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Abstract

In his seminal article of 1941, Paul Dubreil introduced complexes forts of
semigroups. Strong subsets of a semigroup S form another semigroup under
a natural multiplication. Properties of this semigroup are studied and some
open problems raised (specially when S is a group or an inverse semigroup).
Also, a simple proof of a known result is given: every inverse semigroup can be
isomorphically embedded in the semigroup of cosets of a group.

A binary relation ρ ⊂ A × B between the elements of sets A and B is called di-
functional if ρ ◦ ρ−1 ◦ ρ = ρ, where ρ−1 = {(b, a) : (a, b) ∈ ρ} denotes the binary
relation between the elements of B and A that is a converse of ρ, and ◦ denotes
the operation of relative multiplication (if ρ ⊂ A × B and σ ⊂ B × C are binary
relations, then σ ◦ ρ ⊂ A × C and also (a, c) ∈ σ ◦ ρ if and only if (a, b) ∈ ρ and
(b, c) ∈ σ for some b ∈ B). It is easy to see that ρ ⊂ ρ ◦ ρ−1 ◦ ρ for every binary
relation, and hence ρ is difunctional if ρ ◦ ρ−1 ◦ ρ ⊂ ρ. Difunctional binary relations
were introduced by Riguet in [7] and [8].

If ρ ⊂ A × B is a binary relation and H ⊂ A a subset of A, then the image
of H under ρ is the subset ρ(H) = {b : (∃ a ∈ H) [(a, b) ∈ ρ]} of B. If a ∈ A,

we define ρ〈a〉 = ρ({a}). In particular, ρ ⊂ A × B is difunctional if and only if
ρ〈a1〉 ∩ ρ〈a2〉 �= ∅ ⇒ ρ〈a1〉 = ρ〈a2〉 for all a1, a2 ∈ A or, equivalently, if and only if
ρ−1〈b1〉 ∩ ρ−1〈b2〉 �= ∅ ⇒ ρ−1〈b1〉 = ρ−1〈b2〉 for all b1, b2 ∈ B (see [7] and [8]).
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Let (S; o) be a groupoid (that is, a nonempty set S with a binary operation o on
S). A binary operation on S is, of course, any mapping o : S×S → S. For a subset
H ⊂ S define a binary relation ρH = o−1(H) ⊂ S×S. Clearly, (s, t) ∈ ρH ⇔ st ∈ H.

A subset H is called strong if ρH is difunctional. Thus H is strong if and only if
ρH ◦ (ρH)−1 ◦ ρH ⊂ ρH or, equivalently, (x, y) ∈ ρH ◦ (ρH)−1 ◦ ρH ⇒ (x, y) ∈ ρH for
any x, y ∈ S. Equivalently, if (x, v) ∈ ρH , (v, u) ∈ (ρH)−1 and (u, y) ∈ ρH for some
u, v ∈ S, then (x, y) ∈ ρH . Thus H is strong if and only if xv ∈ H,uv ∈ H, and
uy ∈ H imply xy ∈ H for any u, v, x, y ∈ H.

Strong subsets can be also defined as follows. Let H. ·a = ρH〈a〉 = {b : ab ∈ H}
and let H · . b = (ρH)−1〈b〉 = {a : ab ∈ H}. Then H. ·a and H · . b are called the right
quotient of H by a, and the left quotient of H by b, respectively (see [2]). Clearly,
H is strong precisely when H. · a1 ∩H. · a2 �= ∅ ⇒ H. · a1 = H. · a2 for all a1, a2 ∈ S.

Using left quotients we see that H is strong if and only if H · . b1 ∩ H · . b2 �= ∅ ⇒
H · . b1 = H · . b2 for all b1, b2 ∈ S.

The concept of strong subsets in semigroups belongs to Dubreil [2], the alterna-
tive definition (H is strong when ρH is difunctional) first appeared in [10]. Dubreil
called a subset H of a semigroup S right strong if H. · a1 ∩H. · a2 �= ∅ ⇒ H. · a1 =
H. · a2 for all a1, a2 ∈ S and left strong if H · . b1 ∩H · . b2 �= ∅ ⇒ H · . b1 = H · . b2
for all b1, b2 ∈ S. He proved that a subset is left strong if and only if it is right
strong. Strong subsets are one of the most useful concepts for the semigroups of
one-to-one (partial) transformations (see [10]). Dubreil introduced strong subsets
in a semigroup as an analog of cosets of a subgroup in a group: a nonempty sub-
set of a group is a left (right) coset of some subgroup if and only if it is right (left)
strong [2]. However, as shown in [10], strong subsets in monoids (that is, semigroups
with identity) are naturally connected not so much with cosets in groups as with
cosets in inverse semigroups. Strong subsets as cosets have also been considered
in [15]. It turns out that strong subsets of a semigroup form another semigroup
under a suitable multiplication.

In this paper we concentrate on semigroups of strong subsets. Some results of
this paper appeared in [12].

As usual, if S is a semigroup, S1 denotes the smallest semigroup with identity
that contains S (so S1 = S if S has an identity element; otherwise, S1 is S with an
identity element adjoined).

If T is a subgroupoid of a groupoid S and H a subset of S, then H ∩ T is
called a trace of H on T. Clearly, a trace of a strong subset of S is a strong subset
of T . We call a subset H of a semigroup S unitarily strong if H is a trace on S of
a strong subset of S1. Clearly, unitarily strong subsets are strong. As was argued
in [15], unitarily strong subsets of semigroups are very naturally connected with
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cosets of inverse semigroups. For example (see [15]), if a semigroup S is embeddable
in an inverse semigroup, it can be embedded in such an inverse semigroup T that
all unitarily strong subsets of S are traces on S of cosets of T. If ϕ : S → T is a
homomorphism of a groupoid S into a groupoid T and H is a strong subset of T,

then it is easy to see that ϕ−1(H) is a strong subset of S. Also, a subset H of a
semigroup S is unitarily strong if and only if there exists a homomorphism ϕ of S

into an inverse semigroup T such that H = ϕ−1(C) for some coset C of T. This is
one of the reasons why we suggested in [15] to call nonempty unitarily strong subsets
of a semigroup cosets of this semigroup. We adhere to this terminology here.

It is easily seen that a subset H of a semigroup S is unitarily strong if and only
if it satisfies the following conditions:
(1) xv, uv, uy ∈ H ⇒ xy ∈ H,

(2) v, uv, uy ∈ H ⇒ y ∈ H,

(3) xv, uv, u ∈ H ⇒ x ∈ H,

(4) xv, v, y ∈ H ⇒ xy ∈ H,

(5) x, u, uy ∈ H ⇒ xy ∈ H for any u, v, x, y ∈ H.

In other words, condition (1) is satisfied for all u, v, x, y ∈ S1 for which the
products xv, uv, uy and xy make sense (that is, these products are not the identity
element of S1 in the case S has no identity element).

Example 1: (1) Let N be the additive semigroup of positive integers. Consider a
subset K = {n ∈ N : n > 1}. If x + v, u + v, u + y ∈ K for some u, v, x, y ∈ N, then
x + y ∈ K because x + y > 1, and so K is strong. However, 0 + 2, 1 + 2, 1 + 1 ∈ K,

but 0 + 1 �∈ K, and hence K is not unitarily strong. Thus there exist strong but not
unitarily strong subsets. Such subsets exist even in inverse semigroups as part (2)
of our example shows.

(2) Let I be a free inverse semigroup generated by a single element a. Each
element of I has the form a−sana−d, where n ≥ 1, s, d ≥ 0, s ≤ n, and d ≤ n

(see [3]). If K = {a, a−1}, then a−1 · 1 = a−1 ∈ K, a · 1 = a · a−1a = a ∈ K,

but a−1 · a−1a �∈ K. Thus K is not unitarily strong. Let xv, uv, uy ∈ K for some
u, v, x, y ∈ I. Without loss of generality suppose that xv = a. Then either x = a and
v = a−1a, or x = aa−1 and v = a (see [13]). In both cases uv �= a−1, and hence
uv = a. If v = a−1a, then ua−1a = uv = a, which implies u = a = x. If v = a, then
ua = uv = a, and so u = aa−1 = x. Thus xy = uy ∈ K, which shows that K is a
strong but not unitarily strong subset if I.

Let C(S) denote the set of all cosets of a groupoid S and let F(S) be the set
of all nonempty strong subsets of S. Of course, C(S) ⊂ F(S). Neither C(S) nor
F(S) are closed under the ordinary multiplication of subsets in S : if G and H
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are strong subsets (or cosets) of S, then GH need not be strong. Obviously, an
intersection of any (finite or infinite) family of strong (unitarily strong) subsets is
strong (unitarily strong), and thus there exist two closure operators c/ : P∗(S) →
C(S) and f : P∗(S) → F(S), where P∗(S) is the set of all nonempty subsets of S.
If H ⊂ S, then c/(H) is the least unitarily strong subset of S that contains H (that
is, c/(H) is the intersection of all unitarily strong subsets containing H), while f(H)
is the least strong subset of S that contains H (that is, f(H) is the intersection of
all strong subsets that contain H). Define a multiplication • in C(S) as follows: for
G,H ∈ C(S), G•H = c/(GH). In other words, G•H is the smallest coset of S that
contains the ordinary product GH of G and H. Analogously, define a multiplication
� in F(S): if G,H ∈ F(S) then G �H = f(GH).

Observe that P∗(S) is an inclusion ordered groupoid called the global groupoid
of S. It is conditionally complete in the sense that, for every subset of P∗(S) with
a nonempty intersection, this set-theoretical intersection is the infimum, while its
supremum is its union. Analogously, both (C(S); •) and (F(S); �) are inclusion or-
dered groupoids, which are conditionally complete in the sense that, for every subset
of either C(S) or F(S), its infimum is its set-theoretical intersection, if nonempty,
while its supremum is the c/-closure (respectively, f -closure) of its set-theoretical
union. If S is a semigroup, then P∗(S) is called the global semigroup of S.

Theorem 1

The closure operation c/ maps the global semigroup P∗(S) homomorphically

onto the groupoid (C(S); •). Thus (C(S); •) is a semigroup. If both P∗(S) and

(C(S); •) are considered as ordered by their set-theoretical inclusion, then the

homomorphism c/ preserves suprema. Analogously, the closure operation f is a

suprema-preserving homomorphism of the global semigroup P∗(S) onto the groupoid

(F(S); �), so that (F(S); �) is a semigroup.

Proof. We prove theorem for unitarily strong subsets only. For strong subsets the
proof is analogous. If H and F are two subsets of S, then H.· F = {s ∈ S : Fs ⊂ H},
while H · . F = {s ∈ S : sF ⊂ H}. If H is (unitarily) strong, then both H. · F and
H · . F are (unitarily) strong. Indeed, if xv, uv, uy ∈ H. · F for some u, v, x, y ∈ S

(or ∈ S1), then Fxv ⊂ H, Fuv ⊂ H, and Fuy ⊂ H. Thus, (fx)v, (fu)v, (fu)y ∈ H

for every f ∈ F. Since H is (uniformly) strong, (fx)y ∈ H, and hence Fxy ⊂ H, so
that xy ∈ H . · F and H . · F is (unitarily) strong. Analogously, H · . F is (unitarily)
strong.

Now let G,H ∈P∗(S). For every subset F of S, F ⊂ c/(F ). Thus GH⊂ c/(G) •
c/(H), and hence c/(GH)⊂ c/(G) • c/(H). Also GH ⊂ c/(GH)⇔G⊂ c/(GH) · . H ⇔
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c/(G) ⊂ c/(GH) · . H ⇔ c/(G)H ⊂ c/(GH) ⇔H ⊂ c/(GH). · c/(G) ⇔ c/(H) ⊂ c/(GH). ·
c/(G) ⇔ c/(G)c/(H) ⊂ c/(GH) ⇔ c/(G) • c/(H) ⊂ c/(GH). Using GH ⊂ c/(GH),
we obtain c/(G) • c/(H) ⊂ c/(GH), and so c/(GH) = c/(G) • c/(H), that is, c/ is a
homomorphism of P∗(S) onto C(S). Clearly, this homomorphism is onto, because
c/(H) = H for every unitarily strong subset H of S. If I �= ∅ and (Hi)i∈I is an
indexed family of subsets of S, then Hi ⊂ c/(Hi), and hence

⋃
Hi ⊂

⋃
c/(Hi) and

c/(
⋃

Hi) ⊂ c/(
⋃

c/(Hi)). Also, Hi ⊂ ⋃
Hi, and hence c/(Hi) ⊂ c/(

⋃
Hi), so that⋃

c/(Hi) ⊂ c/(
⋃

Hi). Therefore, c/(
⋃

Hi) = c/(
⋃

c/(Hi)) =
∨

c/(Hi), where
∨

is the
symbol of supremum. Thus c/ preserves suprema. �

Problem 1. In which semigroups C(S) = F(S)? A semigroup S is called globally
idempotent if S2 = S. Obviously, S2 is a strong subset of S, but it is unitarily
strong only if S is globally idempotent. It follows that a necessary condition for
C(S) = F(S) is global idempotence of S. However, this condition is not sufficient
because every inverse semigroup is globally idempotent, but, as Example 1 shows,
there exist inverse semigroups S with C(S) �= F(S).

Remark. Semigroups in which every subsemigroup is a strong subset and semigroups
in which every subset is strong were characterized in [5] and [6].

Example 2: In the additive semigroup N of positive integers the subsets N and
K = {n ∈ N : n > 1} are strong, but only N is unitarily strong (see Example 1).
Now, N+N = K implies N�N = K and N•N = N �= K. Thus C(S) is not necessarily
a subsemigroup of F(S), although C(S) ⊂ F(S).

Problem 2. When is C(S) a subsemigroup of F(S)? An obvious necessary condi-
tion is that S is globally idempotent because S � S = S2 and S • S = S.

A quasi order relation ζ (that is, a reflexive and transitive binary relation)
on a semigroup S is called steady if ζ〈z〉 is unitarily strong for every z ∈ S. In
other words, ζ is steady if and only if z ≤ xv, z ≤ uv, and z ≤ uy imply z ≤ xy
for any u, v, x, y ∈ S1 for which the inequalities make sense (here X ≤ Y stands for
(X,Y ) ∈ ζ). Each semigroup possesses steady quasi order relations (ζ = S×S is one
of them). Let ζ̂ be the least steady quasi order on S (that is, ζ̂ is the intersection of
all steady quasi orders). It is called the strong quasi order relation of S. A semigroup
is isomorphically embeddable in an inverse semigroup if and only if its strong quasi
order is antisymmetric (that is, it is an order relation). Equivalently, a semigroup is
embeddable in an inverse semigroup if and only if it possesses a strong order relation.
A proof is nontrivial and lies beyond the scope of this paper (see [10], and also [9]
and [14]).

Theorem 2
The converse of the set-theoretical inclusion relation on C(S) is steady.
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Proof. Let U, V,X, Y, Z ∈ C(S)1, Z ⊃ X • V,Z ⊃ U • V, and Z ⊃ U • Y. Then
Z ⊃ XV, Z ⊃ UV, and Z ⊃ UY . Let x ∈ X and y ∈ Y. For u ∈ U and v ∈ V we see
that xv, uv, uy ∈ Z, and hence xy ∈ Z. It follows that XY ⊂ Z, whence X • Y ⊂ Z,

or, equivalently, Z ⊃ X • Y. Therefore, ⊃ is a steady order on C(S). �

Problem 3. Is ⊃ the strong order relation of C(S) for every semigroup S?

Corollary

The semigroup C(S) of cosets of any semigroup S is isomorphically embeddable

in an inverse semigroup.

Define two mappings ϕ : S → C(S) and ψ : S → F(S) as follows: ϕ(s) = c/({s})
and ψ(s) = f({s}) for all s ∈ S. It follows from Theorem 1 that ϕ and ψ are
homomorphisms of S into C(S) and F(S), respectively.

Theorem 3

The following three properties are equivalent for any semigroup S:

(1) ϕ is an isomorphic embedding of S into its semigroup C(S) of cosets.

(2) S is isomorphically embeddable into its semigroup C(S) of cosets;

(3) S is isomorphically embeddable in an inverse semigroup;

Proof. (1) ⇒ (2) is trivial and (2) ⇒ (3) follows from Corollary to Theorem 2.
(3) ⇒ (1). Since S is embeddable in an inverse semigroup, ζ̂ is antisymmetric,

that is, y ∈ ζ̂〈x〉 and x ∈ ζ̂〈y〉 imply x = y. As proved in [10], y ∈ ζ̂〈x〉 and x ∈ ζ̂〈y〉
is equivalent to ϕ(x) = ϕ(y). Thus ϕ is one-to-one, and hence (1) holds. �

Theorem 4

If S is an inverse semigroup, then C(S) is an inverse semigroup and ϕ is an

isomorphic embedding of S into C(S). The canonical (i.e., natural) order relation

of C(S) is the converse of the set-theoretical inclusion.

Proof. Let S be an inverse semigroup. It is known (see [10] and so also [14]) that
a subset H ⊂ S is unitarily strong if and only if it is majorantly closed (that is,
ω(H) = H, where ω is the canonical, or natural, order relation on S) and H is a
generalized subgroud of S (that is, HH−1H = H, where H−1 = {h−1 : h ∈ H}).
These two properties mean that x ∈ H and x ≤ y imply y ∈ H, and x, y, z ∈ H

imply xy−1z ∈ H for all x, y, z ∈ S. The mapping H → H−1 is an involution in
C(S), that is, (F • H)−1 = H−1 • F−1 and (H−1)−1 = H for all F,H ∈ C(S).
Moreover, HH−1H = H implies that H → H−1 is an inverting involution, i.e., H−1
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is an inverse of H in C(S). Let H be an idempotent of C(S), that is, H •H = H.

Then HH ⊂ H, whence H ⊂ H. · H. Let x ∈ H. · H, that is, Hx ⊂ H. If h ∈ H,

then (hh−1)h = h ∈ H, hh ∈ H, and hx ∈ H. Since H is strong, hh−1x ∈ H.

However, hh−1x ≤ x, and x ∈ H. It follows that H. · H ⊂ H, whence H. · H = H.

Analogously, H ·.H = H. It follows from HH−1H = H that H−1 ⊂ (H.·H)·.H = H,

i.e. H = H−1. Therefore, the idempotents of C(S) are fixed points of the involution
H → H−1. Thus [9] (also [1], where this characterization of inverse semigroups is
attributed to W. D. Munn), C(S) is an inverse semigroup.

It follows from Theorem 2 that ⊃ is a stable (compatible with multiplication)
steady order relation on C(S), so it coincides with the canonical (also called natural)
order of C(S) because the canonical order is the only stable and steady order on an
inverse semigroup (see [11]). �

Problem 4. Study the semigroup F(S) for an inverse semigroup S. Clearly, F(S)
does not have to be inverse (see Example 1, where K has no inverse in F(I)). Also,
KK−1K �= K, and hence the mapping H → H−1 is an involution which is not
inverting. Elements of F(S) are majorantly closed, for if x ∈ H ∈ F(S) and x ≤ y,

then yy−1x = yy−1xx−1x = y(xx−1y)−1x = yx−1x = x = xx−1x = xx−1y, and
yy−1 ·x, xx−1 ·x, xx−1 ·y ∈ H, so that y = yy−1 ·y ∈ H. As we have seen in the proof
of Theorem 4, H = H−1 for idempotents H ∈ F(S), so HH−1H = HHH ⊂ H, and
hence H is a majorantly closed inverse subsemigroup of S, and a unitarily strong
subset of F(S).

Let G be a group. It contains an identity element, and hence C(G) = F(G).
Strong subsets of a group are precisely its cosets [2]. Every group is an inverse semi-
group, thus the semigroup C(G) of cosets of a group is inverse. The idempotents of
C(G) are the subgroups of G, and the canonical order relation on C(G) is the con-
verse of the set-theoretical inclusion relation. Therefore the lattice of idempotents of
C(G) is dually isomorphic to the subgroup lattice of G. Obviously, central idempo-
tents of C(G) are the normal subgroups of G, and the lattice of central idempotents
of C(G) ordered by the canonical order relation is dually isomorphic to the lattice
of normal subgroups of G and hence modular.

Problem 5. Do central idempotents of C(S) from a modular lattice for an inverse
semigroup S?

Obviously, c/(g) = {g} for every g ∈ G. If {g} is identified with g, then G

becomes a subgroup of C(G) where the elements of G are maximal elements of
C(G). Thus the set of all maximal elements of C(G) forms a subgroup, and each
element of C(G) is the infimum (the greatest lower bound) of a set of its maximal
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elements. A subset B of a (partially) ordered set A is called a minorant basis if each
nonempty subset C of B possesses an infimum

∧
C in A and each element a ∈ A

is the infimum of a nonempty subset of A. Thus G is minorant basis of C(G) with
respect to the canonical order.

The following theorem provides an abstract characterization of C(G).

Theorem 5

An inverse semigroup Γ is isomorphic to the inverse semigroup C(G) of all

cosets of a group G if and only if Γ satisfies the following three conditions:

(1) The set of all maximal elements of Γ forms a subgroup isomorphic to G, and

this set is a minorant basis for Γ;

(2) If
∧

H denotes the infimum of a subset H of Γ, then

( ∧
H1

)( ∧
H2

)
=

∧
H1H2

for any two subsets H1 and H2 of Γ (that is, multiplication distributes over

infima);

(3) Every inverse semigroup that satisfies (1) and (2) is a homomorphic image of

Γ.

Proof. Necessity. (1) We have already observed that G is the subgroup of all
maximal elements of C(G). The canonical order relation in C(G) is the converse
inclusion For every nonempty subset H of G, g ∈ H ⇒ g ∈ c/(H) ∈ C(G) ⇒
{g} ⊂ c/(H) ⇒ c/(H) ≤ {g}. Suppose that F ∈ C(G) and F ≤ {g} for all g ∈ H.

Then g ∈ F, and so H ⊂ F. It follows that c/(H) ⊂ F, that is, F ≤ c/(H). Thus
c/(H) =

∧
H, and hence

∧
H exists. Also, H ≤ {g} for any H ∈ C(G) and g ∈ H.

If F ∈ C(G) and F ≤ {g} for all g ∈ H, then {g} ⊂ F, so that g ∈ F. It follows that
H ⊂ F, and hence F ≤ H. Thus H =

∧ {{g} : g ∈ H}.
(2) Let H1 and H2 be subsets of C(G). By Theorem 1,

∧
Hi = c/

( ⋃
Hi

)
= c/

( ⋃
c/(H) : H ∈ Hi

)
, and hence

( ∧
H1

)
•

( ∧
H2) =

= c/
(
c/(

⋃
c/(H) : H ∈ H1) c/

( ⋃
c/(H) : H ∈ H2)

)

= c/
(
c/(

⋃
c/(H) : H ∈ H1)c/(

⋃
c/(H) : H ∈ H2)

)

= c/
(
(
⋃

c/(H) : H ∈ H1)(
⋃

c/(H) : H ∈ H2)
)

= c
(
(
⋃

H : H ∈ H1)(
⋃

H : H ∈ H2)
)

= c/
( ⋃

FH : F ∈ H1, H ∈ H2

)
= c/

( ⋃
H1H2

)
=

∧
H1H2,
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and so (2) holds.
(3) Let S be an inverse semigroup that satisfies conditions (1) and (2). For

convenience sake assume that the set of all maximal elements of S coincides with
G. Let ϕ : C(G) → S be defined as follows. For H ∈ C(G), ϕ(H) =

∧
H,

where H in the right-hand of the equality is the subset of G, and hence of S, and∧
H is the infimum of H is S. By (1), ϕ is an onto mapping. To prove that ϕ

is a homomorphism, we need to show that (
∧

H1)(
∧

H2) =
∧

(H1 • H2) for any
H1, H2 ∈ C(G). By (2), (

∧
H1)(

∧
H2) =

∧
H1H2, and hence there remains to

prove that
∧

H1H2 =
∧

H1 •H2. To this end we need a technical lemma.

Lemma

If H ⊂ G, let H [2n−1] denote H(H−1H)2n−2. Then c/(H) =
⋃∞

n=1 H
[2n−1] .

Proof. H = H [1] ⊂ ⋃∞
n=1 H

[2n−1] . Also,
( ⋃∞

n=1 H
[2n−1]

)( ⋃∞
n=1 H

[2n−1]
)−1

( ⋃∞
n=1 H

[2n−1]
)

=
⋃∞

n=2 H
[2n−1] ⊂ ⋃∞

n=1 H
[2n−1] , and hence

⋃∞
n=1 H

[2n−1] ∈
C(G) . Thus c/(H) ⊂ ⋃∞

n=1 H
[2n−1] . Also, c/(H)c/(H)−1c/(H) = c/(H) , so that

c/(H)[2n−1] = c/(H) for every n. It follows from H ⊂ c/(H) that H [2n−1] ⊂
c/(H)[2n−1] = c/(H) , and hence

⋃∞
n=1 H

[2n−1] ⊂ c/(H). �

H1 •H2 is the least coset of G that contains H1H2. Replacing H by H1H2 in
Lemma, we obtain H1 •H2 =

⋃∞
n=1(H1H2)[2n−1] , and hence

(
∧

H1)(
∧

H2) =((
∧

H1)(
∧

H2))[2n−1] = (
∧

H1H2)[2n−1] =
∧

(H1H2)[2n−1],

for every n. Therefore,

(
∧

H1)(
∧

H2) =
∧ { ∧

(H1H2)[2n−1] : n ∈ N
}

=
∧

H1 •H2 .

Sufficiency. Let Γ be an inverse semigroup that satisfies conditions (1)-(3).
By (3), there exists a homomorphism h of Γ onto C(G). Homomorphisms preserve
canonical order relations of inverse semigroups, and so maximal elements of Γ are
mapped into maximal elements of C(G), and every maximal element of C(G) is
so obtained. Therefore, without loss of generality, assume that G is the set of all
maximal elements of Γ and h induces the identity automorphism on G.

Let γ1, γ2 ∈ Γ, h(γ1) = h(γ2), and Hi = {g ∈ G : γi ≤ g}, (i = 1, 2). By (1)
and (2), HiH

−1
i Hi = Hi, that is, Hi is a coset of G. Therefore, H1 and H2 are

elements of C(G). By condition (1),
∧

Hi = γi, and so h(γi) =
∧ (

{h} : h ∈ Hi

)
=

Hi. Thus H1 = H2, which implies γ1 = γ2. It follows that h is an isomorphism. �
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Theorem 6 is more general than Theorem 5 and is given without proof, because
its proof is analogous to our proof of Theorem 5.

Theorem 6

An inverse semigroup Γ is isomorphic to the inverse semigroup C(S) of all cosets

of an inverse semigroup S if and only if Γ satisfies the following three conditions:

(1) Γ contains a majorantly closed inverse subsemigroup S0 isomorphic to S, and

S0 is a minorant basis of Γ;
(2) (

∧
H1)(

∧
H2) =

∧
H1H2 for any two subsets H1 and H2 of Γ (that is, multi-

plication distributes over infima);

(3) Every inverse semigroup that satisfies (1) and (2) is a homomorphic image of

Γ.

Remark. Conditions (2) and (3) coincide with conditions (2) and (3) of Theorem 5.
Analogously, we can state and prove a theorem that characterizes semigroups iso-
morphic to C(S), where S is an arbitrary semigroup. Instead of the canonical order
relation on inverse semigroups we have to consider the strong quasi order relation
on an arbitrary semigroup S.

Theorem 7 [4]

Every inverse semigroup is embeddable in the inverse semigroup of cosets of a

suitable group.

Proof. (Outline). Every inverse semigroup S is isomorphic to an inverse semigroup
Γ of one-to-one partial transformations of a set A. Let B be a set that contains A,

where every one-to-one partial transformation of A can be extended to a bijection of
B onto itself. For example, this is true if B �= A and, if A is infinite, the complement
of A in B has the same cardinality as A. Let GB be the group of all bijections of
B onto itself. For every γ ∈ Γ define ϕ(γ) = {g ∈ GB : γ ⊂ α}, where γ ⊂ α

means that α is an extension of γ (γ is a subset of α if γ and α are considered as
binary relations). Clearly, ϕ(γ) �= ∅ and ϕ(γ) is a coset of GB . It is no less clear
that ϕ(γ) = ϕ(δ) ⇒ γ = δ for all γ, δ ∈ Γ, that is, ϕ is one-to-one.

Let γ, δ ∈ Γ. If α ∈ ϕ(γ) and β ∈ ϕ(δ) for α, β ∈ GB (that is, γ ⊂ α and δ ⊂ β),
then δ ◦ γ ⊂ β ◦ α, and hence β ◦ α ∈ ϕ(δ ◦ γ). Therefore, ϕ(δ) ◦ ϕ(γ) ⊂ ϕ(δ ◦ γ),
and hence ϕ(γ) • ϕ(δ) = c/(ϕ(δ) ◦ ϕ(γ)) ⊂ ϕ(δ ◦ γ). Here we write factors for ◦ and
• from the right to the left and from the left to the right, respectively.

Let α ∈ ϕ(δ ◦ γ), that is, δ ◦ γ ⊂ α. Then γ, δ−1 ◦ δ, and γ ◦ γ−1 can be
extended to some ρ, σ, τ ∈ GB . More than a single choice for ρ, σ, and τ can be
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possible, and we claim they can chosen so that τ ◦ σ ◦ ρ extends δ−1 ◦ α, that is,
δ−1 ◦ α ⊂ τ ◦ σ ◦ ρ, and hence δ−1 ⊂ τ ◦ σ ◦ ρ ◦ α−1. We call our entire proof
an “outline” because we skip a not very enlightening construction for ρ, σ, and τ.

Even with full details, this proof is shorter than the original proof given in [4]. Then
δ−1 ⊂ τ ◦ σ ◦ ρ ◦ α−1, so that δ ◦ γ = (δ ◦ γ) ◦ (δ ◦ γ)−1 ◦ (δ ◦ γ) = δ ◦ γ

◦ γ−1 ◦ δ−1 ◦ δ ◦ γ ⊂ (τ ◦ σ ◦ ρ ◦ α−1)−1 ◦ τ ◦ σ ◦ ρ = α. It follows that
α ∈ ϕ(δ) ◦ ϕ(γ ◦ γ−1) ◦ ϕ(δ−1 ◦ δ) ◦ ϕ(γ). Observe that ϕ(γ)−1 = ϕ(γ)−1 and
ϕ(γ ◦ γ−1) ⊂ ϕ(γ) ◦ ϕ(γ−1) (analogously ϕ(δ−1 ◦ δ) ⊂ ϕ(δ−1) ◦ ϕ(δ)). The
equality means that γ−1 ⊂ π ⇔ γ ⊂ π−1 for any π ∈ GB , and the inclusion
means that if γ ◦ γ−1 ⊂ π for some π ∈ GB , then there are µ, ν ∈ GB for which
γ ⊂ µ, γ ⊂ ν, and µ ◦ ν−1 = π, pretty obvious propositions. Therefore, ϕ(δ) ◦
ϕ(γ ◦ γ−1) ◦ ϕ(δ−1 ◦ δ) ◦ ϕ(γ) ⊂ ϕ(δ) ◦ ϕ(γ) ◦ ϕ(γ−1) ◦ ϕ(δ−1) ◦ ϕ(δ) ◦ ϕ(γ) =(
ϕ(δ) ◦ ϕ(γ)

)(
ϕ(δ) ◦ ϕ(γ)

)−1(
ϕ(δ) ◦ ϕ(γ)

)
=

(
ϕ(δ) ◦ ϕ(γ)

)[3] ⊂ ϕ(γ) • ϕ(δ). The
last inclusion follows from the inclusion ϕ(δ) ◦ ϕ(γ) ⊂ ϕ(γ) •ϕ(δ) and the fact that
ϕ(γ) • ϕ(δ) is a coset. Thus α ∈ ϕ(γ) • ϕ(δ), and hence ϕ(δ ◦ γ) ⊂ ϕ(γ) • ϕ(δ) .

Therefore ϕ(δ ◦ γ) = ϕ(γ) • ϕ(δ) and ϕ is an isomorphic embedding of S into
C(GB) . �

Problem 6. Let K be a class of groups. Which inverse semigroups are embeddable
in C(G) for G ∈ K? How are properties of groups in K and of the embeddable
inverse semigroups connected? For example, C(G) is commutative for every abelian
group G. Is every commutative inverse semigroup embeddable in C(G) for a suitable
abelian group G?
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