Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 46, 1-2 (1995), 77-81
(c) 1995 Universitat de Barcelona

A precedence theorem for semigroups

Pierre Antoine Grillet

Tulane University, New Orleans, LA 70118, U.S.A.

Dedicated to the memory of P. Dubreil

Abstract

In a finite semigroup, the least element under a precedence order is an idempotent in the kernel

The reader is referred to [4] for general semigroup concepts.
Precedence orders are defined as follows. When S is a set and $<$ is a total order relation on S, semigroup operations on S can be ordered lexicographically: if $m^{\prime}, m^{\prime \prime}: S \times S \longrightarrow S$, then $m^{\prime}<m^{\prime \prime}$ in case there exists $a, b \in S$ such that $m^{\prime}(x, y)=m^{\prime \prime}(x, y)$ whenever $x<a, m^{\prime}(a, y)=m^{\prime \prime}(a, y)$ whenever $y<b$, and $m^{\prime}(a, b)<m^{\prime \prime}(a, b)$.

If m is a semigroup operation and σ is a permutation of S, the permuted operation and permuted dual operation $m_{\sigma}, m_{\sigma}^{*}: S \times S \longrightarrow S$ are defined by

$$
m_{\sigma}(x, y)=\sigma^{-1} m(\sigma x, \sigma y), m_{\sigma}^{*}(x, y)=\sigma^{-1} m(\sigma y, \sigma x)
$$

for all $x, y \in S$. Thus σ is an isomorphism of $S=(S, m)$ onto $S_{\sigma}=\left(S, m_{\sigma}\right)$ and an antiisomorphism of S onto $S_{\sigma}^{*}=\left(S, m_{\sigma}^{*}\right)$. Note that $\left(m_{\sigma}\right)_{\tau}=m_{\sigma \tau}$ and $\left(m_{\sigma}^{*}\right)_{\tau}=m_{\sigma}^{*}$.

A precedence order on $S=(S, m)$ is a total order $<$ on S such that $m_{\sigma} \geq m$ and $m_{\sigma}^{*} \geq m$ for every permutation σ of S. (It is not assumed that m and $<$ are compatible.)

Precedence occurs naturally in computer lists of distinct finite semigroups, such as [3], where the elements of S are in a fixed order $<$ and multiplication tables are
generated in lexicographic order. A semigroup (S, m) added to the list should not be isomorphic or antiisomorphic to any of the previous semigroups. This means no permutation σ such that $m_{\sigma}<m$ or $m_{\sigma}^{*}<m$; equivalently, the fixed order $<$ on S is a precedence order. This provides abundant finite examples of precedence orders.

Conversely, precedence considerations can be used to greatly reduce computation time in the enumeration of finite semigroups [1].

In general, a precedence order exists on every semigroup $S=(S, m)$ or on the dual (opposite) semigroup S^{*}; in particular, every commutative semigroup has a precedence order. To see this, let < be any well order on S. Operations on S are then well ordered lexicographically. Hence the set of all m_{σ} and m_{σ}^{*} has a least element. If m_{σ} is the least element, then $<$ is a precedence order on $S_{\sigma} \cong S$; ordering S by $\sigma x<\sigma y$ yields a precedence order on S. If m_{σ}^{*} is least, there is a similar precedence order on the dual semigroup $S^{*} \cong S_{\sigma}^{*}$.

From this argument we also see that precedence orders exist on both S and S^{*} if and only if there is an antiautomorphism $S \cong S^{*}$. Also the number of precedence orders on S (if one exists) equals the number of automorphisms of S.

Our precedence theorem is:

Theorem

In a finite semigroup, the least element e under a precedence order $<$ is an idempotent in the kernel.

The easy part of the Theorem is that e is idempotent. Otherwise $S=(S, m)$ contains an idempotent $f \neq e$. Since $e^{2} \neq e$, the transposition $\tau=(e f)$ satisfies

$$
\tau^{-1} m(\tau e, \tau e)=\tau^{-1}(f f)=e<m(e, e) .
$$

Since e is the least element of S, this shows $m_{\tau}<m$, which cannot happen if $<$ is a precedence order.

The rest of the proof consists of two Lemmas.

Lemma 1

Under a precedence order, $e x \leq x$ for all $x \in S$, and $x \leq y$ implies $e x \leq e y$.

Proof. Assume $e x>x$ for some $x \in S$. Let $a \in S$ be the least such element, so that $e a>a$ and $e x \leq x$ for all $x<a$; in particular, $e<a$. Let $\tau=(a e a)$. When $x<a$,

$$
\tau^{-1} m(\tau e, \tau x)=\tau^{-1}(e x)=e x=m(e, x)
$$

But

$$
\tau^{-1} m(\tau e, \tau a)=\tau^{-1}(e a)=a<m(e, a)
$$

This is the required contradiction.
Similarly, assume that $a<b$ satisfy $e a>e b$. Again $e<a$. Let $\tau=(a b)$. If $x<a$, then $e x \leq x<a$ and

$$
\tau^{-1} m(\tau e, \tau x)=\tau^{-1}(e x)=e x=m(e, x)
$$

But $e b<e a \leq a$ and

$$
\tau^{-1} m(\tau e, \tau a)=\tau^{-1}(e b)=e b<m(e, a)
$$

Lemma 2

Let $f \neq e$ be idempotent. If $f e=f$ then $e f=e$.
Proof. Assume $f^{2}=f \neq e, f e=f$, and $e f \neq e$ (so that $e<f, e<e f$ under the precedence order). We contradict the finiteness of S by constructing for every $r \geq 1$ a set $A \subseteq S$ with r elements and the following properties, in which c denotes the greatest element of A :
(1) $e \in A$ and $c<f$;
(2) $e a=a<f a$ for all $a \in A$;
(3) let $x \leq c$; if $f x=f a$ for some $a \in A$, then $e x=a$; if $f x \notin f A$ then $e x=f x$. If $r=1$, then $A=\{e\}$ suffices.
Now let $r \geq 1$; assume that $A \subseteq S$ has r elements, greatest element c, and properties (1), (2), and (3). It follows from (2) that A and $f A \subseteq f S$ are disjoint and from (3) that $a \longmapsto f a$ is a bijection of A onto $f A$ (since $f b=f a$ implies $b=e b=a)$. Let σ be the product of disjoint transpositions

$$
\sigma=\prod_{a \in A}(a f a)
$$

Let $x \leq c$. If $x=a \in A$, then $e x=a, \sigma x=f a$, and

$$
\sigma^{-1} m(\sigma e, \sigma x)=\sigma^{-1}(f a)=a=m(e, x)
$$

If $x=f a \in f A$ (with $a \in A$), then $e x=a$ by (3) and

$$
\sigma^{-1} m(\sigma e, \sigma x)=\sigma^{-1}(f a)=a=m(e, x)
$$

If $x \notin A, x \notin f A$, and $f x=f a$ for some $a \in A$, then $e x=a$ and

$$
\sigma^{-1} m(\sigma e, \sigma x)=\sigma^{-1}(f x)=a=m(e, x)
$$

If finally $x \notin A, x \notin f A$, and $f x \notin f A$, then $f x=e x$ by (3), $f x \notin A$ (otherwise, $f x=f f x \in f A$), and

$$
\sigma^{-1} m(\sigma e, \sigma x)=\sigma^{-1}(f x)=f x=m(e, x)
$$

Thus $m_{\sigma}(e, x)=m(e, x)$ for all $x \leq c$. On the other hand,

$$
\sigma^{-1} m(\sigma e, \sigma f)=\sigma^{-1}(f e)=\sigma^{-1} f=e<m(e, f)
$$

Hence there is a least $d \in S$ such that $m_{\sigma}(e, d) \neq m(e, d)$. By the above, $d>c$. Since $<$ is a precedence order, we have $m_{\sigma}(e, d)>m(e, d)$; hence $d \neq f$. Thus $c<d<f, m_{\sigma}(e, d)>m(e, d)$, and $m_{\sigma}(e, x)=m(e, x)$ for all $x<d$.

We show that $A^{\prime}=A \cup\{d\}$, which has $r+1$ elements and greatest element d, has properties (1), (2), and (3). Property (1) is clear.

If $a \in A$, then $d \neq a$ since $a \leq c<d ; d \neq f a$, otherwise

$$
\sigma^{-1} m(\sigma e, \sigma d)=\sigma^{-1}(f a)=a \leq c=e c \leq m(e, d)
$$

by Lemma $1 ; f d \neq a$, otherwise $a=f a$; and $f d \neq f a$, otherwise

$$
\sigma^{-1} m(\sigma e, \sigma d)=\sigma^{-1}(f d)=a \leq m(e, d)
$$

Thus, d and $f d$ belong neither to A nor to $f A$.
We now have

$$
m_{\sigma}(e, d)=\sigma^{-1} m(\sigma e, \sigma d)=\sigma^{-1}(f d)=f d
$$

Hence $e d<f d$. By Lemma 1, $c=e c \leq e d \leq d$; in fact $c<e d$, otherwise $f d=$ $f e d=f c \in f A$. Now assume that $e d<d$. Then

$$
\sigma^{-1} m(\sigma e, \sigma(e d))=m(e, e d)=e d
$$

Since $e d \neq a$ for all $a \in A$ this implies $m(\sigma e, \sigma(e d)) \neq \sigma a=f a, \sigma(e d) \neq a$, and $e d \neq f a$, for all $a \in A$. Hence

$$
\sigma^{-1} m(\sigma e, \sigma(e d))=\sigma^{-1}(f e d)=\sigma^{-1}(f d)=f d
$$

contradicting $f d>e d$. Therefore $e d=d$. Then $d=e d<f d$ and (2) holds for A^{\prime}.
Finally let $x \leq d$. If $x=d$, then $f x=f d$ and $e x=d$. Otherwise $x<d$ and $m_{\sigma}(e, x)=m(e, x)$. If $x=f a$ or $x=a$ for some $a \in A$, then $f x=f a, f \cdot \sigma x=f a$,

$$
e x=\sigma^{-1} m(\sigma e, \sigma x)=\sigma^{-1}(f, \sigma x)=a
$$

and (3) holds. We may now assume $x \notin A$ and $x \notin f A$. Then

$$
e x=\sigma^{-1} m(\sigma e, \sigma x)=\sigma^{-1}(f x) .
$$

Also $f x \neq f d$, otherwise $e x=\sigma^{-1}(f d)=f d>x$, contradicting Lemma 1. If now $f x=f a$ for some $a \in A^{\prime}$, then $a \in A$ and $e x=\sigma^{-1}(f x)=a$. If $f x \notin f A^{\prime}$, then $f x \notin A$, since $f x=a \in A$ would imply $e x=\sigma^{-1}(f x)=f a$ and $f x=f e x=f a$; consequently $e x=\sigma^{-1}(f x)=f x$. This proves (3).

Lemma 2 implies that e is a primitive idempotent of S. Then it follows (for instance) from Hall's \mathcal{J}-class Theorem [2] that e is in the kernel K of S : since the \mathcal{J}-class of e lies above the regular \mathcal{J}-class K (under the partial order on S / \mathcal{J}), Hall's Theorem implies that e lies above some idempotent of K (under the Rees order); since e is primitive, $e \in K$. This proves our Theorem.

References

1. P. A. Grillet, Commutative semigroups of order 9 , to appear.
2. T. E. Hall, On the natural ordering of \mathcal{J}-classes and of idempotents in a regular semigroup, Glasgow Math. J. 11 (1970), 167-168.
3. H. Jürgensen, Annotated tables of semigroups of orders 2 to 6 , Report 231, Dept. of Computer Sci., Univ. Western Ontario, 1990.
4. G. Lallement, Semigroups and combinatorial applications, Wiley, New York 1979.
