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Abstract

We shall denote by F the composition operator generated by a given function
f : R → R, acting on the space of functions of bounded Riesz Φ-variation. In
this paper we prove that the composition operator F maps the spaceRVΦ[a, b]
into itself if and only if f satisfies a local Lipschitz condition on R.

Introduction

Some properties of the composition operator F turned out to be important in dif-
ferential, integral and functional equations, for example, J. Matkowski [8], J. Appell
and P. P. Zabrejko [2]. In particular, M. Marcus and V. J. Mizel [7] has proved
that the composition operator F maps the space RV p[a, b] into itself if and only
if f : R → R satisfies a local Lipschitz condition on R. In the present paper we
generalize the above result to the case of the space RVΦ[a, b] of functions of bounded
Riesz Φ-variation. The particular case corresponding to Φ(u) = u has proved by
M. Josephy [5].

Preliminaries on RVΦ[a, b]

For a real-function x on [a, b] and for a Φ-function (Φ-functions are positive non-
decreasing continuous functions on R which are 0 only at 0 and Φ(u) → ∞ as
u → ∞), we can define the Riesz Φ-variation as the number.
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V R
Φ (x) = sup

π

m∑
k=1

Φ
( |x(tk) − x(tk−1)|

tk − tk−1

)
(tk − tk−1) , (1)

where supremum is taken over all partitions π : a = t0 < t1 < ... < t
m

= b of [a, b] .
In literature is also well-known the so called Φ-variation

VΦ(x) = sup
π

m∑
k=1

Φ (|x(tk) − x(tk−1)|) ,

where supremum is again taken over all partitions π of [a, b].
If Φ is a convex Φ-function, then the space RVΦ = RVΦ[a, b] of all real-valued

functions on [a, b] such that V R
Φ (λx) < ∞ for some λ > 0 is a Banach space with

the norm

‖x‖Φ = |x(a)| + ‖x‖0
Φ ,where ‖x‖0

Φ = inf
{
ε > 0 : V R

Φ

(x
ε

)
≤ 1

}
.

Is also well known the Banach space BVΦ = BVΦ[a, b]. Also we consider sub-
spaces RV 0

Φ = {x ∈ RVΦ[a, b] : x(a) = 0} and BV 0
Φ = {x ∈ BVΦ : x(a) = 0} . For

the first time space BVΦ and RVΦ appeared in papers [10] and [1], respectively.
When Φ(u) = up(p > 1), then we have classical space RV p of functions of

bounded Riesz p-variation.
Note that the assumption lim supu→∞

Φ(u)
u = +∞, in the case of convex

functions Φ, is just limu→∞
Φ(u)
u = ∞ . Moreover, as it was observed in [6],

pp. 61-62, if Φ is a convex Φ-function and condition (∞1) is not satisfied, i.e.
limu→∞

Φ(u)
u = c < ∞ , then RVΦ = BV, where BV means the usual space of

functions of finite variation. For a convex Φ-function Φ which satisfies (∞1) some
useful properties of Riesz Φ-variation are stated in the following Lemma.

Lemma 1

Let Φ be a convex Φ-function.

(a) (Musielak-Orlicz [10]) If x ∈ RVΦ and ‖x‖0
Φ > 0, then

V R
Φ

(
x

‖x‖0
Φ

)
≤ 1 .

(b) (Maligranda-Orlicz [6]) If x ∈ RVΦ, then x is bounded on [a, b] and

sup
t∈[a,b]

|x(t)| ≤ CΦ(h) ‖x‖0
Φ (2)
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where CΦ(h) = max
{

min
[

1
Φ(1) ,

1

hΦ( 1
h )

]
, h

Φ−1( 1
h )

}
, h = b− a .

Moreover, if additionally Φ satisfies condition limu→∞
Φ(u)
u = ∞ , then:

(c) (Medvedev [9]) V R
Φ (x) < ∞ if and only if x is absolutely continuous on [a, b]

and
b∫
a

Φ(|x′(t)|)dt < ∞ . In this case we also have equality V R
Φ (x) =

b∫
a

Φ(|x′(t)|)dt .
(d) (Cybertowicz - Matuszewska [4]) If x ∈ RVΦ , then:

‖x‖0
Φ = inf


ε > 0 :

b∫
a

Φ
(∣∣∣∣ |x′(t)|ε

∣∣∣∣
)
dt ≤ 1


 .

The purpose of this paper is to solve the superposition problem for spaces RVΦ,

that is, when for function f : R → R the composition operator F generated by f

maps the space RVΦ into itself. Before presenting our main result (Theorem) below,
we briefly review what is known in the literature:

1o Josephy [5] proved that F : BV → BV if and only if f is a locally Lipschitz
function on R. Recall that function f : R → R is locally Lipschitz function
on R if for every r > 0 there exists L = L(r) > 0 such that |f(s) − f(t)| ≤
L |s− t| (s, t ∈ [−r, r]) .

2o Marcus - Mizel [7] generalized the Josephy result to spaces RV p, 1 < p < ∞ .

We have F : RV p → RV p if and only if f is a locally Lipschitz function on R .

3o Ciemnoczolowski - Orlicz [3] generalized result of Josephy to BV 0
Φ spaces. Let

Φ be a strictly increasing Φ-function such that Φ ∈ δ2 ,Φ−1 ∈ δ2 (Φ ∈ δ2 is there
exist constants c > 1 and T0 such that Φ(2t) ≤ cΦ(t) for all 0 < t ≤ T0) .

For f : R → R , f(0) = 0 we have F : BV 0
Φ → BV 0

Φ if and only if f is a
locally Lipschitz function R. Then Prus-Wisniowski [11] showed that the assumption
Φ ∈ δ2 may be dropped.

An example take book [2] pag 173, where it was given the context of BV -spaces,
is now presented in the context of RVΦ- spaces, in order to show that assumption
f ∈ RVΦ is not enough for F (RVΦ) ⊂ RVΦ .

Example: RV p is not closed under composition. For 1< p < 2 and [a, b] = [−1, 1]
let f : R → R ,, be defined by:

f(t) :=




1 if − ∞ < t ≤ −1 ,

√
|t| if −1 ≤ t ≤ 1 ,

1 if 1 ≤ t < ∞ .
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It is easily verified that V R
p (f) = 4

2p(2−p) , so that 1 ≤ p < 2. Also x ∈ RVp ,

where x(s) = s2 sin2 ( 1
s ) for s ∈ [−1, 1] − {0} and x(0) = 0 This follows since x

is absolutely continuous on [−1, 1] an has bounded derivative. On the other hand,
the composition (f ◦ x)(s) =

∣∣s sin( 1
s )

∣∣ does not have a finite variation and hence
(f ◦ x) /∈ RVp .

As will be seen from the next theorem, the situation above exemplified results
from the fact that f does not satisfy a Lipschitz condition at t = 0 .

Theorem

Let Φ be a convex Φ-function which satisfies condition limu→∞
Φ(u)
u = ∞. For

f : R → R we have F : RVΦ → RVΦ if and only if f is a locally Lipschitz function

on R. Moreover, if F maps RVΦ into RVΦ, then the mapping is bounded and the

following inequality holds:

||Fx||Φ ≤
{

1 + 2L [cΦ(b− a)‖|x||0Φ ]
}
‖x‖Φ (x ∈ RVΦ) .

Proof. Without loss of generality, we can assume that [a, b] = [0, 1]. Let x be a
function in RVΦ[0, 1]. By Lemma 1 (b), we have that there exists a non-negative
constant cΦ(1) such that

sup
t∈[0,1]

|x(t)| ≤ cΦ(1) ‖x‖0
Φ

Since f satisfies a local Lipschitz condition on R , then the following can be
obtained

|f(t) − f(s)| ≤ L(cΦ(1) ‖x‖0
Φ) |t− s| ∀s, t ∈ [−cΦ(1) ‖x‖0

Φ , cΦ(1) ‖x‖0
Φ],

and

|f(t)| ≤ L(cΦ(1) ‖x‖0
Φ) |t| + |f(0)| ∀s, t ∈ [−cΦ(1) ‖x‖0

Φ , cΦ(1) ‖x‖0
Φ] .

Then, we have the inequality ‖Fx‖Φ ≤
{
1 + 2L [cΦ(1) ‖x‖0

Φ]
}
‖x‖Φ .

Now let f : R → R be such that the composition operator F maps the space
RVΦ[0, 1] into itself. For the function x0(t) = t, we obtain that the composition
f(x0(t)) = f(t) belongs to the space RVΦ[0, 1], hence f is bounded on [0,1], with
a bounded M. Without loss of generality, we can assume that M = 1

2 .

Suppose that f does not satisfy a local Lipschitz condition on R, hence there
exists r > 0 such that |f(u)−f(s)|

|u−s| is unbounded for |u|, |s| ≤ r(u �= s). Without
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loss of generality, we can assume that r = 1. Given the sequence {kn}∞n=1 defined
by kn = 2n(n + 1)(n = 1, 2, .., ), there exist sequences {un}∞n=1 and {sn}∞n=1 in
[0,1] such that

kn |un − sn| < |f(un) − f(sn)| ≤ 1 (3)

Note that un − sn → 0 as n → ∞ , by considering subsequences, if necessary,
we may assume that un → t∗ as n → ∞ . The analysis can be reduced to the
following two cases:

(i) t∗ belongs only to finitely many intervals [un , sn] .
(ii) t∗ belongs to infinitely many intervals [un , sn] .

Suppose that we are in case (i) and that infinitely many intervals not containing
t∗ lie to left of t∗. Let us define a subsequence of these intervals having the following
property:

un < sn < un+1 < sn+1 < t∗ (n = 1, 2, ...) .

For each interval In = [un, sn] (n = 1, 2, ...), we define a partition πn in the following
way:

πn : un = tn0 < tn1 < ..... < tnα(n) = sn ,

where tnk − tnk−1 = (sn−un)
α(n) (k = 1, ....., α(n)) and {α(n)} is a sequence of suitably

odd numbers.
Define the function x on [0,1] in the following way:

x(0) = 0, x(t) = t∗ if t∗ ≤ t ≤ 1, x(t) = t if t /∈ ∪∞
n=1[un, sn] , while on the other

intervals is defined by:

x(t) :=




sn − un
tnk − tnk−1

(t− tnk−1) + un if tnk−1 ≤ t ≤ tnk , k = 1, 3, ... α(n) ,

un − sn
tnk − tnk−1

(t− tnk−1) + un if tnk−1 ≤ t ≤ tnk , k = 2, 4, ... α(n) − 1 .

We claim that x ∈ RVΦ[0, 1], but f ◦ x /∈ RVΦ [0,1]. Indeed, from inequality
(3) and Lemma 1 (c), the following two estimates can be obtained

V R
Φ (x; [0, 1]) ≤ Φ(1) +

∞∑
n=1

Φ
(
α(n)

)
|sn − un| , (4)

and

V R
Φ

(
f ◦ x; [0, 1]

)
≥

∞∑
n=1

Φ
(
2α(n)

) kn
2

|sn − un| . (5)
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We shall find a sequence {α(n)}∞n=1 of odd numbers such that the series (4) is
convergent and the series (5) is divergent.

Let K > 1 be an arbitrary constant, of course we have

K + 1
n2 |sn − un|

+
K − 1

n2 |sn − un|
=

2K
n2 |sn − un|

, (n = 1, 2, ...) .

Since kn ≥ n2(n = 1, 2, ...), from the inequality (3) we obtain

1
n2 |sn − un|

> 1(n = 1, 2, ...) .

Since Φ−1 is a concave function and by the above identity we have

Φ−1
( K

n2 |sn − un|
)
− 1

2
Φ−1

( K − 1
n2 |sn − un|

)
≥ 1

2
Φ−1

( K + 1
n2 |sn − un|

)
≥ 1

2
Φ−1(K−1) .

Taking K sufficiently large, we choose the sequence {α(n)}∞n=1 of odd numbers
such that

1
2
Φ−1(K−1) ≤ 1

2
Φ−1

( K − 1
n2 |sn − un|

)
≤ α(n) ≤ Φ−1

( K

n2 |sn − un|
)

(n = 2, 3, 4, ....).

Hence

V R
Φ

(
x; [0, 1]

)
≤ Φ(1) +

∞∑
n=1

1
n2

< ∞ ,

and

V R
Φ

(
f ◦ x; [0, 1]

)
≥

∞∑
n=1

(K − 1) = ∞ .

Thus x ∈ RVΦ[0, 1], and f ◦ x /∈ RVΦ[0, 1] , which is contradiction. Now
consider case (ii). We define a subsequence of intervals [un, sn] having the following
properties:

[
un+1, sn+1

]
⊂

[
un, sn] , (n = 1, 2, ..) and

∞⋂
n=1

[
un, sn] = {t∗} .

Taking the sequence kn = 2n(n+ 1) in the inequality (3) , we have.

2n(n+ 1) |sn − un| < |f(un) − f(sn)| ≤ 1(n = 1, 2, ...) . (6)
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Hence we have
1

2n(n+ 1)|sn − un|
> 1(n = 1, 2, ...) .

Let us define the numbers mn and m′
n by:

mn =
1

2n(n+ 1)|sn − un|
, and m′

n = [mn]

where [ . ] denotes as usual the integral part.
For each n = 1, 2, ..., we define a partition πn by:

πn :
1

n+ 1
= tn0 < tn1 < ... < tn2m′

n
< tn2m′

n+1 =
1
n
,

where
tnk =

1
n+ 1

+
k

2
|sn − un| , (k = 1, 2, 3, ..., 2m′

n) .

Define the function x on [0,1] in the following way: x(0) = t∗, x(1) = u1, while
in the interval (0,1) we prescribe x by:

x(t) =




un − un+1

tn1 − tn0
(t− tn1 ) + un if tn0 ≤ t ≤ tn1 ,

sn − un
tnk+1 − tnk

(t− tnk ) + un if tnk ≤ t ≤ tnk−1 , k = 1, 3, ..., 2m′
n − 1 ,

un − sn
tnk+1t

n
k

(t− tnk ) + sn if tnk ≤ t ≤ tnk−1 , k = 2, 4, ..., 2m′
n .

We claim that x ∈ RVΦ[0, 1], but f ◦x /∈ RVΦ[0, 1]. Indeed, from inequality (6),
Lemma 1 (c), (d), and the definitions of mn and m′

n , the following two estimate
can be obtained

V R
Φ

(
x; [0, 1]

)
≤ Φ(4)

∞∑
n=1

2m′
n |sn − un| ≤ 2Φ(4)

∞∑
n=1

1
n(n+ 1)

(7)

and

V1

(
f ◦ x; [0, 1]

)
≥

∞∑
n=1

2m′
n |f(sn) − f(un)| ≥

∞∑
n=1

n(n+ 1)
n(n+ 1)

|sn−un|
|sn − un|

=
∞∑

n=1

1 . (8)

Hence the series (7) is convergent and the series (8) is divergent. Thus x ∈
RVΦ[0, 1] , and f ◦ x /∈ RVΦ[0, 1], which is a contradiction. �
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