Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **46**, 1–2 (1995), 77–81 © 1995 Universitat de Barcelona

A precedence theorem for semigroups

PIERRE ANTOINE GRILLET

Tulane University, New Orleans, LA 70118, U.S.A.

DEDICATED TO THE MEMORY OF P. DUBREIL

Abstract

In a finite semigroup, the least element under a precedence order is an idempotent in the kernel.

The reader is referred to [4] for general semigroup concepts.

Precedence orders are defined as follows. When S is a set and < is a total order relation on S, semigroup operations on S can be ordered lexicographically: if $m', m'' : S \times S \longrightarrow S$, then m' < m'' in case there exists $a, b \in S$ such that m'(x, y) = m''(x, y) whenever x < a, m'(a, y) = m''(a, y) whenever y < b, and m'(a, b) < m''(a, b).

If m is a semigroup operation and σ is a permutation of S, the permuted operation and permuted dual operation $m_{\sigma}, m_{\sigma}^* : S \times S \longrightarrow S$ are defined by

$$m_{\sigma}(x,y) = \sigma^{-1} m(\sigma x, \sigma y), m_{\sigma}^*(x,y) = \sigma^{-1} m(\sigma y, \sigma x)$$

for all $x, y \in S$. Thus σ is an isomorphism of S = (S, m) onto $S_{\sigma} = (S, m_{\sigma})$ and an antiisomorphism of S onto $S_{\sigma}^* = (S, m_{\sigma}^*)$. Note that $(m_{\sigma})_{\tau} = m_{\sigma\tau}$ and $(m_{\sigma}^*)_{\tau} = m_{\sigma\tau}^*$.

A precedence order on S = (S, m) is a total order < on S such that $m_{\sigma} \ge m$ and $m_{\sigma}^* \ge m$ for every permutation σ of S. (It is not assumed that m and < are compatible.)

Precedence occurs naturally in computer lists of distinct finite semigroups, such as [3], where the elements of S are in a fixed order < and multiplication tables are

77

GRILLET

generated in lexicographic order. A semigroup (S, m) added to the list should not be isomorphic or antiisomorphic to any of the previous semigroups. This means no permutation σ such that $m_{\sigma} < m$ or $m_{\sigma}^* < m$; equivalently, the fixed order < on Sis a precedence order. This provides abundant finite examples of precedence orders.

Conversely, precedence considerations can be used to greatly reduce computation time in the enumeration of finite semigroups [1].

In general, a precedence order exists on every semigroup S = (S, m) or on the dual (opposite) semigroup S^* ; in particular, every commutative semigroup has a precedence order. To see this, let < be any well order on S. Operations on S are then well ordered lexicographically. Hence the set of all m_{σ} and m_{σ}^* has a least element. If m_{σ} is the least element, then < is a precedence order on $S_{\sigma} \cong S$; ordering S by $\sigma x < \sigma y$ yields a precedence order on S. If m_{σ}^* is least, there is a similar precedence order on the dual semigroup $S^* \cong S_{\sigma}^*$.

From this argument we also see that precedence orders exist on both S and S^* if and only if there is an antiautomorphism $S \cong S^*$. Also the number of precedence orders on S (if one exists) equals the number of automorphisms of S.

Our precedence theorem is:

Theorem

In a finite semigroup, the least element e under a precedence order < is an idempotent in the kernel.

The easy part of the Theorem is that e is idempotent. Otherwise S = (S, m) contains an idempotent $f \neq e$. Since $e^2 \neq e$, the transposition $\tau = (e \ f)$ satisfies

$$\tau^{-1} m (\tau e, \tau e) = \tau^{-1} (ff) = e < m (e, e).$$

Since e is the least element of S, this shows $m_{\tau} < m$, which cannot happen if < is a precedence order.

The rest of the proof consists of two Lemmas.

Lemma 1

Under a precedence order, $ex \leq x$ for all $x \in S$, and $x \leq y$ implies $ex \leq ey$.

Proof. Assume ex > x for some $x \in S$. Let $a \in S$ be the least such element, so that ea > a and $ex \le x$ for all x < a; in particular, e < a. Let $\tau = (a \ ea)$. When x < a,

$$\tau^{-1} m(\tau e, \tau x) = \tau^{-1}(ex) = ex = m(e, x).$$

But

$$\tau^{-1} m (\tau e, \tau a) = \tau^{-1}(ea) = a < m (e, a).$$

This is the required contradiction.

Similarly, assume that a < b satisfy ea > eb. Again e < a. Let $\tau = (a \ b)$. If x < a, then $ex \le x < a$ and

$$\tau^{-1} m(\tau e, \tau x) = \tau^{-1}(ex) = ex = m(e, x).$$

But $eb < ea \leq a$ and

$$\tau^{-1} m(\tau e, \tau a) = \tau^{-1}(eb) = eb < m(e, a). \square$$

Lemma 2

Let $f \neq e$ be idempotent. If fe = f then ef = e.

Proof. Assume $f^2 = f \neq e$, fe = f, and $ef \neq e$ (so that e < f, e < ef under the precedence order). We contradict the finiteness of S by constructing for every $r \geq 1$ a set $A \subseteq S$ with r elements and the following properties, in which c denotes the greatest element of A:

- (1) $e \in A$ and c < f;
- (2) ea = a < fa for all $a \in A$;
- (3) let $x \leq c$; if fx = fa for some $a \in A$, then ex = a; if $fx \notin fA$ then ex = fx.

If r = 1, then $A = \{e\}$ suffices.

Now let $r \ge 1$; assume that $A \subseteq S$ has r elements, greatest element c, and properties (1), (2), and (3). It follows from (2) that A and $fA \subseteq fS$ are disjoint and from (3) that $a \longmapsto fa$ is a bijection of A onto fA (since fb = fa implies b = eb = a). Let σ be the product of disjoint transpositions

$$\sigma = \prod_{a \in A} (a f a) .$$

Let $x \leq c$. If $x = a \in A$, then ex = a, $\sigma x = fa$, and

$$\sigma^{-1} m \left(\sigma e, \sigma x\right) = \sigma^{-1}(fa) = a = m \left(e, x\right).$$

GRILLET

If $x = fa \in fA$ (with $a \in A$), then ex = a by (3) and

$$\sigma^{-1} m \left(\sigma e, \sigma x\right) = \sigma^{-1}(fa) = a = m \left(e, x\right).$$

If $x \notin A$, $x \notin fA$, and fx = fa for some $a \in A$, then ex = a and

$$\sigma^{-1} m \left(\sigma e, \sigma x \right) = \sigma^{-1}(fx) = a = m \left(e, x \right).$$

If finally $x \notin A$, $x \notin fA$, and $fx \notin fA$, then fx = ex by (3), $fx \notin A$ (otherwise, $fx = ffx \in fA$), and

$$\sigma^{-1} m \left(\sigma e, \sigma x\right) = \sigma^{-1}(fx) = fx = m \left(e, x\right).$$

Thus $m_{\sigma}(e, x) = m(e, x)$ for all $x \leq c$. On the other hand,

$$\sigma^{-1} m \left(\sigma e, \sigma f \right) \; = \; \sigma^{-1} (f e) = \sigma^{-1} f = e < m \left(e, f \right).$$

Hence there is a least $d \in S$ such that $m_{\sigma}(e, d) \neq m(e, d)$. By the above, d > c. Since < is a precedence order, we have $m_{\sigma}(e, d) > m(e, d)$; hence $d \neq f$. Thus c < d < f, $m_{\sigma}(e, d) > m(e, d)$, and $m_{\sigma}(e, x) = m(e, x)$ for all x < d.

We show that $A' = A \cup \{d\}$, which has r + 1 elements and greatest element d, has properties (1), (2), and (3). Property (1) is clear.

If $a \in A$, then $d \neq a$ since $a \leq c < d$; $d \neq fa$, otherwise

$$\sigma^{-1} m (\sigma e, \sigma d) = \sigma^{-1} (fa) = a \le c = ec \le m (e, d)$$

by Lemma 1; $fd \neq a$, otherwise a = fa; and $fd \neq fa$, otherwise

$$\sigma^{-1} m \left(\sigma e, \sigma d \right) = \sigma^{-1} (fd) = a \le m (e, d).$$

Thus, d and fd belong neither to A nor to fA.

We now have

$$m_{\sigma}(e,d) = \sigma^{-1} m (\sigma e, \sigma d) = \sigma^{-1}(fd) = fd.$$

Hence ed < fd. By Lemma 1, $c = ec \leq ed \leq d$; in fact c < ed, otherwise $fd = fed = fc \in fA$. Now assume that ed < d. Then

$$\sigma^{-1} m (\sigma e, \sigma(ed)) = m (e, ed) = ed.$$

Since $ed \neq a$ for all $a \in A$ this implies $m(\sigma e, \sigma(ed)) \neq \sigma a = fa, \sigma(ed) \neq a$, and $ed \neq fa$, for all $a \in A$. Hence

$$\sigma^{-1} m \left(\sigma e, \sigma(ed) \right) = \sigma^{-1}(fed) = \sigma^{-1}(fd) = fd,$$

contradicting fd > ed. Therefore ed = d. Then d = ed < fd and (2) holds for A'.

Finally let $x \leq d$. If x = d, then fx = fd and ex = d. Otherwise x < d and $m_{\sigma}(e, x) = m(e, x)$. If x = fa or x = a for some $a \in A$, then fx = fa, $f \cdot \sigma x = fa$,

$$ex = \sigma^{-1} m (\sigma e, \sigma x) = \sigma^{-1}(f, \sigma x) = a,$$

and (3) holds. We may now assume $x \notin A$ and $x \notin fA$. Then

$$ex = \sigma^{-1} m (\sigma e, \sigma x) = \sigma^{-1} (fx).$$

Also $fx \neq fd$, otherwise $ex = \sigma^{-1}(fd) = fd > x$, contradicting Lemma 1. If now fx = fa for some $a \in A'$, then $a \in A$ and $ex = \sigma^{-1}(fx) = a$. If $fx \notin fA'$, then $fx \notin A$, since $fx = a \in A$ would imply $ex = \sigma^{-1}(fx) = fa$ and fx = fex = fa; consequently $ex = \sigma^{-1}(fx) = fx$. This proves (3). \Box

Lemma 2 implies that e is a primitive idempotent of S. Then it follows (for instance) from Hall's \mathcal{J} -class Theorem [2] that e is in the kernel K of S: since the \mathcal{J} -class of e lies above the regular \mathcal{J} -class K (under the partial order on S/\mathcal{J}), Hall's Theorem implies that e lies above some idempotent of K (under the Rees order); since e is primitive, $e \in K$. This proves our Theorem. \Box

References

- 1. P. A. Grillet, Commutative semigroups of order 9, to appear.
- 2. T. E. Hall, On the natural ordering of *J*-classes and of idempotents in a regular semigroup, *Glasgow Math. J.* **11** (1970), 167–168.
- 3. H. Jürgensen, *Annotated tables of semigroups of orders 2 to 6*, Report 231, Dept. of Computer Sci., Univ. Western Ontario, 1990.
- 4. G. Lallement, Semigroups and combinatorial applications, Wiley, New York 1979.