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Abstract

In this paper we study the linear thermodynamical problem of mixtures of ther-
moelastic solids. We use some results of the semigroup theory to obtain an
existence theorem for the initial value problem with homogeneous Dirichlet
boundary conditions. Continuous dependence of solutions upon the initial data
and body forces is also established. We finish with a study of the asymptotic
behavior of solutions of the homogeneous problem.

1. Introduction

The continuum theory of mixtures has been a subject of study in recent years. The
works of Truesdell & Toupin [23], Kelly [17], Eringen & Ingram [9, 16], Green &
Naghdi [11, 12], Müller [19] and Bowen & Wise [6] may be considered the starting
point of the modern formulations of continuum thermomecanical theories of mix-
tures. Presentations of this theory can be found in the review articles of Bowen [5],
Atkin & Craine [2], Bredford & Drumheller [4] and Rajagopal & Wineman [22].
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This paper is concerned with the theory of binary mixtures of thermoelastic
solids established by Ieşan [13], where a Lagrangian description is adopted. The
equations are expressed in terms of quantities defined on the reference configura-
tion Ω0. In this theory the independent constitutive variables are the displacement
gradients, relative displacement, temperature and temperature gradient.

We recall that uniqueness results in the linear theory of mixture of elastic solids
without temperature effects have been presented by Atkin, Chadwick & Steel [3],
Knops & Steel [18], and by Ieşan [14] in the case of nonsimple materials and by
Quintanilla [21] in the nonlinear case. An existence theorem has been established
by Ieşan & Quintanilla [15]. Dafermos [8] studied the asymptotic behavior of solu-
tions of the equations of motion of a mixture of two linear homogeneous, isotropic
materials. In [13] Ieşan also obtained an uniqueness theorem for the linear theory
with thermal effects.

2. Basic equations

We consider a mixture of two interacting continua s1 and s2, that at time t = 0 oc-
cupies the region Ω0 of Euclidean three-dimensional space. Let ∂Ω0 be the boundary
of Ω0. We refer the motion of each constituent to the reference configuration and
a fixed system of rectangular Cartesian axes. In what follows, subscripts preceded
by a comma denote partial differentiation with the corresponding Cartesian coordi-
nate. We also use a superposed dot to denote partial differentiation respect to time.
Greek indices are understood to range over the integers 1, 2. As usual, letters in
boldface stand for tensors of order p ≥ 1, and if v is of order p, we write vi1...ip for
the components of v in the Cartesian coordinate frame.

The displacement of typical particles of s1 and s2 at time t are u, w, where u =
u(x, t), w = w(y, t), x,y ∈ Ω0. We assume that the particles under consideration
occupy the same position at time t = 0, so that x = y. Let θ = θ(x, t) be the
temperature of the material point x at time t. We denote by ρα the mass density of
the constitutive sα at time t = 0, t and s the partial stress tensors associated with
the constituents s1 and s2, p the diffusive force vector, η the entropy density and q
the heat flux vector.

The field equations of the theory consist of the equations of motion

tji,j − pi + ρ1F
1
i = ρ1üi,

sji,j + pi + ρ2F
2
i = ρ2ẅi,(1)

the equation of the energy
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(2) ρT0η̇ = qi,i + ρr,

and the constitutive equations

tji =Aji + Bji + Ajrui,r + Bjrwi,r + (Ajirs + Brsji)ers
+ (Bjirs + Cjirs)grs + (Djir + Ejir + Cjδir + bjδir)dr − (βji + γji)θ ,

sji =Bij + Brjui,r + Brsijers + Cijrsgrs + Eijrdr − γijθ − bjdi ,

pi =Ci + cjui,j + Drsiers + Ersigrs + αijdj − ξiθ + (bjdi),j ,

ρη =D + βijeij + γijgij + ξidi + aθ ,(3)

qi =kijθ,j ,(4)

where Fα are the body force per unit mass acting on the constituent sα, ρ = ρ1 +ρ2,
T0 is the constant absolute temperature of the body in the reference configuration
and r is the external heat supply per unit mass per unit time. We also use the
notation

(5) eij =
1
2
(ui,j + uj,i), gij =

1
2
(uj,i + wi,j), di = ui − wi .

The coefficients in (4) have the following symmetries:

Aij = Aji, βij = βji, αij = αji, Dijr = Djir,

Aijrs = Ajirs = Arsij , Bijrs = Bjirs, Cijrs = Crsij .(6)

If we introduce the tensors:

p0
i = Ci, t0ij = Aij + Bij , s0

ij = Bji, bij = βji + γji,

hijr = Djir + Ejir + Cjδir, kijr = Eijr, dijrs = Cijrs,

aijrs = Ajsδir + Ajirs + Brsji + Bjisr + Cjisr,

bijrs = Bjsδir + Bjirs + Cjisr,(7)

the constitutive equations become

tji = t0ji + aijrsur,s + bijrswr,s + hijrdr − bijθ + bjdi,

sji = s0
ji + brsijur,s + dijrswr,s + kijrdr − γijθ − bjdi,

pi = p0
i + hrsiur,s + krsiwr,s + αijdj − ξiθ + (bjdi),j ,

ρη = D + bijui,j + γijwi,j + ξidi + aθ,
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(8) qi = kijθ,j .

From (6) and (7) we get

(9) aijrs = arsij , dijrs = drsij , αij = αji.

In view of (9), the equations of motion and the equation of the energy can be
expressed in terms of the functions ui, wi, θ. We obtain the equations:

ρ1üi = (aijrsur,s + bijrswr,s + hijrdr − bijθ),j − hrsiur,s

− krsiwr,s − αijdj + ξiθ + H1
i ,

ρ2ẅi = (bijrsur,s + dijrswr,s + kijrdr − γijθ),j + hrsiur,s

+ krsiwr,s + αijdj − ξiθ + H2
i ,

aθ̇ =
1
T0

(kijθ,j),i − bij u̇i,j − γijẇi,j − ξiḋi + S,

where H1
i = t0ji,j − p0

i + F 1
i , H2

i = s0
ji,j + p0

i + F 2
i , and S = ρrT−1

0 .
It is convenient to introduce the following dimensionless quantities:

ū =
u
L
, w̄ =

w
L
, x̄ =

x
L
, t̄ =

t

τ0
, θ̄ =

θ

T̃
, T̄0 =

t0

T̃
, ρ̄α =

L3

m0
ρα,

where L, τ0, T̃ and m0 are constants with dimension of length, time, temperature
and mass respectively. With these quantities we can write the equations in the form

ρ̄1 ¨̄ui = (āijrsūr,s + b̄ijrsw̄r,s + h̄ijrd̄r − b̄ij θ̄),j − h̄rsiūr,s

− k̄rsiw̄r,s − ᾱij d̄j + ξ̄iθ̄ + H̄1
i ,

ρ̄2 ¨̄wi = (b̄ijrsūr,s + d̄ijrsw̄r,s + k̄ijrd̄r − γ̄ij θ̄),j + h̄rsiūr,s

+ k̄rsiw̄r,s + ᾱij d̄j − ξ̄iθ̄ + H̄2
i ,

ā ˙̄θ =
1
T̄0

(k̄ij θ̄,j),i − b̄ij ˙̄ui,j − γ̄ij ˙̄wi,j − ξ̄i
˙̄di + S̄,(10)

with the relations

(11) āijrs = ārsij , d̄ijrs = d̄rsij , ᾱij = ᾱji.

Now subscripts preceded by a comma denote partial differentiation respect x̄,
superposed dot denotes partial differentiation respect to t̄ and

āijrs = aijrs
Lτ2

0

m0
, b̄ijrs = bijrs

Lτ2
0

m0
, d̄ijrs = dijrs

Lτ2
0

m0
,
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h̄ijr = hijr
L2τ2

0

m0
, k̄ijr = kijr

L2τ2
0

m0
, , ᾱij = αij

L3τ2
0

m0

b̄ij = bij
Lτ2

0 T̃

m0
, γ̄ij = γij

Lτ2
0 T̃

m0
,

k̄ij = kij
τ3
0 T̃

m0L
, ξ̄i = ξi

L2τ2
0 T̃

m0
, ā = a

Lτ2
0 T̃

2

m0
,

H̄α
i = Hα

i

L2τ2
0

m0
, S̄ = S

τ2
0 T̃

m0
.

In this way ū, w̄, d̄, θ̄, x̄, t̄ and the coefficients are dimensionless.
To these equations we need to add initial and boundary conditions.
Boundary conditions will be:

(12) ū(x, t) = 0, w̄(x, t) = 0, θ̄(x, t) = 0, on ∂Ω0 × [0, t1],

and initial conditions:

ū(x, 0) = u0(x), ˙̄u(x, 0) = v0(x),

w̄(x, 0) = w0(x), ˙̄w(x, 0) = z0(x),

θ̄(x, 0) = θ0(x), in Ω0,(13)

where u0(x), v0(x), w0(x), z0(x), θ0(x) are prescribed fields.
We shall assume that the constitutive fields are essentially bounded. We also

need to make the following assumptions:

(i) The mass densities ρ̄α are strictly positive.
(ii) The function ā is strictly positive.
(iii) The constitutives tensors ā, d̄, ᾱ satisfy the relations (11).
(iv) There exists a positive constant C0 such that

∫
Ω0

(
āijrsūi,j ūr,s + 2b̄ijrsūi,jw̄r,s + d̄ijrsw̄i,jw̄r,s + 2h̄ijrūi,j d̄r

+ 2k̄ijrw̄i,j d̄r + ᾱij d̄id̄j
)
dV

≥ C0

∫
Ω0

(ūi,j ūi,j + w̄i,jw̄i,j + d̄id̄i)dV,(14)

for all ū, w̄ ∈ [C∞
0 (Ω0)]3.

(v) There exists a positive constant k such that
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(15)
∫

Ω0

k̄ij θ̄,iθ̄,jdV ≥ k

∫
Ω0

θ̄,iθ̄,idV,

for all θ̄ ∈ C∞
0 (Ω0).

The mechanical interpretations of (i) and (ii) is obvious. Condition (15) is
related to the well known property of a definite heat conductor. Assumption (14) is
usual in the study of the well posed problems of mixtures of elastic solids [15], and
it implies that the energy is positive.

3. The existence theorem

In this section we use results of the semigroups theory of linear operators to obtain
an existence theorem to the equations of mixtures of thermoelastic solids. First we
transform our boundary initial value problem to an abstract problem on a Hilbert
space.

In order to simplify the notation, we suppress the accent ¯ in the equations
(11)-(13) for the rest of the paper.

Let Z =
{

(u,v,w, z, θ); u,w ∈ W1,2
0 (Ω0), v, z ∈ L2(Ω0), θ ∈ L2(Ω0)

}
, where

L2(Ω0) = [L2(Ω0)]3 and W1,2
0 (Ω0) = [W 1,2

0 (Ω0)]3 where W 1,2
0 (Ω0) is the well know

Sobolev space [1].
Let v = u̇, z = ẇ and consider the operators:

Miu = (aijrsur,s + hijrur),j − hrsiur,s − αijuj ,

Niw = (bijrswr,s − hijrwr),j − krsiwr,s + αijwj ,

Ciθ = −(bijθ),j + ξiθ,

Piu = (bijrsur,s + kijrur),j + hrsiur,s + αijuj ,

Qiw = (dijrswr,s − kijrwr),j + krsiwr,s − αijwj ,

Diθ = −(γijθ),j − ξiθ,

Fv = −bijvi,j − ξivi, Gz = −γijzi,j + ξizi, Kθ = (kijθ,j),i.

Let A be the matrix operator with the domain D = {(u,v,w, z, θ) ∈ Z|
A(u,v,w, z, θ)t ∈ Z}, defined by

A =




0 Id 0 0 0
M 0 N 0 C
0 0 0 Id 0
P 0 Q 0 D
0 F 0 G K


 ,
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where M = (Mi), N = (Ni), C = (Ci), P = (Pi), Q = (Qi), D = (Di), and Id is
the identity operator.

We note that (W1,2
0 ∩W2,2)×W1,2

0 × (W1,2
0 ∩W2,2)×W1,2

0 × (W 1,2
0 ∩W 2,2)

is a dense subset of Z which is contained in D.
The boundary initial value problem (10)-(13) can be transformed into the fol-

lowing abstract equation in the Hilbert space Z

(16)
dω

dt
= Aω(t) + F(t), ω(0) = ω0,

where F = (0,H1, 0,H2, S), ω0 = (u0,v0,w0, z0, θ0).
We introduce the following inner product in Z

〈(u,v,w, z, θ), (u∗,v∗,w∗, z∗, θ∗)〉

=
∫

Ω0

{
ρ1vv∗ + ρ2zz∗ + aθθ∗ + A[(u,v), (u∗,v∗)]

}
dV,

where
A[(u,v), (u∗,v∗)] = aijrsui,ju

∗
r,s + bijrs(ui,jw

∗
r,s + u∗

i,jwr,s) + dijrswi,jw
∗
r,s

+ hijrs(ui,jd
∗
r + u∗

i,jdr) + kijrs(wi,jd
∗
r + w∗

i,jdr) + αijdid
∗
j .

In view of (14) if follows that the norm induced by A is equivalent to the usual
norm in W1,2

0 (Ω0) × W1,2
0 (Ω0). Thus 〈 , 〉 defines a norm equivalent to the usual

norm in Z.

Lemma 3.1
The operator A satisfies the property

〈Aω, ω〉 ≤ 0

for any ω ∈ D.

Proof. Let ω = (u,v,w, z, θ) ∈ D. Using the divergence theorem and the boundary
conditions we find that

〈Aω, ω〉 =
∫

Ω0

{
vi(tji,j − pi) + zi(sji,j + pi) + A[(u,w), (v, z)]

− θ
(
bijvi,j + γijzi,j + ξi(vi − zi)

)
+

1
T0

θqi,i

}
dV

=
∫

Ω0

{
A[(u,w), (v, z)] − vi,j(tji + bijθ) − zi,j(sji,j + γijθ)

− (vi − zi)(pi + ξiθ) −
1
T0

kijθ,iθ,j

}
dV

= − 1
T0

∫
Ω0

kijθ,iθ,jdV.
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Lemma 3.1 follows from condition (15). �

Lemma 3.2

The operator A satisfies the range condition

Rang(Id−A) = Z.

Proof. Let ω∗ = (u∗,v∗,w∗, z∗, θ∗) ∈ Z. We must show that the equation

ω −Aω = ω∗,

has a solution ω = (u,v,w, z, θ) ∈ D. From the definition of the operator A we
obtain the system

u − v = u∗,

w − z = w∗,

v − (Mu + Nw + Cθ) = v∗,

z − (Pu + Qw + Dθ) = z∗,

(17) θ − (Fv + Gz + Kθ) = θ∗.

From the two first equations we obtain the system

u − (Mu + Nw + Cθ) = u∗ + v∗,

z − (Pu + Qw + Dθ) = w∗ + z∗,

(18) θ − (Fv + Gz + Kθ) = θ∗ − Fu∗ −Gw∗.

To study this system for the unknowns u, v and θ, we introduce the bilinear
form on W1,2

0 (Ω0) × W1,2
0 (Ω0) ×W 1,2

0 (Ω0)

B
[
(u,w, θ), (û, ŵ, θ̂)

]
= 〈(u − (Mu + Nw + Cθ), z − (Pu + Qw + Dθ), θ − (Fv

+ Gz + Kθ)), (ρ1û, ρ2ŵ, aθ̂〉L2×L2×L2 .
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It is easy to see that B is bounded. We note that

B
[
(u,w, θ), (u,w, θ)

]
=

∫
Ω0

{
ρ1uiui + ρ2wiwi + aθ2 + ui,j(tji + bijθ)

− wi,j(sji + γijθ) + (ui − wi)(pi + ξiθ)

+
1
T0

kijθ,iθ,j

}
dV

=
∫

Ω0

{
ρ1uiui + ρ2wiwi + aθ2 + A[(u,w), (u,w)]

+
1
T0

kijθ,iθ,j

}
dV,

so that B is coercive.
Clearly

(v∗ + u∗, z∗ + w∗, θ∗ − Fu∗ −Gw∗) ∈ W−1,2
0 (Ω0) × W−1,2

0 (Ω0) ×W−1,2(Ω0).

The Lax-Milgram theorem proves the existence of the solution (u,w, θ) ∈
W1,2

0 (Ω0) × W1,2
0 (Ω0) × W 1,2

0 (Ω0) of system (17).
The lemma is proved by taking v = u − u∗ and z = w − w∗. �

Theorem 3.1

The operator A generates a contractive semigroup in Z.

Proof. The proof follows from the previous lemmas and the Lumer-Phillips corollary
to Hille-Yosida theorem. �

Theorem 3.2

Assume that Hα
i , S ∈ C1(R+, L2(Ω0)) ∩ C0(R+,W 1,2

0 (Ω0)) and ω0 ∈ D. Then,
there exists a unique solution ω ∈ C1(R+,Z) with values in D of the boundary
initial value problem (16).

Since the semigroup defined by the operator A is contractive, we have the
estimate

‖ω(t)‖Z ≤
(
‖ω0‖Z +

∫ t

0

(
‖H1(τ)‖L2(Ω0) + ‖H2(τ)‖L2(Ω0) + ‖S(τ)‖L2(Ω0)

)
dτ

)
,

which proves the continuous dependence of the solutions upon initial data and body
forces. Thus, under the hypotheses (i)-(v) the problem is well posed.
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4. Asymptotic behavior of solutions

In this section we study the asymptotic behavior of solutions, whose existence has
been proved previously, in the homogeneous case (Hα = 0, S = 0). We assume the
hypotheses on the thermoelastic coefficients stated in the former Section.

We recall that for any semigroup of contractions, such that its generator A has
the only fixed point 0 and whose orbits are precompact, the orbits trend to the ω-
limit set (see [8]). The structure of the ω-limit set is determined by the eigenvectors
of eigenvalues iλ (λ ∈ R) in the closed subspace

L =<<
{
(u,v,w, z, θ)|〈A(u,v,w, z, θ), (u,v,w, z, θ)〉 = 0

}
>>,

where << C >> denotes the closed vector space spanned by the set C.

Lemma 4.1

The operator

(Id−A)−1

is compact.

Proof. Let (ûn, v̂n, ŵn, ẑn, θ̂n) be a bounded sequence in Z and let be (un,vn,wn,

zn, θn) the sequence of solutions of the system (17). We have

B[(un,wn, θn), (un,wn, θn)] = 〈(gn,hn, ηn), (un,wn, θn)〉L2×L2×L2

≤ R(B[(un,wn, θn), (un,wn, θn)])1/2,(19)

where gn = ûn + v̂n, hn = ŵn + ẑn and ηn = θ̂ − F ûn − Gv̂n which is bounded
sequence in L2 × L2 × L2. Inequality (19) implies that (un,wn, θn) is a bounded
sequence in W1,2

0 (Ω0)×W1,2
0 (Ω0)×W 1,2

0 (Ω0). The theorem of compacity of Rellich-
Kondrachoff (see [1], [7]) implies that there exists a converging subsequence in L2 ×
L2 × L2. In a similar way vnj = unj − ûnj and znj = wnj − ŵnj has a converging
subsequence in L2 × L2. Thus, we conclude the existence of a subsequence

(unjk ,vnjk ,wnjk , znjk , θnjk )

which converges in Z. �

The previous lemma implies that the orbits starting in D(A) are precompact
(see [20]). From inequalities (14), (15) it is easy to check out that A−1{0} = {0}.
Now, we can state a theorem on the asymptotic behavior of solutions.
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Theorem 4.1

Let (u0,v0,w0, z0, θ0) ∈ D(A) and (u(t),v(t),w(t), z(t), θ(t)) a solution of the

boundary-initial-value problem (16) for F = 0. Then

θ(t) −→ 0 as t −→ ∞ in L2(Ω0).

Moreover

u(t), w(t) −→ 0 as t −→ ∞ in W1,2
0 (Ω0),

v(t), z(t) −→ 0 as t −→ ∞ in L2(Ω0),

if the system

Mu + Nw + n2u = 0,

Pu + Qw + n2w = 0,

Fu + Gw = 0, on Ω0,

u = 0, w = 0, on ∂Ω0,(20)

has the unique solution u = 0, w = 0 on Ω0.

Proof. To prove the theorem we have study the structure of the ω-limit set. Thus,
we must to study the equation

(21) Âω = inω for some n ∈ R,

ω ∈ D(Â) and Â = A|L is the generator of a group on L. If ω ∈ L then 〈Aω, ω〉 = 0.
Using inequality (15) we find θ = 0 and the asymptotic behavior of the temperature
is proved. The fact that equation (21) has nontrivial solution is equivalent to the
fact that the system (20) has u = 0 and v = 0 as the unique solution.

It is natural to expect that generically the system (20) only admits the trivial
solution. Nevertheless for certain materials and geometries it is possible to obtain
non trivial solutions.

To show this, let us to consider an homogeneous isotropic thermoelastic mixture
with a center of symmetry. We have (see [13])

tij = (λ + ν)errδij + 2(µ + ξ)eij + (α + ν)grrδij + (2κ + 2γ + 2ξ)gij − (β + m)θδij ,

sij = 2ξeij + αgrrδij + 2(κ + γ)gij −mθδij ,

pi = ξdi,
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ρη = βerr + mgrr + aθ,

qi = kθ,i.

Thus, we find the following relations

aijrs = (λ + α + 2ν)δijδrs + (2κ + ξ)δirδjs + (2µ + 2γ + 3ξ)δisδjr,

bijrs = (α + ν)δijδrs + (2κ + ξ)δisδjr + (2µ + ξ)δirδjs,

dijrs = αδijδrs + 2κδirδjs + 2γδisδjr,

bij = (β + m)δij , γij = mδij , αij = mδij ,

hijr = kijr = 0, ξi = 0,

where λ, α, ν, κ, µ, γ, β, and m are real constants.
If we look for solutions of the form u = εw (ε ∈ R), then whenever β+2εm �= 0,

system (20) becomes

(2κ + ξ(1 + ε) + 2γε)ui,jj + (ρ1n
2 + εm−m)ui = 0,

(2εκ + ξ + 2γ)ui,jj + (ρ2n
2 − εm + m)ui = 0,

(β + 2εm)uj,j = 0.

The two first equations are the same whenever

(2κ + ξ(1 + ε) + 2γε)(ρ2n
2 − εm + m) = (ρ1n

2 + εm−m)(2εκ + ξ + 2γ).

This equation gives two possible solutions

εα = εα(κ, ξ, γ, n,m, ρ1, ρ2).

Thus we have to solve the problem

ui,jj + <αui = 0,

uj,j = 0, on Ω0

ui = 0, on ∂Ω0(22)

where <α = (ρ1n
2+εαm−m)

(2κ+ξ(1+εα)+2γεα) .

Problem (22) has been studied by Dafermos [8], who proved that, generically,
it has no solution. He also obtained solutions for the case of the circle. Falqués [10]
has also obtained solutions for the cylinder.
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Let us consider the particular case ξ = 0 and ρ1 = ρ2. We may take ε = 1 and
system (22) becomes

ui,jj +
ρ1n

2

2(κ + γ)
ui = 0,

uj,j = 0, on Ω0,

ui = 0, on ∂Ω0.

In this case we may take an infinite collection of constants n such that, for the case
of circle and cylinder the system admits a non trivial solution.

We have seen that there exist processes which behave asymptotically as isother-
mal undamped oscillations of the form u = εw. �

5. One dimensional case

The object of this Section is to study some solutions to the system (20) for one
dimensional homogeneous isotropic bodies.

First we may identify our reference configuration with an interval [0, L]. The
energy of the system is

∫ L

0

[
ρ1v

2 + ρ2z
2 + aθ2 + αd2

]
dx +

∫ L

0

[
a1(u′)2 + 2a2u

′w′ + a3(w′)2
]
dx.

Assumptions (i) − (iv) are satisfied whenever:

(a) ρ1, ρ2, a, α, a1, a3 are positives.
(b) a2

2 < a1a3.

System (20) can be expressed as

a1u
′′ + (ρ1n

2 − α)u + 2a2w
′′ + αw = 0,

2a2u
′′ + αu + a3w

′′ + (ρ2n
2 − α)w = 0,

βu′ + αw′ = 0, on [0, L],

u = w = 0, for x = 0, L.(23)

The last two equations imply

w = −β

α
u ≡ εu,
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and system (23) can be reduced to

(a1 + 2εa2)u′′ + (ρ1n
2 + αε− α)u = 0,

(2a2 + εa3)u′′ + (ρ2n
2ε + α− αε)u = 0, on [0, L],

u = 0, for x = 0, L.

Both equations agree if

(24) (a1 + 2εa2)(ρ2n
2ε + α− αε) = (2a2 + εa3)(ρ1n

2 + αε− α).

Now our equations have nontrivial solutions if

(25)
ρ1n

2 + αε− α

a1 + 2εa2
=

(kπ
L

)2

,

where k is a natural number.
Is easy to show with an example that assumptions (a), (b), and equations (24),

(25) are consistent. If we choose ε = 1 and ρ2 = 2ρ1 then for fixed n, L, k, ρ1 the
system (a), (b), (24), (25) is consistent if

a1 >
2
√

3 − 1
3

ρ1

(nL
kπ

)2

,

a2 =
1
2
ρ1

(nL
kπ

)2

− 1
2
a1,

a3 =a1 + ρ1

(nL
kπ

)2

.

Thus, we can conclude that in the one dimensional case, there exist certain
materials and geometries with non trivial solutions.
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