Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 46, 3 (1995), 231-238
(c) 1995 Universitat de Barcelona

On the composition operator in $R V_{\Phi}[a, b]$

Nelson Merentes
A.P20513, Departamento de Matemáticas, Facultad de Ciencias,
Universidad Central de Venezuela, Caracas 1020-A, Venezuela

Received December 21, 1993. Revised March 31, 1995

Abstract

We shall denote by F the composition operator generated by a given function $f: \mathbb{R} \rightarrow \mathbb{R}$, acting on the space of functions of bounded Riesz Φ-variation. In this paper we prove that the composition operator F maps the space $R V_{\Phi}[a, b]$ into itself if and only if f satisfies a local Lipschitz condition on \mathbb{R}.

Introduction

Some properties of the composition operator F turned out to be important in differential, integral and functional equations, for example, J. Matkowski [8], J. Appell and P. P. Zabrejko [2]. In particular, M. Marcus and V. J. Mizel [7] has proved that the composition operator F maps the space $R V p[a, b]$ into itself if and only if $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies a local Lipschitz condition on \mathbb{R}. In the present paper we generalize the above result to the case of the space $R V_{\Phi}[a, b]$ of functions of bounded Riesz Φ-variation. The particular case corresponding to $\Phi(u)=u$ has proved by M. Josephy [5].

Preliminaries on $R V_{\Phi}[a, b]$

For a real-function x on $[a, b]$ and for a Φ-function (Φ-functions are positive nondecreasing continuous functions on \mathbb{R} which are 0 only at 0 and $\Phi(u) \rightarrow \infty$ as $u \rightarrow \infty)$, we can define the Riesz Φ-variation as the number.

$$
\begin{equation*}
V_{\Phi}^{R}(x)=\sup _{\pi} \sum_{k=1}^{m} \Phi\left(\frac{\left|x\left(t_{k}\right)-x\left(t_{k-1}\right)\right|}{t_{k}-t_{k-1}}\right)\left(t_{k}-t_{k-1}\right), \tag{1}
\end{equation*}
$$

where supremum is taken over all partitions $\pi: a=t_{0}<t_{1}<\ldots<t_{m}=b$ of $[a, b]$.
In literature is also well-known the so called Φ-variation

$$
V_{\Phi}(x)=\sup _{\pi} \sum_{k=1}^{m} \Phi\left(\left|x\left(t_{k}\right)-x\left(t_{k-1}\right)\right|\right),
$$

where supremum is again taken over all partitions π of $[a, b]$.
If Φ is a convex Φ-function, then the space $R V_{\Phi}=R V_{\Phi}[a, b]$ of all real-valued functions on $[a, b]$ such that $V_{\Phi}^{R}(\lambda x)<\infty$ for some $\lambda>0$ is a Banach space with the norm

$$
\|x\|_{\Phi}=|x(a)|+\|x\|_{\Phi}^{0}, \text { where }\|x\|_{\Phi}^{0}=\inf \left\{\epsilon>0: V_{\Phi}^{R}\left(\frac{x}{\epsilon}\right) \leq 1\right\} .
$$

Is also well known the Banach space $B V_{\Phi}=B V_{\Phi}[a, b]$. Also we consider subspaces $R V_{\Phi}^{0}=\left\{x \in R V_{\Phi}[a, b]: x(a)=0\right\}$ and $B V_{\Phi}^{0}=\left\{x \in B V_{\Phi}: x(a)=0\right\}$. For the first time space $B V_{\Phi}$ and $R V_{\Phi}$ appeared in papers [10] and [1], respectively.

When $\Phi(u)=u^{p}(p>1)$, then we have classical space $R V p$ of functions of bounded Riesz p-variation.

Note that the assumption $\lim \sup _{u \rightarrow \infty} \frac{\Phi(u)}{u}=+\infty$, in the case of convex functions Φ, is just $\lim _{u \rightarrow \infty} \frac{\Phi(u)}{u}=\infty$. Moreover, as it was observed in [6], pp. 61-62, if Φ is a convex Φ-function and condition $\left(\infty_{1}\right)$ is not satisfied, i.e. $\lim _{u \rightarrow \infty} \frac{\Phi(u)}{u}=c<\infty$, then $R V_{\Phi}=B V$, where $B V$ means the usual space of functions of finite variation. For a convex Φ-function Φ which satisfies $\left(\infty_{1}\right)$ some useful properties of Riesz Φ-variation are stated in the following Lemma.

Lemma 1

Let Φ be a convex Φ-function.
(a) (Musielak-Orlicz [10]) If $x \in R V_{\Phi}$ and $\|x\|_{\Phi}^{0}>0$, then

$$
V_{\Phi}^{R}\left(\frac{x}{\|x\|_{\Phi}^{0}}\right) \leq 1 .
$$

(b) (Maligranda-Orlicz [6]) If $x \in R V_{\Phi}$, then x is bounded on $[a, b]$ and

$$
\begin{equation*}
\sup _{t \in[a, b]}|x(t)| \leq C_{\Phi}(h)\|x\|_{\Phi}^{0} \tag{2}
\end{equation*}
$$

where $C_{\Phi}(h)=\max \left\{\min \left[\frac{1}{\Phi(1)}, \frac{1}{h \Phi\left(\frac{1}{h}\right)}\right], \frac{h}{\Phi^{-1}\left(\frac{1}{h}\right)}\right\}, h=b-a$.
Moreover, if additionally Φ satisfies condition $\lim _{u \rightarrow \infty} \frac{\Phi(u)}{u}=\infty$, then:
(c) (Medvedev [9]) $V_{\Phi}^{R}(x)<\infty$ if and only if x is absolutely continuous on $[a, b]$ and $\int_{a}^{b} \Phi(|x \prime(t)|) d t<\infty$. In this case we also have equality $V_{\Phi}^{R}(x)=\int_{a}^{b} \Phi(|x \prime(t)|) d t$.
(d) (Cybertowicz - Matuszewska [4]) If $x \in R V_{\Phi}$, then:

$$
\|x\|_{\Phi}^{0}=\inf \left\{\varepsilon>0: \int_{a}^{b} \Phi\left(\left|\frac{\left|x^{\prime}(t)\right|}{\varepsilon}\right|\right) d t \leq 1\right\}
$$

The purpose of this paper is to solve the superposition problem for spaces $R V_{\Phi}$, that is, when for function $f: \mathbb{R} \rightarrow \mathbb{R}$ the composition operator F generated by f maps the space $R V_{\Phi}$ into itself. Before presenting our main result (Theorem) below, we briefly review what is known in the literature:
1° Josephy [5] proved that $F: B V \rightarrow B V$ if and only if f is a locally Lipschitz function on \mathbb{R}. Recall that function $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz function on \mathbb{R} if for every $r>0$ there exists $L=L(r)>0$ such that $|f(s)-f(t)| \leq$ $L|s-t|(s, t \in[-r, r])$.
2° Marcus - Mizel [7] generalized the Josephy result to spaces $R V p, 1<p<\infty$. We have $F: R V p \rightarrow R V p$ if and only if f is a locally Lipschitz function on \mathbb{R}.
3° Ciemnoczolowski - Orlicz [3] generalized result of Josephy to $B V_{\Phi}^{0}$ spaces. Let Φ be a strictly increasing Φ-function such that $\Phi \in \delta_{2}, \Phi^{-1} \in \delta_{2}\left(\Phi \in \delta_{2}\right.$ is there exist constants $c>1$ and T_{0} such that $\Phi(2 t) \leq c \Phi(t)$ for all $\left.0<t \leq T_{0}\right)$.
For $f: \mathbb{R} \rightarrow \mathbb{R}, f(0)=0$ we have $F: B V_{\Phi}^{0} \rightarrow B V_{\Phi}^{0}$ if and only if f is a locally Lipschitz function \mathbb{R}. Then Prus-Wisniowski [11] showed that the assumption $\Phi \in \delta_{2}$ may be dropped.

An example take book [2] pag 173, where it was given the context of $B V$-spaces, is now presented in the context of $R V_{\Phi^{-}}$spaces, in order to show that assumption $f \in R V_{\Phi}$ is not enough for $F\left(R V_{\Phi}\right) \subset R V_{\Phi}$.

Example: $\quad R V p$ is not closed under composition. For $1<\mathrm{p}<2$ and $[a, b]=[-1,1]$ let $f: \mathbb{R} \rightarrow \mathbb{R}$, , be defined by:

It is easily verified that $V_{p}^{R}(f)=\frac{4}{2^{p}(2-p)}$, so that $1 \leq p<2$. Also $x \in R V_{p}$, where $x(s)=s^{2} \sin ^{2}\left(\frac{1}{s}\right)$ for $s \in[-1,1]-\{0\}$ and $x(0)=0$ This follows since x is absolutely continuous on $[-1,1]$ an has bounded derivative. On the other hand, the composition $(f \circ x)(s)=\left|s \sin \left(\frac{1}{s}\right)\right|$ does not have a finite variation and hence $(f \circ x) \notin R V_{p}$.

As will be seen from the next theorem, the situation above exemplified results from the fact that f does not satisfy a Lipschitz condition at $t=0$.

Theorem

Let Φ be a convex Φ-function which satisfies condition $\lim _{u \rightarrow \infty} \frac{\Phi(u)}{u}=\infty$. For $f: \mathbb{R} \rightarrow \mathbb{R}$ we have $F: R V_{\Phi} \rightarrow R V_{\Phi}$ if and only if f is a locally Lipschitz function on \mathbb{R}. Moreover, if F maps $R V_{\Phi}$ into $R V_{\Phi}$, then the mapping is bounded and the following inequality holds:

$$
\|F x\|_{\Phi} \leq\left\{1+2 L\left[c_{\Phi}(b-a)\|\mid x\|_{\Phi}^{0}\right]\right\}\|x\|_{\Phi}\left(x \in R V_{\Phi}\right)
$$

Proof. Without loss of generality, we can assume that $[a, b]=[0,1]$. Let x be a function in $R V_{\Phi}[0,1]$. By Lemma 1 (b), we have that there exists a non-negative constant $c_{\Phi}(1)$ such that

$$
\sup _{t \in[0,1]}|x(t)| \leq c_{\Phi}(1)\|x\|_{\Phi}^{0}
$$

Since f satisfies a local Lipschitz condition on \mathbb{R}, then the following can be obtained

$$
|f(t)-f(s)| \leq L\left(c_{\Phi}(1)\|x\|_{\Phi}^{0}\right)|t-s| \quad \forall s, t \in\left[-c_{\Phi}(1)\|x\|_{\Phi}^{0}, c_{\Phi}(1)\|x\|_{\Phi}^{0}\right]
$$

and

$$
|f(t)| \leq L\left(c_{\Phi}(1)\|x\|_{\Phi}^{0}\right)|t|+|f(0)| \quad \forall s, t \in\left[-c_{\Phi}(1)\|x\|_{\Phi}^{0}, c_{\Phi}(1)\|x\|_{\Phi}^{0}\right] .
$$

Then, we have the inequality $\|F x\|_{\Phi} \leq\left\{1+2 L\left[c_{\Phi}(1)\|x\|_{\Phi}^{0}\right]\right\}\|x\|_{\Phi}$.
Now let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that the composition operator F maps the space $R V_{\Phi}[0,1]$ into itself. For the function $x_{0}(t)=t$, we obtain that the composition $f\left(x_{0}(t)\right)=f(t)$ belongs to the space $R V_{\Phi}[0,1]$, hence f is bounded on $[0,1]$, with a bounded M. Without loss of generality, we can assume that $M=\frac{1}{2}$.

Suppose that f does not satisfy a local Lipschitz condition on \mathbb{R}, hence there exists $r>0$ such that $\frac{|f(u)-f(s)|}{|u-s|}$ is unbounded for $|u|,|s| \leq r(u \neq s)$. Without
loss of generality, we can assume that $r=1$. Given the sequence $\left\{k_{n}\right\}_{n=1}^{\infty}$ defined by $k_{n}=2 n(n+1)(n=1,2, . .$,$) , there exist sequences \left\{u_{n}\right\}_{n=1}^{\infty}$ and $\left\{s_{n}\right\}_{n=1}^{\infty}$ in $[0,1]$ such that

$$
\begin{equation*}
k_{n}\left|u_{n}-s_{n}\right|<\left|f\left(u_{n}\right)-f\left(s_{n}\right)\right| \leq 1 \tag{3}
\end{equation*}
$$

Note that $u_{n}-s_{n} \rightarrow 0$ as $n \rightarrow \infty$, by considering subsequences, if necessary, we may assume that $u_{n} \rightarrow t^{*}$ as $n \rightarrow \infty$. The analysis can be reduced to the following two cases:
(i) t^{*} belongs only to finitely many intervals $\left[u_{n}, s_{n}\right]$.
(ii) t^{*} belongs to infinitely many intervals $\left[u_{n}, s_{n}\right]$.

Suppose that we are in case (i) and that infinitely many intervals not containing t^{*} lie to left of t^{*}. Let us define a subsequence of these intervals having the following property:

$$
u_{n}<s_{n}<u_{n+1}<s_{n+1}<t^{*} \quad(n=1,2, \ldots) .
$$

For each interval $I_{n}=\left[u_{n}, s_{n}\right](n=1,2, \ldots)$, we define a partition π_{n} in the following way:

$$
\pi_{n}: u_{n}=t_{0}^{n}<t_{1}^{n}<\ldots . .<t_{\alpha(n)}^{n}=s_{n},
$$

where $t_{k}^{n}-t_{k-1}^{n}=\frac{\left(s_{n}-u_{n}\right)}{\alpha(n)} \quad(k=1, \ldots . ., \alpha(n))$ and $\{\alpha(n)\}$ is a sequence of suitably odd numbers.

Define the function x on $[0,1]$ in the following way: $x(0)=0, x(t)=t^{*}$ if $t^{*} \leq t \leq 1, x(t)=t$ if $t \notin \cup_{n=1}^{\infty}\left[u_{n}, s_{n}\right]$, while on the other intervals is defined by:

$$
x(t):=\left\{\begin{array}{lll}
\frac{s_{n}-u_{n}}{t_{k}^{n}-t_{k-1}^{n}}\left(t-t_{k-1}^{n}\right)+u_{n} & \text { if } \quad t_{k-1}^{n} \leq t \leq t_{k}^{n}, k=1,3, \ldots \alpha(n) \\
\frac{u_{n}-s_{n}}{t_{k}^{n}-t_{k-1}^{n}}\left(t-t_{k-1}^{n}\right)+u_{n} & \text { if } \quad t_{k-1}^{n} \leq t \leq t_{k}^{n}, k=2,4, \ldots \alpha(n)-1 .
\end{array}\right.
$$

We claim that $x \in R V_{\Phi}[0,1]$, but $f \circ x \notin R V_{\Phi}[0,1]$. Indeed, from inequality (3) and Lemma 1 (c), the following two estimates can be obtained

$$
\begin{equation*}
V_{\Phi}^{R}(x ;[0,1]) \leq \Phi(1)+\sum_{n=1}^{\infty} \Phi(\alpha(n))\left|s_{n}-u_{n}\right|, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{\Phi}^{R}(f \circ x ;[0,1]) \geq \sum_{n=1}^{\infty} \Phi(2 \alpha(n)) \frac{k_{n}}{2}\left|s_{n}-u_{n}\right| . \tag{5}
\end{equation*}
$$

We shall find a sequence $\{\alpha(n)\}_{n=1}^{\infty}$ of odd numbers such that the series (4) is convergent and the series (5) is divergent.

Let $K>1$ be an arbitrary constant, of course we have

$$
\frac{K+1}{n^{2}\left|s_{n}-u_{n}\right|}+\frac{K-1}{n^{2}\left|s_{n}-u_{n}\right|}=\frac{2 K}{n^{2}\left|s_{n}-u_{n}\right|}, \quad(n=1,2, \ldots) .
$$

Since $k_{n} \geq n^{2}(n=1,2, \ldots)$, from the inequality (3) we obtain

$$
\frac{1}{n^{2}\left|s_{n}-u_{n}\right|}>1(n=1,2, \ldots)
$$

Since Φ^{-1} is a concave function and by the above identity we have
$\Phi^{-1}\left(\frac{K}{n^{2}\left|s_{n}-u_{n}\right|}\right)-\frac{1}{2} \Phi^{-1}\left(\frac{K-1}{n^{2}\left|s_{n}-u_{n}\right|}\right) \geq \frac{1}{2} \Phi^{-1}\left(\frac{K+1}{n^{2}\left|s_{n}-u_{n}\right|}\right) \geq \frac{1}{2} \Phi^{-1}(K-1)$.
Taking K sufficiently large, we choose the sequence $\{\alpha(n)\}_{n=1}^{\infty}$ of odd numbers such that
$\frac{1}{2} \Phi^{-1}(K-1) \leq \frac{1}{2} \Phi^{-1}\left(\frac{K-1}{n^{2}\left|s_{n}-u_{n}\right|}\right) \leq \alpha(n) \leq \Phi^{-1}\left(\frac{K}{n^{2}\left|s_{n}-u_{n}\right|}\right)(n=2,3,4, \ldots).$.
Hence

$$
V_{\Phi}^{R}(x ;[0,1]) \leq \Phi(1)+\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

and

$$
V_{\Phi}^{R}(f \circ x ;[0,1]) \geq \sum_{n=1}^{\infty}(K-1)=\infty
$$

Thus $x \in R V_{\Phi}[0,1]$, and $f \circ x \notin R V_{\Phi}[0,1]$, which is contradiction. Now consider case (ii). We define a subsequence of intervals $\left[u_{n}, s_{n}\right.$] having the following properties:

$$
\left[u_{n+1}, s_{n+1}\right] \subset\left[u_{n}, s_{n}\right],(n=1,2, . .) \quad \text { and } \quad \bigcap_{n=1}^{\infty}\left[u_{n}, s_{n}\right]=\left\{t^{*}\right\}
$$

Taking the sequence $k_{n}=2 n(n+1)$ in the inequality (3), we have.

$$
\begin{equation*}
2 n(n+1)\left|s_{n}-u_{n}\right|<\left|f\left(u_{n}\right)-f\left(s_{n}\right)\right| \leq 1(n=1,2, \ldots) \tag{6}
\end{equation*}
$$

Hence we have

$$
\frac{1}{2 n(n+1)\left|s_{n}-u_{n}\right|}>1(n=1,2, \ldots)
$$

Let us define the numbers m_{n} and m_{n}^{\prime} by:

$$
m_{n}=\frac{1}{2 n(n+1)\left|s_{n}-u_{n}\right|}, \quad \text { and } m_{n}^{\prime}=\left[m_{n}\right]
$$

where [.] denotes as usual the integral part.
For each $n=1,2, \ldots$, we define a partition π_{n} by:

$$
\pi_{n}: \frac{1}{n+1}=t_{0}^{n}<t_{1}^{n}<\ldots<t_{2 m_{n}^{\prime}}^{n}<t_{2 m_{n}^{\prime}+1}^{n}=\frac{1}{n}
$$

where

$$
t_{k}^{n}=\frac{1}{n+1}+\frac{k}{2}\left|s_{n}-u_{n}\right|,\left(k=1,2,3, \ldots, 2 m_{n}^{\prime}\right)
$$

Define the function x on $[0,1]$ in the following way: $x(0)=t^{*}, x(1)=u_{1}$, while in the interval $(0,1)$ we prescribe x by:

$$
x(t)= \begin{cases}\frac{u_{n}-u_{n+1}}{t_{1}^{n}-t_{0}^{n}}\left(t-t_{1}^{n}\right)+u_{n} & \text { if } \quad t_{0}^{n} \leq t \leq t_{1}^{n} \\ \frac{s_{n}-u_{n}}{t_{k+1}^{n}-t_{k}^{n}}\left(t-t_{k}^{n}\right)+u_{n} & \text { if } \quad t_{k}^{n} \leq t \leq t_{k-1}^{n}, k=1,3, \ldots, 2 m_{n}^{\prime}-1 \\ \frac{u_{n}-s_{n}}{t_{k+1}^{n} t_{k}^{n}}\left(t-t_{k}^{n}\right)+s_{n} & \text { if } \quad t_{k}^{n} \leq t \leq t_{k-1}^{n}, k=2,4, \ldots, 2 m_{n}^{\prime}\end{cases}
$$

We claim that $x \in R V_{\Phi}[0,1]$, but $f \circ x \notin R V_{\Phi}[0,1]$. Indeed, from inequality (6), Lemma 1 (c), (d), and the definitions of m_{n} and m_{n}^{\prime}, the following two estimate can be obtained

$$
\begin{equation*}
V_{\Phi}^{R}(x ;[0,1]) \leq \Phi(4) \sum_{n=1}^{\infty} 2 m_{n}^{\prime}\left|s_{n}-u_{n}\right| \leq 2 \Phi(4) \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{1}(f \circ x ;[0,1]) \geq \sum_{n=1}^{\infty} 2 m_{n}^{\prime}\left|f\left(s_{n}\right)-f\left(u_{n}\right)\right| \geq \sum_{n=1}^{\infty} \frac{n(n+1)}{n(n+1)} \frac{\left|s_{n}-u_{n}\right|}{\left|s_{n}-u_{n}\right|}=\sum_{n=1}^{\infty} 1 \tag{8}
\end{equation*}
$$

Hence the series (7) is convergent and the series (8) is divergent. Thus $x \in$ $R V_{\Phi}[0,1]$, and $f \circ x \notin R V_{\Phi}[0,1]$, which is a contradiction.

Acknowledgement. I would like to thank Dr. F. Szigeti for his helpful suggestions during the preparation of this work.

References

1. J. Albrycht and W. Orlicz, A note on modular spaces II, Bull. Polish Acad. Sci. Math. 10 (1962), 99-106.
2. J. Appell and P. P. Zabrejko, Nonlinear superposition Operators, Cambridge University Press, Cambridge, 1990.
3. J. Ciemnoczolowski and W. Orlicz, Composing functions of bounded Φ-variation, Proc. Amer. Math. Soc. 96 (1986), 431-436.
4. Z. Cybertowicz and W. Matuszewska, Functions of bounded generalized variations, Ann. Soc. Math. Polon. 20 (1977), 29-52.
5. M. Josephy, Composing functions of bounded variation, Proc. Amer. Math. Soc. 83 (1981), 354-356.
6. L. Maligranda and W. Orlicz, On some properties of functions of generalized variation, Monatsh. Math. 104 (1987), 53-65.
7. M. Marcus and V. J. Mizel, Complete characterization of functions which act, via superposition, on Sobolev spaces, Trans. Amer. Math. Soc. 251 (1979), 187-218.
8. J. Matkowski, Functional equations and Nemytskij Operators, Funckcial Ekvac. 25 (1982), 127-132.
9. Yu. T. Medvedev, A generalization of certain theorem of Riesz, Uspekhi Mat. Nauk $\mathbf{8}$ (1953), 115-118. [In Russian].
10. J. Musielak and W. Orlicz, On generalized variations, Studia Math. 18 (1959), 11-41.
11. F. Prus - Wiśniowski, On superposition of functions of bounded Φ-variation, Proc. Amer. Math. Soc. 107 (1989), 361-366.
