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Abstract

For a closed convex set C with non-empty interior, we define the C−nearest
distance from x to a closed set F. We show that, if there exists in the Banach
spaceX a closed convex set with non-empty interior satisfying the drop property,
then for all closed subset F of X, there exists a dense Gδ subset Γ of X \
{x; ρ(F, x) = 0} such that every x ∈ Γ has aC−nearest point in F.We also
prove that every smooth (unbounded) convex set with the drop property has the
smooth drop property.

1. Introduction

Let (X, ‖.‖) be a Banach space and B be the closed unit ball of X. Given x ∈ X \B,
the drop determined by x and B is the convex hull of the set {x} ∪ B, denoted by
D(x,B). Daneš [3] proved that for every closed subset F at positive distance from
B, there exists x ∈ F such that D(x,B) ∩ F = {x}, which is the drop theorem. It
is not possible in general to replace the hypothesis “F at positive distance from B”
by “F is disjoint from the unit ball”. Rolewicz [16], introduced the drop property
of the norm. He said that the norm ‖.‖ has the drop property if for every closed set
F disjoint from B(‖.‖) there exists an x ∈ F such that D(x,B(‖.‖)) ∩ F = {x}. He
proved that if the norm has the drop property then the space is reflexive.

289

Servicio de Textos




290 Maâden

A Banach space is said to have the Kadec-Klee property if, on the unit sphere,
every weakly convergent sequence converges in norm. Montesinos [13], proved that
the norm ‖.‖ has the drop property if and only if the space is reflexive and the norm
has the Kadec-Klee property.

Instead of drops formed from the closed unit ball, Kutzarova and Rolewicz [9]
considered the drops formed from any closed (unbounded) convex set. They said a
closed convex set C has the drop property if for every closed set F disjoint from C

there exists an a ∈ C such that F ∩ conv(C ∪ {a}) = {a}. Here D(x,C) denotes the
set conv(C ∪ {x}) and it is called the drop determined by C and x ∈ X \ C. In [9],
it was shown that a closed convex set having the drop property is compact or has
a non-empty interior, and that every closed convex symmetric set having the drop
property is bounded.

Kutzarova [8], showed that the space X is reflexive whenever X contains a non-
compact bounded closed convex set with the drop property. Recently, Montesinos
[14] and P. K. Lin [11] independently, extended this result showing that the same
holds true for unbounded closed convex set.

Recently, we introduced in [12] the notion of smooth drop. A closed convex set
D is called a smooth drop if 0 is in the interior of D and the Minkowski functional of
D (ρ(x) := inf

{
λ > 0;xλ−1 ∈ D

}
) is smooth. A smooth drop theorem was shown

for spaces with smooth norms. Georgiev-Kutzarova-Maâden [7], said the norm ‖.‖
has the smooth drop property if for every closed set F disjoint from B(‖.‖) there
exists a smooth drop D contains B(‖.‖) such that D∩F is a singleton. They proved
that if the space is reflexive and the norm is smooth with the Kadec-Klee property
then the norm has the smooth drop property.

Let us fix a closed convex set C such that 0 is in the interior of C. For a closed
set F of real Banach space X and x ∈ X we define the C−nearest distance from x

to F by ρ(F, x) := inf {ρ(s− x); s ∈ F} where ρ is the Minkowski functional of C. A
point z ∈ F is called a C−nearest point of F if there exists x ∈ X \ {x; ρ(F, x) = 0}
such that ρ(F, x) = ρ(z−x). In this work we prove that if in addition C has the drop
property then for all closed subset F of X, the set of points of X \ {x; ρ(F, x) = 0}
with C−nearest point in F contains a dense Gδ subset of X \ {x; ρ(F, x) = 0}, thus
extending a result of Lau [10], [1]. We also prove that if C is smooth and has the
drop property then it has the smooth drop property.

To fix our notation, denote by B[x, r] (resp. B(x, r)) the closed (resp. open)
ball with center x and radius r. Let C be a norm closed, convex and 0 ∈ intC.
Denote by ρ the Minkowski functional of C. Denote by F (C) the set of all linear
continuous functionals f ∈ X∗, f 
= 0, which are bounded above on C, write ρ∗(f) :=
sup {f(x); ρ(x) ≤ 1}. For f ∈ F (C) and δ > 0, the slice S(f, C, δ) is defined by:

S(f, C, δ) := {x ∈ C; f(x) ≥M − δ} , where M := sup {f(x);x ∈ C} .
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The Kuratowski measure of noncompactness α(A) of a set A in a Banach space X
is the infimum of those ε > 0 for which there is a covering of A by a finite number
of sets Ai such that diamAi < ε (if A is not bounded, then we define α(A) = ∞).
We say that C has property (α) if

α(S(f, C, δ)) −→ 0 when δ −→ 0 for every f ∈ F (C) .

It is known (see [9]) that if C has the property (α), then S(f, C, ε) is bounded,
whenever ε > 0 and f ∈ F (C). In [9], Kutzarova and Rolewicz proved the following:

Theorem 1.1

Let X be a Banach space. Let C be a closed convex set with the drop property.

Then C has property (α). If in addition X is reflexive and the interior of C is

non-empty, the converse holds true.

Montesinos [14] and P.-K. Lin [11], showed this statement:

Theorem 1.2

Let X be a Banach space. Let C 
= X be a closed convex set with the drop

property. Then, if C is non-compact, X is reflexive.

In [12], a smooth drop theorem of Daneš type for spaces with smooth norms
was shown. We include a simple proof of the smooth drop theorem (Theorem 1.5)
derived from the Borwein and Preiss variational principle.

Let E := {f ;C1 − smooth, convex, positive, f(x) → +∞ as ‖x‖ → +∞ and
µ(f) <∞} where µ(f) :=

∑
n≥1

‖f‖n

2n + ‖f ′‖∞, ‖f‖n := sup {|f(x)|; ‖x‖ ≤ n}.
In [6], the following variant of Borwein and Preiss variational principle [2], was

proved using Deville’s approach [5].

Theorem 1.3

Let (X, ‖.‖) be a Banach space with a smooth norm and consider a l.s.c.

bounded below function f : X −→ R ∪ {+∞} with f 
= +∞. Then the set

{g ∈ E ; f + g attains its strong minimum on X} is residual in E .
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Definition 1.4. Let X be a Banach space. A closed convex set D of X is said
smooth drop if 0 ∈ intD and the Minkowski functional of D is smooth.

Theorem 1.5

Let (X, ‖.‖) be a Banach space and assume that the dual norm is L.U.R. in X∗.

Let C be a closed bounded convex set of X with 0 in its interior. Then for every

closed set F at positive distance from C there exists a smooth drop D such that

D ∩ F is a singleton and C ⊂ D.

Proof. Since C is bounded, without loss of generality we assume that C ⊂ B.

Let ε > 0 such that dist2(C,F ) ≥ 2ε. Consider the function f defined on F by
f(x) := dist2(x,C). Now by the previous theorem there exists g ∈ E such that
f + g attains its strong minimum on F at x0 and µ(g) ≤ ε. Then letting the
set D := {x ∈ X; dist2(x,C) + g(x) ≤ dist2(x0, C) + g(x0)}. So, it is clear that
D∩F = {x0}. Moreover, if x ∈ C then (f+g)(x) = g(x) ≤ 2ε ≤ f(x0) ≤ (f+g)(x0),
so C ⊂ D. By hypothesis the dual norm is L.U.R. and C is a closed convex set then
dist2(x,C) is convex and smooth on X (for instance see p. 365 of [4]) and our proof
is complete. �

2. Existence of C−nearest points

In this section we shall prove the following:

Theorem 2.1

Let C be a closed convex subset with the drop property. Let F be a non-empty

closed subset of X. Then the set of points of X \ {x; ρ(F, x) = 0} with C−nearest

point in F contains the dense Gδ subset Ω(F ) of X \ {x; ρ(F, x) = 0}.

When C is the unit ball of X we obtain Lau’ theorem [10].

Corollary 2.2

Let (X, ‖.‖) be a reflexive Banach space and assume that the norm has the

Kadec-Klee property. Let F be a non-empty closed subset of X. Then the set of

points of X \ F with nearest point in F contains a dense Gδ subset of X \ F.
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Proof. Since the space is reflexive and the norm has the Kadec-Klee property, by
Montesinos theorem [13] the unit ball has the drop property. The corollary is now
a particular case of the theorem. �

As in the introduction, C 
= X is a closed convex set with 0 in its interior and
ρ is the “gauge” of C. Without loss of generality, throughout the paper, we assume
that C contains the unit ball. For a closed non-empty set F of a Banach space X
and n ∈ N we define

Ln(F ) := {x ∈ X \ {x; ρ(F, x) = 0};∃δ > 0,∃ x∗ ∈ X∗ with ρ∗(x∗) = 1, such that

inf {< x∗, z − x >; z ∈ F ∩ (x+ (ρ(F, x) + δ)C)} > (1 − 2−n)ρ(F, x)}
L(F ) :=

⋂
n

Ln(F )

Ω(F ) := {x ∈ X \ {x; ρ(F, x) = 0}; there exists x∗ ∈ X∗ with ρ∗(x∗) = 1,

such that for each ε > 0, there is δ > 0 so that

inf {< x∗, z − x >; z ∈ F ∩ (x+ (ρ(F, x) + δ)C)} > (1 − ε)ρ(F, x)}.

Definition 2.3. 1) A sequence (zn) of elements in F is called a C−minimizing
sequence in F for x if ρ(F, x) := inf {ρ(z − x); z ∈ F} = limn→∞ ρ(zn − x).
2) For a lower semi continuous function f with f(x) finite we define the subdiffer-
ential of f at x by D−f(x) :=

{
x∗ ∈ X∗; lim infy→0

f(x+y)−f(x)−<x∗,y>
‖y‖ ≥ 0

}
.

Proposition 2.4

Let F be a closed subset of X,x ∈ X \ {x; ρ(F, x) = 0} and x∗ ∈ X∗ such that

x∗ ∈ D−ρ(F, x). Then ρ∗(−x∗) = 1 and for each C−minimizing sequence (xn) in F

for x, limn < −x∗, xn − x >= limn ρ(xn − x).

Proof. First remark that if x∗ ∈ D−ρ(F, x) then ρ∗(−x∗) ≤ 1. Indeed, clearly we
have ρ(F, x+ ty) − ρ(F, x) ≤ tρ(−y). Then

ρ(F, x+ ty) − ρ(F, x)
t

≤ ρ(−y).

Let x∗ ∈ D−ρ(F, x), then

0 ≤ ρ(F, x+ ty) − ρ(F, x)
t

− < x∗, y >

≤ ρ(−y)− < x∗, y >,
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therefore
< −x∗,−y >≤ ρ(−y) for all y ∈ X.

This implies that < −x∗, −y
ρ(−y) >≤ 1 for all y with ρ(−y) 
= 0. Then

ρ∗(−x∗) := sup {< −x∗, z >; ρ(z) ≤ 1} ≤ 1,

and the fact is proved.
Let 0 < t < 1 and recall that ρ(F, x) := inf{ρ(z − x); z ∈ F}. We have

ρ(F, x+ t(xn − x)) − ρ(F, x) ≤ ρ(xn − x− t(xn − x)) − ρ(F, x)

= −tρ(xn − x) + [ρ(xn − x) − ρ(F, x)] .

Let tn := 2−n + [ρ(xn − x) − ρ(F, x)]1/2 , it is clear that tn −→ 0 and we have

−tnρ(xn − x) + [ρ(xn − x) − ρ(F, x)]
tn

= −ρ(xn − x) +
(tn − 2−n)2

tn
≤ −ρ(xn − x) + tn .

By hypothesis x∗ ∈ D−ρ(F, x) then

lim inf
n−→∞

ρ(F, x+ tn(xn − x)) − ρ(F, x)
tn

− < x∗, xn − x >≥ 0.

Therefore
0 ≤ lim inf

n−→∞
−ρ(xn − x) + tn+ < −x∗, xn − x >

which implies that

ρ(F, x) := lim
n−→∞

ρ(xn − x) ≤ lim inf
n−→∞

< −x∗, xn − x >

≤ ρ∗(−x∗) lim
n−→∞

ρ(xn − x)

≤ lim
n−→∞

ρ(xn − x) = ρ(F, x) .

Therefore ρ∗(−x∗) = 1 and lim
n−→∞

< −x∗, xn − x >= ρ(F, x). The proof is com-
plete. �

Proposition 2.5

Let (X, ‖.‖) be a Banach space. If x ∈ X \ {x; ρ(F, x) = 0} and D−ρ(F, x) 
= ∅
then x ∈ Ω(F ).
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Proof. Let x∗ ∈ D−ρ(F, x). By Proposition 2.4, we have ρ∗(−x∗) = 1 and for each
C−minimizing sequence (xn) in F for x we have < −x∗, xn − x >→ ρ(F, x). So, for
each ε > 0 there exists δ > 0 so that < −x∗, z − x >>

(
1 − ε

2

)
ρ(F, x) whenever

z ∈ F ∩ (x+ (ρ(F, x) + δ)C) . It follows that

inf {< −x∗, z − x >; z ∈ F ∩ (x+ (ρ(F, x) + δ)C)} > (1 − ε)ρ(F, x)

and the proof is complete. �

Proposition 2.6

Ln(F ) is open for all n.

Proof. Let x ∈ Ln(F ). By the definition, there exist x∗ ∈ F (C), with ρ∗(x∗) = 1,
and δ > 0 such that

0 < θ := inf {< x∗, z − x >; z ∈ F ∩ (x+ (ρ(F, x) + δ)C)} −
(
1 − 2−n

)
ρ(F, x).

Let λ > 0 such that λ < min
(
δ
2 ; θ

2

)
. Let y be fixed such that ‖x − y‖ < λ and let

δ′ := δ − 2λ. Then it is easy to see that

F ∩ (y + (ρ (F, y) + δ′)C) ⊂ F ∩ (x+ (ρ (F, x) + δ)C) .

Let A := F ∩ (y + (ρ(F, y) + δ′)C) and let z ∈ A, then

< x∗, z − y > =< x∗, z − x > + < x∗, x− y >

≥ θ + (1 − 2−n)ρ(F, x)+ < x∗, x− y >

+ (1 − 2−n)ρ(F, y) − (1 − 2−n)ρ(F, y)

= (1 − 2−n)ρ(F, y) + θ + (1 − 2−n)[ρ(F, x) − ρ(F, y)]+ < x∗, x− y >

≥ (1 − 2−n)ρ(F, y) + θ − 2λ.

Then inf {< x∗, z − y >; z ∈ A} > (1 − 2−n)ρ(F, y). Whence B(x, λ) \ {x; ρ(F, x) =
0} ⊂ Ln(F ), which proves that Ln(F ) is open and the proof is complete. �

Lemma 2.7

Let (X, ‖.‖) be a Banach space and assume that the closed convex set C has

the property (α). Then L(F ) = Ω(F ).
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Proof. It is easy, from the definitions of the two sets, to see that Ω(F ) ⊂ L(F ).
Then we need to show the converse inclusion.

Let x ∈ L(F ) :=
⋂

n Ln(F ), then x ∈ Ln(F ) for all n. Hence there exist x∗n ∈
F (C), ρ∗(x∗n) = 1 and δn > 0 such that

inf {< x∗n, z − x >; z ∈ F ∩ (x+ (ρ(F, x) + δn)C)} > (1 − 2−n)ρ(F, x) .

Let x∗ be a ω∗−cluster point of (x∗n). Let Kn := F ∩ (x+ (ρ(F, x) + δn)C)
ω
. We

claim that Kn is bounded. Indeed, let z ∈ Kn, then z ∈ x + (ρ(F, x) + δn)C and
< x∗n, z−x >> (1−2−n)ρ(F, x)+δn−δn = (ρ(F, x) + δn)−(2−nρ(F, x) + δn) . This
implies that z ∈ S (x∗n, x+ (ρ(F, x) + δn)C, δn + 2−nρ(F, x)) . Since C has property
(α), the slice is bounded (see [9], [14]) and the claim is proved. By Theorem 1.2,
the space is reflexive, therefore the set Kn is weakly compact. Without loss of
generality we assume that the sequence (δn) is nonincreasing and goes to zero. Thus
K :=

⋂
n≥1Kn is non-empty. Let z ∈ K, then < x∗n, z − x >> (1− 2−n)ρ(F, x) and

ρ(z−x) ≤ ρ(F, x)+δn for all n ≥ 1. So, < x∗, z−x >≥ ρ(F, x) and ρ(z−x) ≤ ρ(F, x).
We know that ρ∗(x∗) ≤ 1, then we deduce that ρ(F, x) ≤< x∗, z−x >≤ ρ∗(x∗)ρ(z−
x) ≤ ρ(F, x). So, ρ∗(x∗) = 1 and ρ(F, x) =< x∗, z− x >= ρ(z− x) whenever z ∈ K.

Let ε > 0 and set A(ε) :=
{
z;< x∗, z − x >>

(
1 − ε

2

)
ρ(F, x)

}
which is weakly

open and it is clear that K ⊂ A(ε). By the weak compactness of the set Kn and
that the sequence (Kn) is nonincreasing, there exists some n0 such that Kn0 ⊂ A(ε).
This implies that

inf {< x∗, z − x >; z ∈ F ∩ (x+ (ρ(F, x) + δn0)C)} > (1 − ε) ρ(F, x)

and x∗ is as required. The proof is complete. �
In the previous lemma we are used just that the space X is reflexive and C

satisfies that S(x∗, C, δ) is bounded whenever x∗ ∈ F (C) and δ > 0. In particular if
C has property (α) this true (see [9], [14]).

Proposition 2.8
Let (X, ‖.‖) be an Asplund space. Then Ω(F ) is dense in X \ {x; ρ(F, x) = 0}.

Proof. Since X is an Asplund space and it is clear that the function ρ(F, x) is
Lipschitz, then by Preiss theorem [15], ρ(F, x) is Fréchet smooth on a dense subset
of X \ {x; ρ(F, x) = 0} and Proposition 2.5 completes the proof. �

Combining all the previous things, we see that we have proved the following:

Theorem 2.9
Let C be a closed convex subset with the drop property and 0 ∈ intC. Let F

be a non-empty closed subset of X. Then the set Ω(F ) = L(F ) is a dense Gδ subset
of X \ {x; ρ(F, x) = 0}.
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Proof of theorem 2.1. Let x ∈ Ω(F ). Set x∗ ∈ X∗ such that ρ∗(x∗) = 1, given by
the definition of Ω(F ). So, for all n ≥ 1 there is δn > 0 such that

inf {< x∗, z − x >; z ∈ F ∩ (x+ (ρ(F, x) + δn)C)} >
(
1 − 2−n

)
ρ(F, x).

For each n ≥ 1, choose zn ∈ F ∩ (x+ (ρ(F, x) + δn)C) . Since C has property (α),
then the space is reflexive and the slices are bounded. Therefore (zn) has a weakly
converging subsequence. We assume that without generality the sequence (δn) goes
to zero and zn −→ z in the weak topology, then < x∗, zn − x >−→< x∗, z − x > .

We have ρ(F, x) (1 − 2−n) ≤ ρ(zn−x) ≤ ρ(F, x)+δn. So lim
n
ρ(zn−x) = ρ(F, x)

and (zn) is a C−minimizing sequence in F for x.
On the other hand, we have ρ(F, x)

(
1 − 2−n

)
≤< x∗, zn−x >≤ (1 + δn) ρ(F, x),

which proves that

< x∗, z − x >= lim
n
< x∗, zn − x >= ρ(F, x).

Whence ρ(z − x) ≥< x∗, z − x >= ρ(F, x) = lim
n
ρ(zn − x). By the ω−l.s.c. of ρ we

have that lim
n
ρ(zn − x) ≥ ρ(z − x). Therefore ρ(z − x) = lim

n
ρ(zn − x).

We have zn − x −→ z − x weakly and ρ(zn − x) −→ ρ(z − x). Since C has the
property (α) then it is clear that every support point is a point of continuity, then
zn − x −→ z − x in the norm topology. Since F is closed, z belongs to F. By the
ω−l.s.c. of ρ, we have

ρ(F, x) ≤ ρ(z − x) ≤ lim inf
n→∞

ρ(zn − x) ≤ ρ(F, x).

Then the theorem is proved. �

3. The smooth drop property

In this section, we shall prove that every smooth (unbounded) convex set with the
drop property has the smooth drop property (Theorem 3.3). The tool used is the
geometrical result of Theorem 3.2.

Let us first give some definitions.

Definition 3.1. Let X be a Banach space.
1) A closed convex set D of X with non-empty interior, is said Fréchet (resp.
Gâteaux) smooth if the Minkowski functional of D0 := D − x0 for some x0 ∈ intD,
is Fréchet (resp. Gâteaux) smooth.
2) A closed convex set C of X said has the Fréchet (resp. Gâteaux) quasi-smooth
drop property if for all closed set F of X such that F ∩C = ∅, there exists a Fréchet
(resp. Gâteaux) smooth convex set D such that conv(D ∪ C) ∩ S is a singleton.
3) A sequence (xn) in X is called a C−stream if xn+1 ∈ conv ({xn} ∪ C) \ C, for
all n.
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Theorem 3.2
Let (X, ‖.‖) be a Banach space. Let C be a closed Fréchet (resp. Gâteaux)

smooth convex subset with the drop property and assume that 0 ∈intC. Let F be
a closed non-empty subset of X at a positive distance from C. Let µ > 1 and z ∈ F.
Then there exists a Fréchet (resp. Gâteaux) smooth convex subset C0 of X such
that conv(C0 ∪ C) ∩ F = {z0} and C0 ⊂ D (µz,C) .

Theorem 3.3
Let (X, ‖.‖) be a Banach space and assume that the norm has the Kadec-Klee

property and its dual norm is L.U.R. (resp. R.). Let C be a closed Fréchet (resp.
Gâteaux) smooth convex with 0 in its interior and has the drop property, then C
has the Fréchet (resp. Gâteaux) quasi-smooth drop property.

Proof. Let F be a closed subset of X such that F ∩ C = ∅.
Case 1. There exists z ∈ X such that

F1 := F ∩ intD(z, C) 
= ∅ and dist(F1, C) > 0
then we just apply Theorem 3.2 and the proof is complete in this case.

Case 2. Case 1 is not satisfied.
We can define inductively a sequence (xn) in F with x1 ∈ F arbitrary such that

(1 + µn+1)xn+1 ∈ D ((1 + µn+1)xn, C) ∩ (1 + µn+1)C,
for some µn > 0, µn −→ 0.

Fact : Let C be a closed convex subset of X with the drop property. Then every
C−stream has a convergent subsequence.

Assume that there exists a C−stream (xn) with no norm convergent subse-
quence. Then the set A := {xn;n ≥ 1} is closed. Now xn+1 ∈ D(xn, C) for all n
and we see that is no n ≥ 1 such that D(xn, C)∩A = {xn} , so C does not have the
drop property and the fact is proved.

For completing the proof, let yn := (1 + µn+1)xn. Then the sequence (yn) is a
C−stream. Since C has the drop property, (yn) has a norm convergent subsequence
denoted also by (yn). So yn −→ y in F. But we have dist(yn, C) −→ 0 and C is
closed, therefore we deduce that y ∈ C, which gives a contradiction with the fact
that C ∩ S = ∅. Therefore the case 2 is impossible and our theorem is proved. �

In order to prove Theorem 3.2, we shall need the following lemmas:

Lemma 3.4
Let (X, ‖.‖) be a Banach space. Let C be a closed convex subset of X con-

taining the unit ball. Let x1 ∈ X \ C, x2 ∈ {tx1; t ∈ (0, 1)} \ C and η ∈
(1, ρ(x2)), where ρ is the Minkowski functional of C. Let M := 2 sup {max(ρ(x1−c),
ρ(c− x1)); c ∈ D(x1, C)}. Then for 0 < ε < η−1

M
ρ(x1−x2)

ρ(x1)
, we have [D(x2, C) + εB] \

ηC ⊂ intD(x1, C).
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Proof. Let 0 < ε2 < 1 such that x2 = (1 − ε2)x1. Let x ∈ D(x2, C) \ ηC, then
x = λx2 + (1 − λ)c for some λ ∈ [0, 1] and c ∈ C, with ρ(x) > η. Without loss of
generality we assume that λ ∈ (0, 1). So, x− c = λ(x2 − c) which implies

η − 1 < |ρ(x) − ρ(c)| ≤ ρ(x− c) = λρ(x2 − c) ≤ λ[ρ(x2 − x1) + ρ(x1 − c)]

≤ 2λ sup {max(ρ(x1 − c), ρ(c− x1)); c ∈ D(x1, C)} = λM.

Therefore η−1
M < λ. By the definition of ε2 we see that ε2 = ρ(x1−x2)

ρ(x1)
.

Let 0 < ε < η−1
M ε2. Let y ∈ x+ εB and y2 := y

λ − 1−λ
λ c. Whence λ‖y2 − x2‖ =

‖y − x‖ ≤ ε. This means that

‖y2 − x2‖ ≤ ε

λ
<

Mε

η − 1

and by the definition of ε, we can see that ‖y2−x2‖ < ε2. Then we have proved that
y2 ∈ x2+ε2intB = (1−ε2)x1+ε2intB ⊂ intD(x1, C). Therefore y = λy2+(1−λ)c ∈
intD(x1, C), for all y ∈ x + εB. Then [D(x2, C) + εB] \ ηC ⊂ intD(x1, C) and the
proof is complete. �

Lemma 3.5

Let (X, ‖.‖) be a Banach space and assume that the dual norm is L.U.R. (resp.

R.) in X∗. Let C be a closed convex set, then C1 := C + εB is a Fréchet (resp.

Gâteaux) smooth set for all ε > 0.

Proof. It is easy to see that C1 =
{
x; dist2(x,C) ≤ ε2

}
. Since the dual norm is

L.U.R. (resp. R.) and C is a closed convex set then the function f(x) := dist2(x,C)
is Fréchet (resp. Gâteaux) smooth on X (see p. 365 of [4]). �

Proof of Theorem 3.2. Since X is reflexive, X has an equivalent norm having
the Kadec-Klee property and its dual norm is L.U.R. (resp. R.) in X∗. The drop
property of C and the property (α) are invariant under isomorphisms. We therefore
can assume without loss of generality that the original norm ‖.‖ has the Kadec-Klee
property and its dual is L.U.R. (resp. R.).

Case 1 : For some x1 we have

D1 := F ∩D(µz,C) ∩ ρ(x1)intC ⊂ intD(µz,C).

Let d := inf {ρ(x);x ∈ D1} , it is clear that d < ρ(x1). Since C has the drop property
then Theorem 2.1, yields the existence of a dense Gδ subset Γ of X \ {ρ(F, x) = 0}
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such that every x ∈ Γ has a C−nearest point in D1. Let 0 < δ<min
(
1, d−1

2 , ρ(x1)−d
2

)

and λ > 0 such that B[0, λ] ⊂ δC. So we can choose a point a in δC ∩B[0, λ], such
that a has a C−nearest point z0 in D1, i.e.

ρ(z0 − a) = inf {ρ(z − a); z ∈ D1} .
Let x ∈ a+ ρ(z0 − a)C. So we have

ρ(D1, a) := inf {ρ(x− a);x ∈ D1} = ρ(z0 − a)

≤ ρ(−a) + inf {ρ(x);x ∈ D1} ≤ δ + d.

Therefore

ρ(x) ≤ ρ(x− a) + ρ(a) ≤ ρ(z0 − a) + ρ(a) ≤ δ + d+ δ ≤ ρ(x1).

Thus
a+ ρ(z0 − a)C ⊂ ρ(x1)C.

Let x ∈ C, then ρ(z0 − a) ≥ |ρ(z0) − ρ(−a)| ≥ d − δ ≥ 1 + δ ≥ 1 + ρ(−a) ≥
ρ(x) + ρ(−a) ≥ ρ(x− a). This means that x ∈ a+ ρ(z0 − a)C and consequently we
have proved that

C ⊂ a+ ρ(z0 − a)C ⊂ ρ(x1)C.

By our construction we have (a+ ρ(z0 − a)C) ∩ F ⊃ {z0} and F ∩ int(a + ρ(z0 −
a)C) = ∅. Let

C0 := {x; ρ2(x− a) + λ‖x− z0‖2 ≤ ρ2(z0 − a)}
then C0 is Fréchet (resp. Gâteaux) smooth contained in a + ρ(z0 − a)C and it
is clear that C0 ∩ ∂ [a+ ρ(z0 − a)C] = {z0} , and for λ small we can check that
C0 ⊂ D(µz,C). Thus conv(C0 ∪ C) ∩ F = {z0}.

Case 2 : Case 1 is not satisfied.
Choose x2 ∈ F ∩ intD(µz,C) and α > 0 such that x1 := (1 + α)x2 ∈ D(µz,C).

Then by Lemma 3.4 there exists ε > 0 such that [D(x2, C) + εB]∩F ⊂ intD(x1, C).
Let F2 := D

(
x2, C + ε

2B
)
∩ F . Since C has the drop property then it is easy

to see that C + ε
2B also has the drop property (for more see [9] and [11]) and by

Lemma 3.5 is a Fréchet (resp. Gâteaux) smooth set. So we can choose a1 ∈ F2 such
that D

(
a1, C + ε

2B
)
∩ F2 = {a1}. Let 0 < α < ε

4 and a2 := ta1 for some t ∈ (0, 1)
such that ‖a1 − a2‖ = α

2 and let η > 0 such that B[a2, η] ⊂ intD
(
x2, C + ε

2B
)
. Now

it is easy to see that C1 := conv
(
C + ε

2B ∪B [a2, η]
)

satisfies the condition of the
first case. Our theorem is proved. �
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7. P. Georgiev, D. Kutzarova, A. Maâden, On the smooth drop property, Nonlinear Anal., (to
appear).

8. D. Kutzarova, On the drop property of convex sets in Banach spaces, Constructive theory of
functions’ 87. Sofia. (1988), 283–287.

9. D. Kutzarova, S. Rolewicz, On drop property for convex sets, Arch. Math. 56 (1991), 501–511.
10. K. S. Lau, Almost Chebychev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27

(1978), 791–795.
11. P. K. Lin, Some remarks of drop property, Proc. Amer. Math. Soc. 115 2(1992), 441–446.
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