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ABSTRACT
We shall denote by F' the composition operator generated by a given function
f : R — R, acting on the space of functions of bounded Riesz ®-variation. In
this paper we prove that the composition operator F' maps the space RV [a, b]
into itself if and only if f satisfies a local Lipschitz condition on R.

Introduction

Some properties of the composition operator F' turned out to be important in dif-
ferential, integral and functional equations, for example, J. Matkowski [8], J. Appell
and P. P. Zabrejko [2]. In particular, M. Marcus and V. J. Mizel [7] has proved
that the composition operator F' maps the space RVpla,b] into itself if and only
if f: R — R satisfies a local Lipschitz condition on R. In the present paper we
generalize the above result to the case of the space RVg|a, b] of functions of bounded
Riesz ®-variation. The particular case corresponding to ®(u) = u has proved by
M. Josephy [5].

Preliminaries on RVg|a, b]

For a real-function = on [a,b] and for a ®-function (®-functions are positive non-
decreasing continuous functions on R which are 0 only at 0 and ®(u) — oo as
u — 00), we can define the Riesz ®-variation as the number.
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tp —tr—1

qub(l‘) _ Sl;p iq) (‘l’(tk) - m(tk—l)‘> (tk _ tk—l); (1)
k=1

where supremum is taken over all partitions 7:a =1ty <t; < .. <t _ =0b of [a,b].
In literature is also well-known the so called ®-variation

m

Va(z) =sup ) @ (|z(tr) — z(tr-1)]) ,

T k=1

where supremum is again taken over all partitions 7 of [a, b].

If ® is a convex ®-function, then the space RVgp = RVs|a,b] of all real-valued
functions on [a,b] such that V{{(Az) < oo for some A > 0 is a Banach space with
the norm

lally = l2(@)| + llz]§ , where | = inf {e>0: Vi (2) <1}

Is also well known the Banach space BV = BVgla,b]. Also we consider sub-
spaces RVy = {z € RVs[a,b] : z(a) = 0} and BVY = {x € BV : z(a) =0}. For
the first time space BVg and RVg appeared in papers [10] and [1], respectively.

When ®(u) = uP(p > 1), then we have classical space RVp of functions of

bounded Riesz p-variation.
®(u)

Note that the assumption limsup,_,,, —;> = +00, in the case of convex
functions @, is just limu_,ooy = 00. Moreover, as it was observed in [6],

pp. 61-62, if ® is a convex ®-function and condition (co1) is not satisfied, i.e.
= ¢ < oo, then RVy = BV, where BV means the usual space of
functions of finite variation. For a convex ®-function ® which satisfies (0o1) some
useful properties of Riesz ®-variation are stated in the following Lemma.

Lemma 1

Let ® be a convex ®-function.
(a) (Musielak-Orlicz [10]) If x € RVg and Hx||% > 0, then

]

(b) (Maligranda-Orlicz [6]) If x € RVg, then = is bounded on [a,b] and

sup [z(t)| < Ca(h) ||zl (2)

t€la,b]
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where Cg(h) = max {min [ﬁ, h@%%)] , <I>—1h(%)} ,h=b—a.

P(u)

Moreover, if additionally ® satisfies condition lim, s = 00, then:
(c) (Medvedev [9]) V{(z) < oo if and only if = is absolutely continuous on [a, b
b

b
and [ ®(|z/(t)|)dt < co. In this case we also have equality Vi (z) = [ ®(Ja/(t)|)dt .
(d) (Cybertowicz - Matuszewska [4]) If x € RVg , then:

b
/
HwH%:inf 5>O:/®( |x(t)|>dt§1

9
a

The purpose of this paper is to solve the superposition problem for spaces RV,
that is, when for function f:R — R the composition operator F' generated by f
maps the space RVg into itself. Before presenting our main result (Theorem) below,
we briefly review what is known in the literature:

1° Josephy [5] proved that F': BV — BV if and only if f is a locally Lipschitz
function on R. Recall that function f : R — R is locally Lipschitz function
on R if for every r > 0 there exists L = L(r) > 0 such that |f(s) — f(t)] <
Lis—t|(s,t €[-r7]).
2° Marcus - Mizel [7] generalized the Josephy result to spaces RVp,1 < p < co.
We have F': RVp — RVp if and only if f is a locally Lipschitz function on R.
3° Ciemnoczolowski - Orlicz [3] generalized result of Josephy to BV spaces. Let
® be a strictly increasing ®-function such that ® € 8, , &~ € 8, (® € 8y is there
exist constants ¢ > 1 and Tj such that ®(2t) < c®(t) for all0 <t < Tp).
For f: R — R, f(0) =0 we have F : BV — BV} if and only if f is a
locally Lipschitz function R. Then Prus-Wisniowski [11] showed that the assumption
® € 63 may be dropped.
An example take book [2] pag 173, where it was given the context of BV -spaces,
is now presented in the context of RVg- spaces, in order to show that assumption
f € RVg is not enough for F(RVy) C RV .

EXAMPLE: RVp is not closed under composition. For 1< p < 2 and [a,b] = [—1, 1]
let f:R — R,, be defined by:

1 if — oco<t < -1,

f(t) = [t] if -1 <t

IN
—
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It is easily verified that VpR(f) = m, so that 1 < p < 2. Also z € RV,
where 2(s) = s?sin® (1) for s € [-1,1] — {0} and z(0) = 0 This follows since z
is absolutely continuous on [—1,1] an has bounded derivative. On the other hand,
the composition (f oz)(s) = }s sin(%)’ does not have a finite variation and hence
(fo) ¢ RV, .

As will be seen from the next theorem, the situation above exemplified results
from the fact that f does not satisfy a Lipschitz condition at ¢t =0.

Theorem

Let ® be a convex ®-function which satisfies condition lim,,_, s éiu) = 00. For

f:R—=R we have F: RVg — RVg if and only if f is a locally Lipschitz function
on R. Moreover, if F' maps RVg into RVg, then the mapping is bounded and the
following inequality holds:

1Falle < {1 + 2L leg(® — )llall§ 1} 1oy (@ € RVa).

Proof. Without loss of generality, we can assume that [a,b] = [0,1]. Let = be a
function in RVy[0,1]. By Lemma 1 (b), we have that there exists a non-negative
constant c¢g(1) such that

0
sup [z(t)] < co(1) [|z[lg
t€[0,1]

Since f satisfies a local Lipschitz condition on R, then the following can be
obtained

F(t) — f(s)] < Lco(1) |lz]lg) [t — s| Vs, t € [—ca(1) ||z]lg . ca(l) [z]l5)],
and

@) < Lca(1) ]l g) It + £ Vs.t € [~ea(l) |allg, ca(l) [|z]g)]-

Then, we have the inequality ||Fz||s < {14 2L [ca(1) HxH?b]} lz|lp -

Now let f: R — R be such that the composition operator F' maps the space
RV3[0,1] into itself. For the function zo(t) = ¢, we obtain that the composition
f(zo(t)) = f(t) belongs to the space RVs|0,1], hence f is bounded on [0,1], with
a bounded M. Without loss of generality, we can assume that M = %

Suppose that f does not satisfy a local Lipschitz condition on R, hence there
exists 7 > 0 such that % is unbounded for |u|, |s| < r(u # s). Without
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loss of generality, we can assume that r = 1. Given the sequence {k,}, -, defined
by k, = 2n(n+1)(n = 1,2,..,), there exist sequences {u,} -, and {s,} -, in
[0,1] such that

Fntn — snl < |f(un) — f(sn)| <1 (3)

Note that u, — s, — 0 as n — oo, by considering subsequences, if necessary,
we may assume that u, — t* as n — oo. The analysis can be reduced to the
following two cases:

(i) t* belongs only to finitely many intervals [u,, , $,].

(ii) t* belongs to infinitely many intervals [u,, , $,].

Suppose that we are in case (i) and that infinitely many intervals not containing
t* lie to left of t*. Let us define a subsequence of these intervals having the following

property:
Up < Sp < Upt1 < Spp1 < 5 (n=1,2,...).

For each interval I,, = [u,, s, (n =1,2,...), we define a partition ,, in the following

way:
T @ Up =t < ] < ... <t2(n):5n,
where t} —t | = (Sg(n“)”) (k=1,....,a(n)) and {a(n)} is a sequence of suitably

odd numbers.

Define the function z on [0,1] in the following way:
z(0) = 0,z(t) =t* if t* <t <1, z(t) =t if t ¢ U [un,s,], while on the other
intervals is defined by:

Sp — U :
ﬁ(t— 1) Fun 3 STt =13, a(n),
Up — Sp, n : n n =
m(t_ k—1) T Un if o <t<tpk=24..a(n)-1.

We claim that x € RVg[0,1], but fox ¢ RVg [0,1]. Indeed, from inequality
(3) and Lemma 1 (c), the following two estimates can be obtained

VE (2;]0,1)) +Z ) 180 — tn, (4)

and

Vil(fox;[0,1]) =) ®(2a k—|sn—un. (5)
n=1
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We shall find a sequence {a(n)} -, of odd numbers such that the series (4) is
convergent and the series (5) is divergent.
Let K > 1 be an arbitrary constant, of course we have

K+1 K-1 2K

n?|sp, — un|  n?|sp — Uy 2 |$n — Un|’

(n=1,2,..).

Since k, > n?(n =1,2,...), from the inequality (3) we obtain

1

n2 s, — Uy

>1(n=1,2,..).

Since ®~! is a concave function and by the above identity we have

<1>—1<4K )—1@—1(—K_ ! ) > 1<1>—1<—K+1 ) > %(I)‘l(K—l).

n2 s, — uy| 2 n? s, —unl/ = 2 n? sy — Upl
Taking K sufficiently large, we choose the sequence {a(n)}, - ; of odd numbers

such that

K-1

n? Sy — Up

K

n2 |8y — Up|

%qu(f(_n < %qu< )ga(n) gqu( )(n:2,3,4,....).

Hence

1
Vi (z;]0,1]) < (1) + ) — <00,
n=1

and

Vil (fox;[0,1]) > (K —1)=00.

Thus =z € RV3[0,1], and fox ¢ RVg[0,1], which is contradiction. Now
consider case (ii). We define a subsequence of intervals [u,,, s,] having the following
properties:

[tnt1sSni1] C [un, 8], (n=1,2,..) and m (U, sn] = {t*} .
n=1

Taking the sequence k,, = 2n(n + 1) in the inequality (3) , we have.

2n(n + 1) sy, — un| < |[f(un) — f(sn)| < 1(n=1,2,...). (6)
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Hence we have
1

2n(n + 1)[sn — un|

>1(n=1,2,..).

Let us define the numbers m,, and m/, by:
1

= d e
2n(n +1)[s, — up|’ and my, =[]

where | . ] denotes as usual the integral part.
For each n =1,2,..., we define a partition m, by:
Tt =15 <t <. <ipp <t§m%+1:%,
where
e R (k=1,2,3,..2m).
a4l oo e

Define the function z on [0,1] in the following way: x(0) = t*,z(1) = uy, while
in the interval (0,1) we prescribe z by:

Up — U
ﬁ(t—t?Hun ity <t<itr,
1
k+1 k:
u(t_tn)+ if <t <tp E—94 o/
gy ) e by k= 2,4, 2m)
\

We claim that z € RVg[0, 1], but fox ¢ RVs|0, 1] Indeed, from inequality (6),
Lemma 1 (c), (d), and the definitions of m,, and m/,, the following two estimate
can be obtained

VE (a3 ZQm n— ] < 2@(4)2@ (7)

and

“.n |Sn—un| N
(fO.’L' ZQm |f Sn - Znn—f-l ‘Sn—un‘ Zl'
el n=1

Hence the series (7) is convergent and the series (8) is divergent. Thus z €
RV3[0,1], and foxz ¢ RVs[0,1], which is a contradiction. [J
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