If $\quad f(y, \theta)=R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \theta)) h(y)$, with $n \in \mathbb{N}$ and h an even continuous function on \mathbb{R} with compact support, then
i) For $\alpha>0$:

$$
\begin{aligned}
(3-2) \quad{ }^{t} \Re_{\alpha}(f) & (s, \gamma)=\frac{2^{\alpha+3 / 2} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+1 / 2)} R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \gamma)) \\
& \times \int_{s}^{+\infty} h(y)(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{\alpha-1 / 2} R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}\left(\frac{\operatorname{ch} s}{\operatorname{ch} y}\right) \operatorname{sh} 2 y d y
\end{aligned}
$$

ii) For $\alpha=0$:

$$
\begin{aligned}
(3-3) \quad{ }^{t} \Re_{0}(f)(s, \gamma)=\frac{2 \sqrt{2}}{\pi} & T_{n}(\cos (2 \gamma)) \\
& \times \int_{s}^{+\infty} h(y)(\operatorname{ch} 2 y-\operatorname{ch} 2 s)^{-1 / 2} T_{n}\left(\frac{\operatorname{ch} s}{\operatorname{ch} y}\right) \operatorname{sh} 2 y d y
\end{aligned}
$$

Proof.
We deduce this result from definition 3-1 and the properties 2,3 of the generalized translation operator $\tau_{\gamma}^{(\alpha)}$.

Corollary 3-1

For $k, n \in \mathbb{N}$, we have
i) If $\alpha>0$:

$$
\begin{aligned}
& { }^{t} \Re_{\alpha}\left\{(\operatorname{ch} y)^{-2 \alpha-k-2} R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \theta))\right\}(s, \gamma)=\frac{2^{\alpha+1} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}(\text { chs })^{-k-1} \\
& \quad \times R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \gamma)) \int_{0}^{1} R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(t)\left(1-t^{2}\right)^{\alpha-1 / 2} t^{k} d t
\end{aligned}
$$

ii) If $\alpha=0$:

$$
\begin{aligned}
& { }_{\Re_{0}}\left\{(\operatorname{ch} y)^{-k-2} T_{n}(\cos (2 \theta))\right\}(s, \gamma)=\frac{4}{\pi}(\operatorname{ch} s)^{-k-1} T_{n}(\cos (2 \gamma)) \\
& \quad \times \int_{0}^{1} T_{n}(t)\left(1-t^{2}\right)^{-1 / 2} t^{k} d t
\end{aligned}
$$

Notation. For $k, n \in \mathbb{N}$, we put:
(3-4)

$$
C_{\alpha}(n, k)= \begin{cases}\frac{2^{\alpha+1} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{0}^{1} R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(t)\left(1-t^{2}\right)^{\alpha-1 / 2} t^{k} d t & ; \text { if } \alpha>0 \\ \frac{4}{\pi} \int_{0}^{1} T_{n}(t)\left(1-t^{2}\right)^{-1 / 2} t^{k} d t & \text { if } \alpha=0\end{cases}
$$

Proposition 3-3

i) If $\alpha \geq 0$, we have: $C_{\alpha}(n, k)=0$, if $n+k$ even and $k<n$.
ii) If $k \geq n$, we have:
$(3-5) \quad C_{\alpha}(n, k)=\frac{2^{2 \alpha-n} \Gamma(\alpha+1) \Gamma(k+1) \Gamma\left(\frac{k-n}{2}+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(\alpha+1+\frac{k+n}{2}\right) \Gamma(k-n+1)} \quad ; i f \quad \alpha>0$
$(3-6) \quad C_{0}(n, k)=\frac{2^{1-k} \Gamma(k+1)}{\sqrt{\pi} \Gamma\left(\frac{k+n}{2}+1\right) \Gamma\left(\frac{k-n}{2}+1\right)} \quad ;$ if $\quad \alpha=0$

4. Characterization of the range of the generalized Radon transform ${ }^{t} \Re_{\alpha}$.

In this section we characterize the range of the generalized Radon transform ${ }^{t} \Re_{\alpha}$ associated with the operators D_{1}, D_{2}. The method used has been applied by R. M. Perry in [5] to characterize the range of the Radon transform on the exterior of the unit disk.

Notations. We denote by:
i) $Q_{n}^{*}(a, b ; x)$, for $\operatorname{Re}(a)>-1, \operatorname{Re}(b)>-1$, the polynomial of degree n satisfying:

$$
\begin{cases}\int_{0}^{1} x^{a}(1-x)^{b} Q_{n}^{*}(a, b ; x) x^{k} d x=0 \quad & ; \text { if } \quad 0 \leq k<n \\ \int_{0}^{1} x^{a}(1-x)^{b} Q_{n}^{*}(a, b ; x) x^{n} d x>0 \quad ; \text { if } \quad k=n \\ \int_{0}^{1} x^{a}(1-x)^{b}\left[Q_{n}^{*}(a, b ; x)\right]^{2} d x=1 . & \end{cases}
$$

(See [5]).
ii) $L_{1}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$ the space of square integrable functions on $[0,+\infty[\times$ $\left[0, \frac{\pi}{2}\left[\right.\right.$ with respect to the measure $W_{p, \alpha}(y, \theta) d y d \theta$, where:

$$
W_{p, \alpha}(y, \theta)=(\sin 2 \theta)^{2 \alpha}(\operatorname{ch} y)^{4 \alpha+3}\left[1-(\operatorname{ch} y)^{-2}\right]^{p+1 / 2} ; p \in \mathbb{R}, p>-\frac{1}{2}, \alpha \geq 0
$$

Lemma 4-1

The polynomial $Q_{n}^{*}(a, b ; x)$ has the following expansion

$$
\begin{equation*}
Q_{n}^{*}(a, b ; x)=\sum_{k=0}^{n} q_{n, k}^{*}(a, b) x^{k} \tag{4-1}
\end{equation*}
$$

where

$$
\begin{aligned}
(4-2) \quad q_{n, k}^{*}(a, b)= & \frac{(-1)^{n-k} \Gamma(a+b+n+k+1)}{\Gamma(n-k+1) \Gamma(k+1) \Gamma(a+k+1)} \\
& \times\left[\frac{(a+b+2 n+1) \Gamma(n+1) \Gamma(a+n+1)}{\Gamma(b+n+1) \Gamma(a+b+n+1)}\right]^{1 / 2}
\end{aligned}
$$

(See [5]).

Theorem 4-1

We consider the functions
i) For $\alpha>0$:

$$
f_{m, n}^{p, \alpha}(y, \theta)=(\operatorname{ch} y)^{-2 \alpha-\Delta m-2} R_{m}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \theta)) Q_{n}^{*}\left(\Delta m-\frac{1}{2}, p ;(\operatorname{ch} y)^{-2}\right)
$$

ii) If $\alpha=0$:

$$
f_{m, n}^{p}(y, \theta)=(\operatorname{ch} y)^{-\Delta m-2} T_{m}(\cos (2 \theta)) Q_{n}^{*}\left(\Delta m-\frac{1}{2}, p ;(\operatorname{ch} y)^{-2}\right)
$$

where $p \in \mathbb{R}, n, m \in \mathbb{N}$ and $\Delta m= \begin{cases}0 & \text {, if } m \text { is even } \\ 1 & \text {,if } m \text { is odd . }\end{cases}$
Then for fixed α and p, the system $\left\{f_{m, n}^{p, \alpha}, m, n \in \mathbb{N}\right\}$, is an orthogonal complete system in $L_{1}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$.

Proof. We get the result from the orthogonality and the completion of the systems

$$
\left\{R_{m}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \theta)), m \in \mathbb{N}\right\} \text { and }\left\{Q_{n}^{*}(a, b ; x), n \in \mathbb{N}\right\}
$$

Remark 4-1. For fixed m, n and p, we have

$$
\left\|f_{m, n}^{p, \alpha}\right\|_{L_{1}^{2}}^{2}= \begin{cases}\frac{2^{-2 \alpha} \pi \Gamma(m+1)}{(m+\alpha) \Gamma(m+2 \alpha)} & \text {;if } \quad \alpha>0 \\ \frac{\pi}{4} & \text {;if } \quad \alpha=0\end{cases}
$$

In the following we shall evaluate the generalized Radon transform ${ }^{t} \Re_{\alpha}\left(f_{m, n}^{p, \alpha}\right)$ in terms of the functions $h_{m, k}^{\alpha}$ given for all $(y, \theta) \in\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[\right.\right.\right.$ by

$$
h_{m, k}^{\alpha}(y, \theta)= \begin{cases}(\operatorname{ch} y)^{-2 \alpha-k-2} R_{n}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \theta)) & ; \text { if } \quad \alpha>0 \\ (\operatorname{ch} y)^{-k-2} T_{n}(\cos (2 \theta)) & ; \text { if } \quad \alpha=0\end{cases}
$$

Term-by-term application of the corollary 3-1 and using the linearity of the generalized Radon transform, we obtain the following result.

Proposition 4-1

For $\alpha \geq 0$ and $(y, \theta) \in\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[\right.\right.\right.$, we have

$$
\begin{equation*}
f_{m, n}^{p, \alpha}(y, \theta)=\sum_{k=0}^{n} q_{n, k}^{*}\left(\Delta m-\frac{1}{2}, p\right) h_{m,(\Delta m+2 k)}^{\alpha}(y, \theta) \tag{4-3}
\end{equation*}
$$

with $q_{n, k}^{*}\left(\Delta m-\frac{1}{2}, p\right)$, given by lemma 4-1.
Proof. The result is a consequence of the expression of functions $f_{m, n}^{p, \alpha}$ and the lemma 4-1.

Corollary 4-1

For all $m, n \in \mathbb{N},(s, \gamma) \in\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[\right.\right.\right.$, we have
i) For $\alpha>0$:

$$
\begin{aligned}
t_{\Re_{\alpha}}\left(f_{m, n}^{p, \alpha}\right)(s, \gamma)= & \sum_{k=0}^{n} q_{n, k}^{*}\left(\Delta m-\frac{1}{2}, p\right) C_{\alpha}(m, \Delta m+2 k)(\mathrm{ch} s)^{-2 k-\Delta m-1} \\
& \times R_{m}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \gamma))
\end{aligned}
$$

ii) For $\alpha=0$:

$$
\begin{aligned}
&{ }_{\Re_{\Re_{0}}}\left(f_{m, n}^{p}\right)(s, \gamma)=\sum_{k=0}^{n} q_{n, k}^{*}\left(\Delta m-\frac{1}{2}, p\right) C_{0}(m, \Delta m+2 k)(\operatorname{chs})^{-2 k-\Delta m-1} \\
& \times T_{m}(\cos (2 \gamma))
\end{aligned}
$$

with $C_{\alpha}(m, \Delta m+2 k)$, given by the relations (3-5),(3-6) and (3-7).

Remark 4-2. Let $a \in \mathbb{R}$, if $[a]$ means the entire part of a, then from the remark $3-1$, i) and the corollary $4-1$, we have for $\alpha \geq 0$:

$$
\begin{equation*}
{ }^{t} \Re_{\alpha}\left(f_{m, n}^{p, \alpha}\right) \equiv 0 \quad ; \text { if } \quad n<\left[\frac{m}{2}\right] \tag{4-4}
\end{equation*}
$$

Theorem 4-2

For all $(s, \gamma) \in\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[\right.\right.\right.$, we have
i) For $\alpha>0$:
$(4-5)$

$$
\Re_{\alpha}\left(f_{m, n}^{p, \alpha}\right)(s, \gamma)= \begin{cases}0 & ; \text { if } n<\left[\frac{m}{2}\right] \\ d_{m, n}^{p, \alpha} R_{m}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \gamma))(\operatorname{ch} s)^{-m-1} & ; \text { if } n \geq\left[\frac{m}{2}\right] \\ \times Q_{n-\left[\frac{m}{2}\right]}^{*}\left(m+\alpha, p-\alpha-\frac{1}{2} ;(\operatorname{ch} s)^{-2}\right)\end{cases}
$$

with

$$
\begin{aligned}
& (4-6) d_{m, n}^{p, \alpha}=\frac{2^{\alpha} \Gamma(\alpha+1)}{\sqrt{\pi}} \\
& \times\left[\frac{\Gamma(n+1) \Gamma\left(n+\Delta m+\frac{1}{2}\right) \Gamma\left(p+n-\alpha+\frac{\Delta m-m+1}{2}\right) \Gamma\left(p+n+\frac{\Delta m+m+1}{2}\right)}{\Gamma(p+n+1) \Gamma\left(p+n+\Delta m+\frac{1}{2}\right) \Gamma\left(n+\frac{\Delta m-m+2}{2}\right) \Gamma\left(n+\alpha+\frac{\Delta m+m+2}{2}\right)}\right]^{1 / 2}
\end{aligned}
$$

ii) For $\alpha=0$:

$$
(4-7) \quad{ }^{t} \Re_{0}\left(f_{m, n}^{p}\right)(s, \gamma)= \begin{cases}0 & ; \text { if } n<\left[\frac{m}{2}\right] \\ d_{m, n}^{p} T_{m}(\cos (2 \gamma))(\mathrm{ch} s)^{-m-1} & \times Q_{n-\left[\frac{m}{2}\right]}^{*}\left(m, p-\frac{1}{2} ;(\mathrm{ch} s)^{-2}\right) ; \text { if } n \geq\left[\frac{m}{2}\right]\end{cases}
$$

with

$$
\begin{aligned}
& (4-8) \quad d_{m, n}^{p}=\frac{2}{\sqrt{\pi}} \\
& \quad \times\left[\frac{\Gamma(n+1) \Gamma\left(n+\Delta m+\frac{1}{2}\right) \Gamma\left(p+n+\frac{\Delta m-m+1}{2}\right) \Gamma\left(p+n+\frac{\Delta m+m+1}{2}\right)}{\Gamma(p+n+1) \Gamma\left(p+n+\Delta m+\frac{1}{2}\right) \Gamma\left(n+\frac{\Delta m-m+2}{2}\right) \Gamma\left(n+\frac{\Delta m+m+2}{2}\right)}\right]^{1 / 2}
\end{aligned}
$$

Proof. We get the result from the corollary 4-1 and the relations (4-1),..,(4-4).

Notation. We denote by $L_{2}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$ the space of square integrable functions on $\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}\left[\right.\right.\right.\right.$ with respect to the measure $W_{p, \alpha}^{\prime}(s, \gamma) d s d \gamma$, where:

$$
W_{p, \alpha}^{\prime}(s, \gamma)=(\sin 2 \gamma)^{2 \alpha}(\operatorname{ch} s)^{-2 \alpha}\left[1-(\operatorname{ch} s)^{-2}\right]^{p-\alpha} ; \alpha \geq 0, p \in \mathbb{R}, p>\alpha-\frac{1}{2}
$$

Remark 4-3. If we take $d_{m, n}^{p, \alpha}=0$, for $n<\left[\frac{m}{2}\right]$, then we have

$$
\left\|^{t} \Re_{\alpha}\left(f_{m, n}^{p, \alpha}\right)\right\|_{L_{2}^{2}}^{2}= \begin{cases}\frac{\sqrt{\pi}}{2} \frac{\Gamma\left(\alpha+\frac{1}{2}\right)}{(m+\alpha) \Gamma(\alpha)}\left(d_{m, n}^{p, \alpha}\right)^{2} & ; \text { if } \quad \alpha>0 \\ \frac{\pi}{4}\left(d_{m, n}^{p}\right)^{2} & ; \text { if } \quad \alpha=0\end{cases}
$$

Lemma 4-2

i) For fixed $\alpha \geq 0, p \in \mathbb{R}, p>\alpha-\frac{1}{2}$, for large m and n with $n \geq\left[\frac{m}{2}\right]$, there exist two positive constants $C_{1}(p)$ and $C_{2}(p)$ such that:
$(4-9) \quad C_{1}(p) \leq d_{m, n}^{p, \alpha}\left[(n+1)^{\alpha+1 / 2}\left(\frac{n+1}{n-\frac{m}{2}+1}\right)\right]^{(p-\alpha) / 2-1 / 4} \leq C_{2}(p)$.
ii) The generalized Radon transform ${ }^{t} \Re_{\alpha}$ associated with the operators D_{1}, D_{2}, is a compact operator from $L_{1}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$ into $L_{2}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$.

Proof. i) The result is a consequence of the following property of the Γ function:
For large $x>0$, there exist $a_{1}, a_{2}>0$, such that:

$$
a_{1} \leq \frac{\Gamma(x)}{x^{x-1 / 2} e^{-x}} \leq a_{2}
$$

ii) We have the result from i) and the fact that if $p>\alpha-\frac{1}{2}$, the function $d_{m, n}^{p, \alpha}$ is bounded as a function of m and n.

Remark 4-4. If $f \in L_{1}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$, then from the theorem 4-1, for all $(y, \theta) \in\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[\right.\right.\right.$, we have for $\alpha \geq 0$:

$$
\begin{equation*}
f(y, \theta)=\sum_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}} \gamma_{m, n}^{p, \alpha} f_{m, n}^{p, \alpha}(y, \theta) \tag{4-10}
\end{equation*}
$$

with

$$
\begin{equation*}
\gamma_{m, n}^{p, \alpha}=\left\|f_{m, n}^{p, \alpha}\right\|_{L_{1}^{2}}^{-2}<f, f_{m, n}^{p, \alpha}>_{L_{1}^{2}} \tag{4-11}
\end{equation*}
$$

Furthermore the function ${ }^{t} \Re_{\alpha}(f)$ belongs to $L_{2}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$ and we have:

$$
\begin{equation*}
{ }^{t} \Re_{\alpha}(f)(s, \gamma)=\sum_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}} \gamma_{m, n}^{p, \alpha}{ }^{t} \Re_{\alpha}\left(f_{m, n}^{p, \alpha}\right)(s, \gamma) . \tag{4-12}
\end{equation*}
$$

Lemma 4-3

For $n \geq\left[\frac{m}{2}\right]$, the coefficients $\gamma_{m, n}^{p, \alpha}$ are given by
i) For $\alpha>0$:

$$
\gamma_{m, n}^{p, \alpha}=\frac{2(m+1) \Gamma(\alpha)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}\left(d_{m, n}^{p, \alpha}\right)^{-2}<^{t} \Re_{\alpha}(f),,^{t} \Re_{\alpha}\left(f_{m, n}^{p, \alpha}\right)>_{L_{2}^{2}}
$$

ii) For $\alpha=0$:

$$
\gamma_{m, n}^{p}=\frac{4}{\pi}\left(d_{m, n}^{p}\right)^{-2}<^{t} \Re_{0}(f),{ }^{t} \Re_{0}\left(f_{m, n}^{p}\right)>_{L_{2}^{2}}
$$

Proof. We have the result from the relation (4-12) and the remark 4-3.
Remark 4-5. From lemma 4-3, we see that for $n<\left[\frac{m}{2}\right]$, we can't deduce $\gamma_{m, n}^{p, \alpha}, \alpha \geq 0$, from ${ }^{t} \Re_{\alpha}(f)$, so there exists in $L_{1}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$ a subspace S_{p} of functions such that their transform by ${ }^{t} \Re_{\alpha}$ vanish.

Proposition 4-2

For fixed $\alpha \geq 0$ and $p>\alpha-\frac{1}{2}$, the system of functions

$$
\left\{\left[\frac{2(m+\alpha) \Gamma(\alpha)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}\right]^{1 / 2}\left(d_{m, n}^{p, \alpha}\right)^{-1 t} \Re_{\alpha}\left(f_{m, n}^{p, \alpha}\right), m \in \mathbb{N}, n \geq\left[\frac{m}{2}\right]\right\}
$$

is an orthonormal complete system in $L_{2}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$.
Proof. The result is a consequence of theorems 4-2, 4-3 and the completion of the systems $\left\{R_{m}^{(\alpha-1 / 2, \alpha-1 / 2)}(\cos (2 \gamma)), m \in \mathbb{N}\right\}$ and $\left\{Q_{n}^{*}(a, b ; x), n \in \mathbb{N}\right\}$.

Theorem 4-3

Let $g \in L_{2}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$, then we have that $g={ }^{t} \Re_{\alpha}(f)$, with $f \in$ $L_{1}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$ if and only if the coefficients $\gamma_{m, n}^{p, \alpha}$ given by the lemma $4-$ 3, satisfy the condition

$$
\begin{equation*}
\sum_{m=0}^{+\infty} \sum_{n \geq\left[\frac{m}{2}\right]}\left|\gamma_{m, n}^{p, \alpha}\right|^{2}<+\infty \tag{4-13}
\end{equation*}
$$

Remark 4-6.

From the relation (4-9), the relation (4-13) is equivalent to

$$
(4-14) \quad \sum_{m=0}^{+\infty} \sum_{n \geq\left[\frac{m}{2}\right]}\left|\xi_{m, n}^{p, \alpha}\right|^{2}(n+1)^{\alpha+1}\left(\frac{n+1}{n-\frac{m}{2}+1}\right)^{p-\alpha-1 / 2}<+\infty
$$

where $\xi_{m, n}^{p, \alpha}$ are the coefficients of g in the basis

$$
\left\{\left[\frac{2(m+\alpha) \Gamma(\alpha)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}\right]^{1 / 2}\left(d_{m, n}^{p, \alpha}\right)^{-1 t} \Re_{\alpha}\left(f_{m, n}^{p, \alpha}\right), m \in \mathbb{N}, n \geq\left[\frac{m}{2}\right]\right\}
$$

Corollary 4-2

Let $g \in L_{2}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$, if $g=^{t} \Re_{\alpha}(f)$, with $f \in L_{1}^{2}\left(\left[0,+\infty\left[\times\left[0, \frac{\pi}{2}[)\right.\right.\right.\right.$ then $g={ }^{t} \Re_{\alpha}(f+h)$, for all $h \in S_{p}$.

References

1. J. Faraut, Espaces hyperboliques réels, complexes et quatorniens-Transformation de Fourier et théorème de Paley-Wiener, (preprint).
2. G. Gasper, Positivity and the convolution structure for Jacobi series, Ann. of Math. 93 (1971), 112-118.
3. S. Helgason, The Radon transform, Birkhäuser-Boston, 1980.
4. D. Ludwig, The Radon transform on euclidian space, Comm. Pure Appl. Math. 23 (1966), 49-81.
5. R. M. Perry, On reconstructing a function on the exterior of a disk from its Radon transform, J. Math. Analy. Appl. 59 (1977), 324-341.
6. R. Takahashi, Spherical functions in $\operatorname{Spin}_{0}(1-d) / \operatorname{Spin}(\mathrm{d}-1)$ for $d=2,4$ and 8 , (preprint).
7. K. Trimèche, Transmutation operator and mean-periodic functions associated with differential operators, Mathematical Reports, Harwood Academic Publishers, Chur - London - Paris- NewYork - Melbourne, 4, 1(1988), 1-282.
8. K. Trimèche, Opérateurs de permutation et analyse harmonique associée à des opérateurs aux dérivées partielles, J. Math. Pures Appl. 70 (1991), 1-73.
9. K. Trimèche, The Radon transform and its dual associated with partial differential operators and applications to polynomials on the unit disk, J. Comput. Appl. Math. 49 (1993), 271-280.
10. K. Trimèche, Generalized transmutation and translation operators associated with partial differential operators, To appear in Contemporary Mathematics of the American Mathematical Society, 1995.
