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Abstract

We show that the syntactic monoids of insertion-closed, deletion-closed and
dipolar-closed languages are the groups. If the languages are insertion-closed
and congruence simple, then their syntactic monoids are the monoids with dis-
junctive identity. We conclude with some properties of dipolar-closed languages.

I. Introduction

Let M be a monoid with identity 1. If L ⊆M is a subset of M and if u ∈M , then:

u−1L =
{
x ∈M |ux ∈ L

}
, Lu−1 =

{
x ∈M |xu ∈ L

}
,

L..u =
{
(x, y)|x, y ∈M,xuy ∈ L

}
.

The relations RL and LR defined by:

u ≡ v (RL) ⇔ u−1L = v−1L, u ≡ v (LR) ⇔ Lu−1 = Lv−1,

are respectively a right congruence and a left congruence of M , called the right prin-
cipal and the left principal congruence determined by L. These congruences were
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first considered by Dubreil in [3] as a way to extend to semigroups the construction
of right congruences on groups (see also [1]).

The relation PL defined by u ≡ v (PL) ⇔ L..u = L..v is a congruence of
M called the principal congruence determined by L. This congruence was first
considered in semigroups for describing their homomorphisms and a systematic study
of their properties was given by Croisot in [2].

A subset L ⊆ M is called disjunctive if the principal congruence PL is the
identity relation on M (see for example [10], [12]). Given any subset T of M , it is
easy to see that the set of classes representing the elements of T is a disjunctive set
of the quotient monoid M/PT . If u ∈M and if the set {u} is disjunctive, u will be
called a disjunctive element of M . In particular, it is possible for the identity 1 of a
monoid M to be a disjunctive element. If this is the case, then the monoid is simple
or 0-simple (see [5]). Recall that (see [1]) a monoid M is simple if for any u, v ∈M

there exist x, y such that xuy = v. M is 0-simple if it has a zero element, and if the
preceding condition holds for any two nonzero elements u, v of M . The groups and
the bicyclic monoid are examples of simple monoids.

Since in this paper, monoids with disjunctive identity will be associated with
special classes of languages, we recall a few definitions related to formal languages.

Let X∗ be the free monoid generated by the alphabet X where the identity 1 of
X∗ is the empty word. Elements and subsets of X∗ are called respectively words and
languages over X. The congruences RL and PL determined by a language L ⊆ X∗

are called respectively the syntactic right congruence and the syntactic congruence
of L. The quotient monoid X∗/PL is called the syntactic monoid of L. The syntactic
monoid plays an important role for the characterization of several interesting classes
of languages (see for example [10], [12]).

In this paper, we are interested in the syntactic monoid of some classes of
languages related to the operations of insertion and deletion (see [6], [8]). The
following three classes of languages L are considered:

(i) insertion-closed (or ins-closed): u1u2 ∈ L, v ∈ L imply u1vu2 ∈ L;
(ii) deletion-closed (or del-closed): u1vu2 ∈ L, v ∈ L imply u1u2 ∈ L;
(iii) dipolar-closed (or dip-closed): u1u2 ∈ L, u1vu2 ∈ L imply v ∈ L.

We show that the syntactic monoids of insertion-closed, deletion-closed and
dipolar-closed languages are the groups. If the languages are insertion-closed and
congruence-simple, then their syntactic monoids are the monoids with disjunctive
identity. Properties of insertion-closed or deletion-closed languages have been con-
sidered in [4]. Properties of dipolar-closed languages are given in the last section of
the paper. Results associated with similar concepts in relation with codes can be
found in [5].
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2. Insertion and deletion closed languages

Insertion and deletion have been introduced in [6] and studied for example in [6],
[7], [8], [9], as operations generalizing the catenation respectively left/right quotient
of languages. For two words u, v ∈ X∗, the insertion of v into u is defined as

u←− v =
{
u1vu2| u = u1u2

}
,

and the deletion of v from u as

u −→ v =
{
x ∈ X∗| u = x1vx2, x = x1x2

}
.

As noticed above, instead of adding (erasing) the word v to the right (from
the left/right) extremity of u, the new operation inserts (deletes) it into (from) an
arbitrary position of u. The results is usually a set with cardinality greater than
two, which contains the catenation (left/right quotient) of the words as one of its
elements. The study of insertion and deletion has triggered the consideration in [4]
of two related notions. To the language L ⊆ X∗, one can associate the two languages
ins(L) and del(L) defined by:

(i) ins(L) =
{
x ∈ X∗| ∀u ∈ L, u = u1u2 ⇒ u1xu2 ∈ L

}
;

(ii) del(L) =
{
x ∈ Sub(L)| ∀u ∈ L, u = u1xu2 ⇒ u1u2 ∈ L

}
, where Sub(L) is

the set of subwords of the words in L.
The set ins(L) consists of all words with the following property: their insertion

into any word of L yields words belonging to L. Analogously, del(L) consists of all
words x with the following property: x is a subword of at least one word of L, and
the deletion of x from any word of L is included in L. The condition that x ∈Sub(L)
has been added because otherwise del(L) would contain irrelevant elements, such as
words which are not subwords of any word of L.

A language L such that L ⊆ ins(L) is called insertion-closed . It is immediate
that L is insertion-closed iff u = u1u2 ∈ L, v ∈ L imply u1vu2 ∈ L.

A language L is called deletion-closed if v ∈ L and u1vu2 ∈ L imply u1u2 ∈ L.
For example, let X = {a, b}. Then X∗ and Lab = {x ∈ X∗| |x|a = |x|b} are
insertion-closed languages that are also deletion-closed.

A language L such that L is a class of its syntactic congruence PL is called a
congruence simple or shortly a c-simple language. It is easy to see that L is c-simple
iff xLy ∩ L �= ∅ implies xLy ⊆ L. Remark that, if L is a c-simple language and if
1 ∈ L, then L is a submonoid of X∗.

Proposition 2.1

Let L be a language that is insertion-closed and deletion-closed. Then L is

c-simple.
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Proof. Suppose that u, xuy ∈ L. Since L is del-closed, xy ∈ L. Let v ∈ L. Since L

is ins-closed, this implies xvy ∈ L. Hence xLy ⊆ L. �

Lemma 2.1

If L is a c-simple language over the alphabet X and if 1 ∈ L, then syn(L) is a

monoid with a disjunctive identity. Conversely, if M is a monoid with a disjunctive

identity, then there exists a c-simple language L over an alphabet X with 1 ∈ L and

such that syn(L) is isomorphic to M.

Proof. Let e = [L] be the class of L modulo PL. Since 1 ∈ L, L is a submonoid
of X∗ and e is the identity of the monoid syn(L). The element e is a disjunctive
element of syn(L) because L is a class of PL.

Conversely, let X be a set of generators of M , let e be the identity of M and let
X∗ be the free monoid generated by X. Let φ : X∗ →M be the canonical mapping
of X∗ onto M defined by φ(x) = e if x = 1 and

φ(x) = φ(x1)φ(x2) · · ·φ(xn) = x1x2 · · ·xn ∈M

if x = x1x2 · · ·xn ∈ X+ with xi ∈ X. Clearly φ is a morphism of X∗ onto M and
θ, defined by u ≡ v(θ) iff φ(u) = φ(v), is a congruence of X∗ such that X∗/θ is
isomorphic to M . Let L = φ−1(e). Since e is a disjunctive element of M , θ = PL is
the syntactic congruence of L, L is a class of PL and syn(L) is isomorphic to M . �

Proposition 2.2

If L is an insertion-closed language over the alphabet X, 1 ∈ L, and if L is a

c-simple language, then syn(L) is a monoid with a disjunctive identity. Conversely,

if M is a monoid with a disjunctive identity, then there exists an insertion-closed

and c-simple language L over an alphabet X with 1 ∈ L and such that syn(L) is

isomorphic to M.

Proof. The first part follows immediately from Lemma 2.1, because L, being ins-
closed with 1 ∈ L, is a submonoid of X∗. For the converse note that, by the same
lemma, there exists a c-simple language L such that syn(L) is isomorphic to M . L

is ins-closed, because vw ∈ L, u ∈ L implies [vw] = e = [u] and therefore:

[vuw] = [v][u][w] = [v][w] = [vw] = e.

Consequently, vuw ∈ L. �
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A language L is called dipolar-closed or simply dip-closed if u1u2 ∈ L, u1xu2 ∈ L

imply x ∈ L. This notion is related to the operation of dipolar deletion (see [6], [9]).
Recall that, for two words u, v ∈ X∗, the dipolar deletion of v from u is defined as

u ⇀↽ v =
{
x ∈ X∗| u = v1xv2, v = v1v2

}
.

In other words, the dipolar deletion erases, if possible, from u a prefix and a suffix
whose catenation equals v. Remark that every nonempty dipolar-closed language L

contains the empty word 1, because u1u2 ∈ L implies u1.1.u2 ∈ L and hence 1 ∈ L.
Examples and properties of dipolar-closed languages are given in the last section.

Proposition 2.3

If L is an insertion-closed, deletion-closed and dipolar-closed language over the

alphabet X, then syn(L) is a group or a group with zero.

Conversely, if G is a group or a group with zero, then there exists an insertion-

closed, deletion-closed and dipolar-closed language L over an alphabet X such that

syn(L) is isomorphic to G.

Proof. By Proposition 2.1, L is a class of PL. Let e = [L] be the class of L modulo
PL. Then, by Lemma 2.1 and Proposition 2.2, e is the identity and a disjunctive
element of syn(L).

Every monoid with disjunctive identity is either simple or 0-simple (see [5]).
Suppose first that syn(L) is simple and let [u] be the class of u modulo PL. There
exist x, y ∈ X∗ such that xuy ∈ L and xuyxuy ∈ L. Since x.uyx.uy in L and L

is dip-closed, we have uyx ∈ L. This implies [u][yx] = e. Similarly xu.yxu.y and
xuy ∈ L imply yxu ∈ L, i.e. [yx][u] = e. Since every [u] has a right and a left
inverse, it follows that syn(L) is a group. Suppose now that syn(L) is 0-simple. If
the class [u] of u is �= 0, then, because syn(L) is 0-simple, we have [x][u][y] = e

for some x, y ∈ X∗, or equivalently xuy ∈ L. Since L is dip-closed, by a similar
argument as before we deduce that uyx ∈ L and yxu ∈ L. Therefore every [u] �= 0
has an inverse in syn(L). Let T =syn(L)\{0} and let r, s ∈ T . If rs = 0, then, since
both r and s have inverses r−1 and s−1, we have e = rss−1r−1 = 0, a contradiction.
Therefore syn(L)\{0} is a group and syn(L) is a group with zero.

For the converse, let X be a set of generators of G, let e be the identity of G
and let X∗ be the free monoid generated by X. If φ : X∗ → G is the canonical
mapping of X∗ onto G, then, as above, it can be shown that φ is a morphism of
X∗ onto G. Moreover θ, defined as in Lemma 2.1, is a congruence of X∗ such that
X∗/θ is isomorphic to G. If L = φ−1(e), then θ = PL is the syntactic congruence of
L and syn(L) is isomorphic to G.
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If vw, u ∈ L, then, since G is group or a group with 0, e = [v][w] = [u].
Consequently, [vuw] = [v][u][w] = [v][w] = e. Therefore vuw ∈ L and L is ins-
closed.

If vuw , u ∈ L, then [v][u][w] = e = [u]. Since e = [u] is the identity of G,
e = [v][u][w] = [v][w]. Hence vw ∈ L and L is del-closed.

If vw, vuw ∈ L, then [v][w] = [v][u][w] = e. If [v]−1 and [w]−1 are the inverses
of [v] and [w], then: e = [v]−1[v][u][w][w]−1 = [u]. Therefore u ∈ L and L is dip-
closed. �

A monoid with a disjunctive identity is either simple or 0-simple (see [5]). Ho-
wever such a monoid is not necessarily a group or a group with zero. For example,
the bicyclic monoid B is simple and its identity 1 is disjunctive. However B is not
a group.

Since the bicyclic monoid has a disjunctive identity, we can use Lemma 2.1 and
Proposition 2.2 to construct a c-simple insertion-closed and deletion-closed language
LB , called the bicyclic language, having B as its syntactic monoid. Since B is finitely
generated, the alphabet of the language LB is also finite.

Recall that the bicyclic monoid B can be defined in the following way (see for
example [1]). If N denotes the set of the non-negative integers, then B = N×N with
the product defined by: (m,n)(r, s) = (m + r −min(n, r), n + s −min(n, r)). The
element (0, 0) is the identity element of B and B is generated by the pair a = (1, 0)
and b = (0, 1). Let X = {a, b}, let X∗ be the free monoid generated by X, let
e = (0, 0) and let φ be the canonical morphism of X∗ onto B. Then the language
LB = φ−1(e) is an ins-closed language such that syn(L) is isomorphic to B.

The language LB is del-closed. Suppose that uwv,w ∈ LB . Then φ(w) = e =
φ(uwv) = φ(u)φ(w)φ(v) = φ(u)φ(v) = φ(uv). Consequently, uv ∈ φ−1(e) = LB ,
and hence LB is del-closed. The language LB is not dip-closed. Indeed, it is easy
to verify that (0, 1)(1, 0) = (0, 0) and (0, 1)(1, 1)(1, 0) = (0, 0). If c = φ−1((1, 1)),
then in X∗ we have ba ∈ LB and bca ∈ LB . If LB were dip-closed, we would have
c ∈ LB , i.e. (1, 1) = (0, 0), which is impossible.

The next example is a language that is ins-closed, but not del-closed, not dip-
closed and not c-simple. Let X = {a, b} and L = X∗\{a, a2}. Clearly L is ins-closed.
Since a.a3.a, a3 ∈ L, but a2 /∈ L, L is not del-closed. Since a.a2, a.a.a2 ∈ L, but
a /∈ L, it follows that L is not dip-closed. The language L is not c-simple. Indeed,
we have a.b.1 ∈ L with b ∈ L, hence a.L.1 ∩ L �= ∅. If L were c-simple, this would
imply a.L.1 ⊆ L. Since 1 ∈ L, we have a = a.1.1 ∈ L, a contradiction.
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3. Dipolar-closed languages

Properties of insertion-closed and deletion-closed languages have been thoroughly
studied in [4]. The aim of this section is to complete this investigation by studying
properties of the related dipolar-closed languages. First we give some examples of
dipolar-closed languages.

Examples. (1) Let X = {a, b} and let m,n be two fixed positive integers. Let
L(a,m, b, n) = {u ∈ X∗| |u|a = km, |u|b = kn}, where k is a positive integer. Then
L(a,m, b, n) is dip-closed, ins-closed and del-closed. Special case: Lab = L(a, 1, b, 1).

(2) Given a language L, Sub(L) is a dip-closed language. Special case: L =
Sub(L). For example, the language L = {1, a, b, ab} is dip-closed, del-closed but not
ins-closed.

(3) Let L be an outfix code, i.e. L ⊆ X+ and u1u2, u1xu2 ∈ L implies x = 1.
Then L ∪ {1} is dip-closed, but not ins-closed.

(4) Let L be an ideal of X∗, L �= X∗. Then Lc = X∗\L is dip-closed, but
in general not ins-closed or del-closed. Take for example X = {a, b, c} and L =
X∗abX∗. Then Lc is dip-closed, but not ins-closed since a, b ∈ Lc with ab /∈ Lc, and
not del-closed since acb, c ∈ Lc with ab /∈ Lc.

(5) Let X such that |X| ≥ 2 and let Y ⊆ X, Y �= X, be a nonempty subalphabet
of X. Then L = Y ∗ is dip-closed, ins-closed and del-closed. In particular, a∗ is dip-
closed for all a ∈ X.

Proposition 3.1
Let L be a dipolar-closed language. If L is c-simple, then L is insertion-closed

and deletion-closed.

Proof. Since L is dip-closed, 1 ∈ L. If uv,w ∈ L, then u.1.v ∈ L and since L is
c-simple, this implies uLv ⊆ L and uwv ∈ L.

Suppose that w ∈ L and uwv ∈ L. Since L is c-simple, uLv ⊆ L. From 1 ∈ L
follows uv ∈ L and hence L is del-closed. �

A language that is dip-closed and del-closed is not in general ins-closed. For
example, take L = {1, u}, u �= 1.

It is easy to see that the family of dip-closed languages is closed under intersec-
tion and inverse homomorphism, but, as the next result shows, is not closed under
other basic operations of formal languages.

Proposition 3.2
The family of dipolar-closed languages is not closed under union, complemen-

tation, catenation, catenation closure, homomorphism and intersection with regular
languages.
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Proof. Let X = {a, b}.
Union: Let L1 = {1, aba} and L2 = {1, a2}. Then both L1 and L2 are dip-

closed, but the union L3 = {1, a2, aba} is not. Indeed a.a ∈ L3, a.b.a ∈ L3, but
b /∈ L3.

Complementation: Let L = a∗. Then L is dip-closed. We have b2, bab ∈ Lc,
but a /∈ Lc and hence Lc is not dip-closed.

Catenation: Let L = {1, ab}. Then L is dip-closed and L2 = {1, ab, abab}. We
have a.b, a.ba.b ∈ L2, but ba /∈ L2. Hence L2 is not dip-closed.

Catenation closure: Let L = {1, ab}. Then a.b, a.ba.b ∈ L∗, but ba /∈ L∗. Hence
L∗ is not dip-closed.

Homomorphism: Let L = a∗, φ(a) = ab and φ(b) = b. Then φ(L) = (ab)∗ that
is not dip-closed, because ab, a.ba.b ∈ φ(L) but ba /∈ φ(L).

Intersection with regular languages: Let L = {1, a, b, ab} and R = {1, b, ab}.
Then L is dip-closed, R is regular and L ∩R = R is not dip-closed. �

Proposition 3.3

Let u, v ∈ X+, u �= v. Then there exists a dipolar-closed language L such that:

(i) u ∈ L, v /∈ L;

(ii) if L′ is a dipolar-closed language such that L ⊆ L′ and v /∈ L′, then L′ = L.

Proof. The language Lu = {1, u} is dip-closed and v /∈ Lu.
Let DP (L) = {Li|i ∈ I} be the family of dip-closed languages Li containing u

with v /∈ Li. Let · · · ⊆ Lj ⊆ · · ·, j ∈ I, be a chain of languages Lj with Lj ∈ DP (L)
and let U = ∪j∈ILj . If rs, rxs ∈ U , then rs ∈ Li and rxs ∈ Lj where Li and Lj are
in the chain. Hence there exists a language Lk in the chain such that Li, Lj ⊆ Lk

and rs, rxs ∈ Lk. Therefore x ∈ Lk ⊆ U and U is dip-closed.
If v ∈ U , then v ∈ Lj for some j ∈ I, a contradiction. Since the union of

languages from any chain in DP (L) is also an language in DP (L), we can apply the
Zorn’s lemma. Therefore there exists a maximal dip-closed language, say L, such
that u ∈ L, v /∈ L and this implies (ii). �

Let L ⊆ X∗ and let M(L) = {x ∈ X∗| ∃u = x1vx2 ∈ L, v ∈ X∗, x = x1x2}. In
other words, M(L) contains words which are the catenation of a prefix and suffix of
the same word in L. To the language L one can associate the set dip(L) consisting of
all words x ∈ X∗ with the following property: x is in M(L) and the dipolar deletion
of x from any word of L yields words belonging to L. (The condition x ∈ M(L)
has been added so that dip(L) does not contain irrelevant words, such as words that
cannot be deleted from any word of L.) Formally, dip(L) is defined by:

dip(L) = {x ∈M(L)| u ∈ L, u = x1vx2, x = x1x2=⇒v ∈ L}.
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Examples. Let X = {a, b}. Then dip(X∗) = X∗ and

– dip(Lab) = Lab, where Lab = {x ∈ X∗| x contains as many a’s as b’s }.
– if L = {anbn| n ≥ 0} then dip(L) = L.
– if L = b∗ab∗ then dip(L) = b∗.

Remark that, if L ⊆ X∗ then x, y ∈ dip(L) and xy ∈M(L) imply xy ∈ dip(L).
In particular, if M(L) is a submonoid of X∗, then dip(L) is a submonoid of X∗.

In the following we show how, for a given language L, the set dip(L) can be
constructed. The construction involves the deletion operation which is, in some
sense, inverse to the dipolar deletion operation.

Proposition 3.4

Let L ⊆ X∗. Then dip(L) = (L −→ Lc)c ∩M(L).

Proof. Let x ∈dip(L). From the definition of dip(L) it follows that x ∈ M(L).
Assume now that x /∈ (L −→ Lc)c. This means there exist u ∈ L such that
u = x1vx2, x = x1x2 and v ∈ Lc. We arrived at a contradiction as x ∈dip(L),
x1vx2 ∈ L, x = x1x2 but v �∈ L.

For the other inclusion, let x ∈ (L −→ Lc)c ∩M(L). As x ∈ M(L), if x �∈
dip(L) there exist x1ux2 ∈ L such that x = x1x2 but u �∈ L. This further implies
that x ∈ (L −→ Lc) - a contradiction with the initial assumption about x. �

Corollary 3.1

If L is regular then dip(L) is regular and can be effectively constructed.

Proof. It follows from the fact that the family of regular languages is closed under
complementation, intersection and deletion, the proofs are constructive (see [11], [9])
and, moreover the set M(L) can be effectively constructed. �

Notice that a language L ⊆ X∗ is dip-closed iff L ⇀↽ L ⊆ L.

Proposition 3.5

Let L ⊆ X∗ be an insertion closed language. Then L is dipolar-closed if and

only if L = (L ⇀↽ L).
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Proof. Since L is dip-closed, L ⇀↽ L ⊆ L. Now let u ∈ L. Since L is ins-closed,
uu ∈ L. Therefore, u ∈ (L ⇀↽ L). We can conclude that L = (L ⇀↽ L). The other
implication is obvious. �

If L is a nonempty language, then the intersection of all the dip-closed languages
containing L is a dip-closed language called the dip-closure of L. The dip-closure of
L is the smallest dip-closed language containing L.

We will now define a sequence of languages whose union is the dipolar-closure
of a given language L. Let:

D0(L) = L ∪ {1}
D1(L) = D0(L) ⇀↽ D0(L)

D2(L) = D1(L) ⇀↽ D1(L)

· · ·
Dk+1(L) = Dk(L) ⇀↽ Dk(L)

· · ·
Clearly Dk(L) ⊆ Dk+1(L). Let

D(L) =
⋃

k≥0

Dk(L).

Proposition 3.6
D(L) is the dipolar-closure of the language L.

Proof. Clearly L ⊆ D(L). Let now u1u2 ∈ D(L) and u1vu2 ∈ D(L). Then
u1u2 ∈ Di(L) and u1vu2 ∈ Dj(L) for some integers i, j ≥ 0. If k = max{i, j}, then
u1u2 ∈ Dk(L) and u1vu2 ∈ Dk(L). This implies v ∈ Dk+1(L) ⊆ D(L). Therefore
D(L) is a dip-closed language containing L.

Let T be a dip-closed language such that L = D0(L) ⊆ T . Since T is dip-
closed, if Dk(L) ⊆ T then Dk+1(L) ⊆ T . By an induction argument, it follows that
D(L) ⊆ T . �

Since, by [9], the family of regular languages is closed under dipolar deletion, it
follows that if L is regular, then the languages Dk(L), k ≥ 0, are also regular. The
following result shows that D(L) is regular for any regular language L.

Recall that, when the principal congruence PL of a language L has a finite index
(finite number of classes), the language L is regular.

Proposition 3.7
If L ⊆ X∗ is regular then its dipolar-closure is regular.
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Proof. We show that if u ≡ v(PDk(L)) then u ≡ v(PDk+1(L)). Let u ≡ v(PDk(L)) and
let xuy ∈ Dk+1(L). Then there exists a word α1xuyα2 ∈ Dk(L) such that α1α2 ∈
Dk(L). From the fact that u ≡ v(PDk(L)) and that PDk(L) is a congruence, we deduce
that α1xuyα2 ≡ α1xvyα2(PDk

(L)). Since Dk(L) is a union of classes of PDk(L), it
follows then that α1xvyα2 ∈ Dk(L). This further implies that xvy ∈ Dk+1(L).
In the same way, xvy ∈ Dk+1(L) implies xuy ∈ Dk+1(L). Consequently, u ≡
v(PDk+1(L)) holds. This means that the number of congruence classes of PDk+1(L)

is smaller or equal to that of PDk(L). Therefore, since the index of PDk
(L) is finite,

there exists an integer t such that PDt(L) = PDt+k
(L), k ≥ 1. For every i ≥ 0,

Di(L) ⊆ Di+1(L) and Di(L) is a union of classes of PDi(L). Therefore D(L) =
Dt(L) and consequently, D(L) is regular. �
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