Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **46**, 3 (1995), 231–238 © 1995 Universitat de Barcelona

On the composition operator in $RV_{\Phi}[a, b]$

NELSON MERENTES

A.P20513, Departamento de Matemáticas, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela

Received December 21, 1993. Revised March 31, 1995

Abstract

We shall denote by F the composition operator generated by a given function $f : \mathbb{R} \to \mathbb{R}$, acting on the space of functions of bounded Riesz Φ -variation. In this paper we prove that the composition operator F maps the space $RV_{\Phi}[a, b]$ into itself if and only if f satisfies a local Lipschitz condition on \mathbb{R} .

Introduction

Some properties of the composition operator F turned out to be important in differential, integral and functional equations, for example, J. Matkowski [8], J. Appell and P. P. Zabrejko [2]. In particular, M. Marcus and V. J. Mizel [7] has proved that the composition operator F maps the space RVp[a, b] into itself if and only if $f : \mathbb{R} \to \mathbb{R}$ satisfies a local Lipschitz condition on \mathbb{R} . In the present paper we generalize the above result to the case of the space $RV_{\Phi}[a, b]$ of functions of bounded Riesz Φ -variation. The particular case corresponding to $\Phi(u) = u$ has proved by M. Josephy [5].

Preliminaries on $RV_{\Phi}[a, b]$

For a real-function x on [a, b] and for a Φ -function (Φ -functions are positive nondecreasing continuous functions on \mathbb{R} which are 0 only at 0 and $\Phi(u) \to \infty$ as $u \to \infty$), we can define the *Riesz* Φ -variation as the number.

$$V_{\Phi}^{R}(x) = \sup_{\pi} \sum_{k=1}^{m} \Phi\left(\frac{|x(t_{k}) - x(t_{k-1})|}{t_{k} - t_{k-1}}\right) (t_{k} - t_{k-1}), \qquad (1)$$

where supremum is taken over all partitions $\pi : a = t_0 < t_1 < ... < t_m = b$ of [a, b]. In literature is also well-known the so called Φ -variation

$$V_{\Phi}(x) = \sup_{\pi} \sum_{k=1}^{m} \Phi\left(|x(t_k) - x(t_{k-1})| \right) \,,$$

where supremum is again taken over all partitions π of [a, b].

If Φ is a convex Φ -function, then the space $RV_{\Phi} = RV_{\Phi}[a, b]$ of all real-valued functions on [a, b] such that $V_{\Phi}^{R}(\lambda x) < \infty$ for some $\lambda > 0$ is a Banach space with the norm

$$||x||_{\Phi} = |x(a)| + ||x||_{\Phi}^{0}$$
, where $||x||_{\Phi}^{0} = \inf \left\{ \epsilon > 0 : V_{\Phi}^{R}\left(\frac{x}{\epsilon}\right) \le 1 \right\}$.

Is also well known the Banach space $BV_{\Phi} = BV_{\Phi}[a, b]$. Also we consider subspaces $RV_{\Phi}^{0} = \{x \in RV_{\Phi}[a, b] : x(a) = 0\}$ and $BV_{\Phi}^{0} = \{x \in BV_{\Phi} : x(a) = 0\}$. For the first time space BV_{Φ} and RV_{Φ} appeared in papers [10] and [1], respectively.

When $\Phi(u) = u^p (p > 1)$, then we have classical space RVp of functions of bounded Riesz *p*-variation.

Note that the assumption $\limsup_{u\to\infty} \frac{\Phi(u)}{u} = +\infty$, in the case of convex functions Φ , is just $\lim_{u\to\infty} \frac{\Phi(u)}{u} = \infty$. Moreover, as it was observed in [6], pp. 61-62, if Φ is a convex Φ -function and condition (∞_1) is not satisfied, i.e. $\lim_{u\to\infty} \frac{\Phi(u)}{u} = c < \infty$, then $RV_{\Phi} = BV$, where BV means the usual space of functions of finite variation. For a convex Φ -function Φ which satisfies (∞_1) some useful properties of Riesz Φ -variation are stated in the following Lemma.

Lemma 1

Let Φ be a convex Φ -function. (a) (Musielak-Orlicz [10]) If $x \in RV_{\Phi}$ and $||x||_{\Phi}^{0} > 0$, then

$$V_{\Phi}^{R}\left(\frac{x}{\|x\|_{\Phi}^{0}}\right) \leq 1\,.$$

(b) (Maligranda-Orlicz [6]) If $x \in RV_{\Phi}$, then x is bounded on [a, b] and

$$\sup_{t \in [a,b]} |x(t)| \le C_{\Phi}(h) \, \|x\|_{\Phi}^{0} \tag{2}$$

where $C_{\Phi}(h) = \max\left\{\min\left[\frac{1}{\Phi(1)}, \frac{1}{h\Phi(\frac{1}{h})}\right], \frac{h}{\Phi^{-1}(\frac{1}{h})}\right\}, h = b - a$.

Moreover, if additionally Φ satisfies condition $\lim_{u\to\infty} \frac{\Phi(u)}{u} = \infty$, then: (c) (Medvedev [9]) $V_{\Phi}^R(x) < \infty$ if and only if x is absolutely continuous on [a, b] and $\int_{a}^{b} \Phi(|x'(t)|)dt < \infty$. In this case we also have equality $V_{\Phi}^R(x) = \int_{a}^{b} \Phi(|x'(t)|)dt$. (d) (Cybertowicz - Matuszewska [4]) If $x \in RV_{\Phi}$, then:

$$||x||_{\Phi}^{0} = \inf \left\{ \varepsilon > 0 : \int_{a}^{b} \Phi \left(\left| \frac{|x'(t)|}{\varepsilon} \right| \right) dt \le 1 \right\}.$$

The purpose of this paper is to solve the superposition problem for spaces RV_{Φ} , that is, when for function $f : \mathbb{R} \to \mathbb{R}$ the composition operator F generated by fmaps the space RV_{Φ} into itself. Before presenting our main result (Theorem) below, we briefly review what is known in the literature:

- 1° Josephy [5] proved that $F: BV \to BV$ if and only if f is a locally Lipschitz function on \mathbb{R} . Recall that function $f: \mathbb{R} \to \mathbb{R}$ is locally Lipschitz function on \mathbb{R} if for every r > 0 there exists L = L(r) > 0 such that $|f(s) - f(t)| \le L |s - t| (s, t \in [-r, r])$.
- 2° Marcus Mizel [7] generalized the Josephy result to spaces RVp, 1 . $We have <math>F : RVp \to RVp$ if and only if f is a locally Lipschitz function on \mathbb{R} .
- 3° Ciemnoczolowski Orlicz [3] generalized result of Josephy to BV_{Φ}^0 spaces. Let Φ be a strictly increasing Φ -function such that $\Phi \in \delta_2$, $\Phi^{-1} \in \delta_2$ ($\Phi \in \delta_2$ is there exist constants c > 1 and T_0 such that $\Phi(2t) \leq c \Phi(t)$ for all $0 < t \leq T_0$).

For $f : \mathbb{R} \to \mathbb{R}$, f(0) = 0 we have $F : BV_{\Phi}^0 \to BV_{\Phi}^0$ if and only if f is a locally Lipschitz function \mathbb{R} . Then Prus-Wisniowski [11] showed that the assumption $\Phi \in \delta_2$ may be dropped.

An example take book [2] pag 173, where it was given the context of BV-spaces, is now presented in the context of RV_{Φ} - spaces, in order to show that assumption $f \in RV_{\Phi}$ is not enough for $F(RV_{\Phi}) \subset RV_{\Phi}$.

EXAMPLE: RVp is not closed under composition. For 1 and <math>[a, b] = [-1, 1] let $f : \mathbb{R} \to \mathbb{R}$, be defined by:

$$f(t) := \begin{cases} 1 & \text{if} & - & \infty < t & \leq & -1 \,, \\ \\ \sqrt{|t|} & \text{if} & -1 & \leq t & \leq & 1 \,, \\ \\ 1 & \text{if} & 1 & \leq t & < & \infty \,. \end{cases}$$

It is easily verified that $V_p^R(f) = \frac{4}{2^p(2-p)}$, so that $1 \le p < 2$. Also $x \in RV_p$, where $x(s) = s^2 \sin^2(\frac{1}{s})$ for $s \in [-1, 1] - \{0\}$ and x(0) = 0 This follows since x is absolutely continuous on [-1, 1] and has bounded derivative. On the other hand, the composition $(f \circ x)(s) = |s \sin(\frac{1}{s})|$ does not have a finite variation and hence $(f \circ x) \notin RV_p$.

As will be seen from the next theorem, the situation above exemplified results from the fact that f does not satisfy a Lipschitz condition at t = 0.

Theorem

Let Φ be a convex Φ -function which satisfies condition $\lim_{u\to\infty} \frac{\Phi(u)}{u} = \infty$. For $f: \mathbb{R} \to \mathbb{R}$ we have $F: RV_{\Phi} \to RV_{\Phi}$ if and only if f is a locally Lipschitz function on \mathbb{R} . Moreover, if F maps RV_{Φ} into RV_{Φ} , then the mapping is bounded and the following inequality holds:

$$||Fx||_{\Phi} \le \left\{1 + 2L \left[c_{\Phi}(b-a) ||x||_{\Phi}^{0}\right]\right\} ||x||_{\Phi} (x \in RV_{\Phi}).$$

Proof. Without loss of generality, we can assume that [a, b] = [0, 1]. Let x be a function in $RV_{\Phi}[0, 1]$. By Lemma 1 (b), we have that there exists a non-negative constant $c_{\Phi}(1)$ such that

$$\sup_{t \in [0,1]} |x(t)| \le c_{\Phi}(1) \, \|x\|_{\Phi}^{0}$$

Since f satisfies a local Lipschitz condition on $\mathbbm{R}\,,$ then the following can be obtained

$$|f(t) - f(s)| \le L(c_{\Phi}(1) \|x\|_{\Phi}^{0}) |t - s| \quad \forall s, t \in [-c_{\Phi}(1) \|x\|_{\Phi}^{0}, c_{\Phi}(1) \|x\|_{\Phi}^{0}],$$

and

$$|f(t)| \le L(c_{\Phi}(1) \|x\|_{\Phi}^{0}) |t| + |f(0)| \quad \forall s, t \in [-c_{\Phi}(1) \|x\|_{\Phi}^{0}, c_{\Phi}(1) \|x\|_{\Phi}^{0}].$$

Then, we have the inequality $||Fx||_{\Phi} \leq \{1 + 2L \ [c_{\Phi}(1) \ ||x||_{\Phi}^{0}]\} ||x||_{\Phi}$.

Now let $f : \mathbb{R} \to \mathbb{R}$ be such that the composition operator F maps the space $RV_{\Phi}[0,1]$ into itself. For the function $x_0(t) = t$, we obtain that the composition $f(x_0(t)) = f(t)$ belongs to the space $RV_{\Phi}[0,1]$, hence f is bounded on [0,1], with a bounded M. Without loss of generality, we can assume that $M = \frac{1}{2}$.

Suppose that f does not satisfy a local Lipschitz condition on \mathbb{R} , hence there exists r > 0 such that $\frac{|f(u) - f(s)|}{|u-s|}$ is unbounded for $|u|, |s| \leq r(u \neq s)$. Without

loss of generality, we can assume that r = 1. Given the sequence $\{k_n\}_{n=1}^{\infty}$ defined by $k_n = 2n(n+1)(n = 1, 2, ...,)$, there exist sequences $\{u_n\}_{n=1}^{\infty}$ and $\{s_n\}_{n=1}^{\infty}$ in [0,1] such that

$$k_n |u_n - s_n| < |f(u_n) - f(s_n)| \le 1$$
(3)

Note that $u_n - s_n \to 0$ as $n \to \infty$, by considering subsequences, if necessary, we may assume that $u_n \to t^*$ as $n \to \infty$. The analysis can be reduced to the following two cases:

- (i) t^* belongs only to finitely many intervals $[u_n, s_n]$.
- (ii) t^* belongs to infinitely many intervals $[u_n, s_n]$.

Suppose that we are in case (i) and that infinitely many intervals not containing t^* lie to left of t^* . Let us define a subsequence of these intervals having the following property:

$$u_n < s_n < u_{n+1} < s_{n+1} < t^* \quad (n = 1, 2, ...).$$

For each interval $I_n = [u_n, s_n]$ (n = 1, 2, ...), we define a partition π_n in the following way:

$$\pi_n : u_n = t_0^n < t_1^n < \dots < t_{\alpha(n)}^n = s_n ,$$

where $t_k^n - t_{k-1}^n = \frac{(s_n - u_n)}{\alpha(n)}$ $(k = 1,, \alpha(n))$ and $\{\alpha(n)\}$ is a sequence of suitably odd numbers.

Define the function x on [0,1] in the following way:

 $x(0) = 0, x(t) = t^*$ if $t^* \le t \le 1, x(t) = t$ if $t \notin \bigcup_{n=1}^{\infty} [u_n, s_n]$, while on the other intervals is defined by:

$$x(t) := \begin{cases} \frac{s_n - u_n}{t_k^n - t_{k-1}^n} (t - t_{k-1}^n) + u_n & \text{if } t_{k-1}^n \le t \le t_k^n, \, k = 1, 3, \dots \alpha(n) \,, \\ \\ \frac{u_n - s_n}{t_k^n - t_{k-1}^n} (t - t_{k-1}^n) + u_n & \text{if } t_{k-1}^n \le t \le t_k^n, \, k = 2, 4, \dots \alpha(n) - 1 \,. \end{cases}$$

We claim that $x \in RV_{\Phi}[0,1]$, but $f \circ x \notin RV_{\Phi}[0,1]$. Indeed, from inequality (3) and Lemma 1 (c), the following two estimates can be obtained

$$V_{\Phi}^{R}(x;[0,1]) \le \Phi(1) + \sum_{n=1}^{\infty} \Phi(\alpha(n)) |s_{n} - u_{n}|, \qquad (4)$$

and

$$V_{\Phi}^{R}(f \circ x; [0,1]) \ge \sum_{n=1}^{\infty} \Phi\left(2\alpha(n)\right) \frac{k_n}{2} \left|s_n - u_n\right|.$$

$$(5)$$

We shall find a sequence $\{\alpha(n)\}_{n=1}^{\infty}$ of odd numbers such that the series (4) is convergent and the series (5) is divergent.

Let K > 1 be an arbitrary constant, of course we have

$$\frac{K+1}{n^2 |s_n - u_n|} + \frac{K-1}{n^2 |s_n - u_n|} = \frac{2K}{n^2 |s_n - u_n|}, \ (n = 1, 2, ...).$$

Since $k_n \ge n^2 (n = 1, 2, ...)$, from the inequality (3) we obtain

$$\frac{1}{n^2 |s_n - u_n|} > 1 (n = 1, 2, \dots)$$

Since Φ^{-1} is a concave function and by the above identity we have

$$\Phi^{-1}\left(\frac{K}{n^2 |s_n - u_n|}\right) - \frac{1}{2}\Phi^{-1}\left(\frac{K - 1}{n^2 |s_n - u_n|}\right) \ge \frac{1}{2}\Phi^{-1}\left(\frac{K + 1}{n^2 |s_n - u_n|}\right) \ge \frac{1}{2}\Phi^{-1}(K - 1)$$

Taking K sufficiently large, we choose the sequence $\{\alpha(n)\}_{n=1}^\infty$ of odd numbers such that

$$\frac{1}{2}\Phi^{-1}(K-1) \le \frac{1}{2}\Phi^{-1}\left(\frac{K-1}{n^2 |s_n - u_n|}\right) \le \alpha(n) \le \Phi^{-1}\left(\frac{K}{n^2 |s_n - u_n|}\right) (n = 2, 3, 4, \dots).$$

Hence

$$V_{\Phi}^{R}(x;[0,1]) \le \Phi(1) + \sum_{n=1}^{\infty} \frac{1}{n^{2}} < \infty,$$

and

$$V_{\Phi}^{R}(f \circ x; [0, 1]) \ge \sum_{n=1}^{\infty} (K - 1) = \infty.$$

Thus $x \in RV_{\Phi}[0,1]$, and $f \circ x \notin RV_{\Phi}[0,1]$, which is contradiction. Now consider case (ii). We define a subsequence of intervals $[u_n, s_n]$ having the following properties:

$$[u_{n+1}, s_{n+1}] \subset [u_n, s_n]$$
, $(n = 1, 2, ..)$ and $\bigcap_{n=1}^{\infty} [u_n, s_n] = \{t^*\}$.

Taking the sequence $k_n = 2n(n+1)$ in the inequality (3), we have.

$$2n(n+1)|s_n - u_n| < |f(u_n) - f(s_n)| \le 1(n = 1, 2, ...).$$
(6)

Hence we have

$$\frac{1}{2n(n+1)|s_n - u_n|} > 1(n = 1, 2, \dots)$$

Let us define the numbers m_n and m'_n by:

$$m_n = \frac{1}{2n(n+1)|s_n - u_n|}$$
, and $m'_n = [m_n]$

where [.] denotes as usual the integral part.

For each n = 1, 2, ..., we define a partition π_n by:

$$\pi_n : \frac{1}{n+1} = t_0^n < t_1^n < \dots < t_{2m'_n}^n < t_{2m'_n+1}^n = \frac{1}{n},$$

where

$$t_k^n = \frac{1}{n+1} + \frac{k}{2} |s_n - u_n|, \ (k = 1, 2, 3, ..., 2m'_n).$$

Define the function x on [0,1] in the following way: $x(0) = t^*, x(1) = u_1$, while in the interval (0,1) we prescribe x by:

$$x(t) = \begin{cases} \frac{u_n - u_{n+1}}{t_1^n - t_0^n} (t - t_1^n) + u_n & \text{if} \quad t_0^n \le t \le t_1^n ,\\ \frac{s_n - u_n}{t_{k+1}^n - t_k^n} (t - t_k^n) + u_n & \text{if} \quad t_k^n \le t \le t_{k-1}^n , \ k = 1, 3, \dots, 2m'_n - 1 ,\\ \frac{u_n - s_n}{t_{k+1}^n t_k^n} (t - t_k^n) + s_n & \text{if} \quad t_k^n \le t \le t_{k-1}^n , \ k = 2, 4, \dots, 2m'_n . \end{cases}$$

We claim that $x \in RV_{\Phi}[0,1]$, but $f \circ x \notin RV_{\Phi}[0,1]$. Indeed, from inequality (6), Lemma 1 (c), (d), and the definitions of m_n and m'_n , the following two estimate can be obtained

$$V_{\Phi}^{R}(x;[0,1]) \le \Phi(4) \sum_{n=1}^{\infty} 2m'_{n} |s_{n} - u_{n}| \le 2\Phi(4) \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
(7)

and

$$V_1(f \circ x; [0,1]) \ge \sum_{n=1}^{\infty} 2m'_n |f(s_n) - f(u_n)| \ge \sum_{n=1}^{\infty} \frac{n(n+1)}{n(n+1)} \frac{|s_n - u_n|}{|s_n - u_n|} = \sum_{n=1}^{\infty} 1.$$
(8)

Hence the series (7) is convergent and the series (8) is divergent. Thus $x \in RV_{\Phi}[0,1]$, and $f \circ x \notin RV_{\Phi}[0,1]$, which is a contradiction. \Box

Acknowledgement. I would like to thank Dr. F. Szigeti for his helpful suggestions during the preparation of this work.

References

- 1. J. Albrycht and W. Orlicz, A note on modular spaces II, *Bull. Polish Acad. Sci. Math.* **10** (1962), 99–106.
- 2. J. Appell and P. P. Zabrejko, *Nonlinear superposition Operators*, Cambridge University Press, Cambridge, 1990.
- J. Ciemnoczolowski and W. Orlicz, Composing functions of bounded Φ-variation, *Proc. Amer.* Math. Soc. 96 (1986), 431–436.
- Z. Cybertowicz and W. Matuszewska, Functions of bounded generalized variations, Ann. Soc. Math. Polon. 20 (1977), 29–52.
- 5. M. Josephy, Composing functions of bounded variation, *Proc. Amer. Math. Soc.* 83 (1981), 354–356.
- 6. L. Maligranda and W. Orlicz, On some properties of functions of generalized variation, *Monatsh. Math.* **104** (1987), 53–65.
- 7. M. Marcus and V. J. Mizel, Complete characterization of functions which act, via superposition, on Sobolev spaces, *Trans. Amer. Math. Soc.* **251** (1979), 187–218.
- 8. J. Matkowski, Functional equations and Nemytskij Operators, *Funckcial Ekvac.* **25** (1982), 127–132.
- 9. Yu. T. Medvedev, A generalization of certain theorem of Riesz, *Uspekhi Mat. Nauk* 8 (1953), 115–118. [In Russian].
- 10. J. Musielak and W. Orlicz, On generalized variations, Studia Math. 18 (1959), 11-41.
- 11. F. Prus Wiśniowski, On superposition of functions of bounded Φ -variation, *Proc. Amer. Math.* Soc. **107** (1989), 361–366.