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ABSTRACT

In a finite semigroup, the least element under a precedence order is an idempotent
in the kernel.

The reader is referred to [4] for general semigroup concepts.

Precedence orders are defined as follows. When S is a set and < is a total
order relation on .S, semigroup operations on S can be ordered lexicographically:
if m''m” : S xS — S, then m" < m” in case there exists a,b € S such that
m/(x,y) = m”(z,y) whenever z < a, m/(a,y) = m'(a,y) whenever y < b, and
m/(a,b) < m”(a,b).

If m is a semigroup operation and o is a permutation of S, the permuted
operation and permuted dual operation m,,mj : S x S — S are defined by

1 1

me(z,y) =0 " m(ox,0y),my(x,y) =0  m(oy,ox)

for all x,y € S. Thus o is an isomorphism of S = (S,m) onto S, = (S, m,)
and an antiisomorphism of S onto S* = (S,m’). Note that (my), = m,, and
(m;)T = m:r'r‘

A precedence order on S = (S,m) is a total order < on S such that m, > m
and m} > m for every permutation o of S. (It is not assumed that m and < are
compatible.)

Precedence occurs naturally in computer lists of distinct finite semigroups, such
as [3], where the elements of S are in a fixed order < and multiplication tables are
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generated in lexicographic order. A semigroup (S, m) added to the list should not
be isomorphic or antiisomorphic to any of the previous semigroups. This means no
permutation o such that m, < m or m) < m; equivalently, the fixed order < on S
is a precedence order. This provides abundant finite examples of precedence orders.

Conversely, precedence considerations can be used to greatly reduce computa-
tion time in the enumeration of finite semigroups [1].

In general, a precedence order exists on every semigroup S = (S, m) or on the
dual (opposite) semigroup S*; in particular, every commutative semigroup has a
precedence order. To see this, let < be any well order on S. Operations on S are
then well ordered lexicographically. Hence the set of all m, and m} has a least
element. If m, is the least element, then < is a precedence order on S, = S;
ordering S by ox < oy yields a precedence order on S. If m} is least, there is a
similar precedence order on the dual semigroup S* = S.

From this argument we also see that precedence orders exist on both S and S*
if and only if there is an antiautomorphism S =2 S*. Also the number of precedence
orders on S (if one exists) equals the number of automorphisms of S.

Our precedence theorem is:

Theorem

In a finite semigroup, the least element e under a precedence order < is an
idempotent in the kernel.

The easy part of the Theorem is that e is idempotent. Otherwise S = (S, m)
contains an idempotent f # e. Since e? # e, the transposition 7 = (e f) satisfies

T 'm(re,Te) = T Hff) =e<m(ee).

Since e is the least element of S, this shows m, < m, which cannot happen if < is
a precedence order.

The rest of the proof consists of two Lemmas.

Lemma 1

Under a precedence order, ex < x for all z € S, and x <y implies ex < ey.
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Proof. Assume ex > x for some x € S. Let a € S be the least such element, so that
ea > a and ex < z for all x < a; in particular, e < a. Let 7 = (a ea). When z < a,

™ im(re,m2) = 77 ex) = ex = m (e, ).

But

T 'm(re,7a) = 77 (ea) =a < m(e,a).

This is the required contradiction.
Similarly, assume that a < b satisfy ea > eb. Again e < a. Let 7 = (a b). If
x < a, then ex < x < a and

T im(re,m2) = 7 ex) = ex =m (e, x).

But eb < ea < a and

7 'm(re,7a) = 7 '(eb) = eb < m(e,a). O

Lemma 2

Let f # e be idempotent. If fe = f thenef = e.

Proof. Assume f? = f # e, fe = f, and ef # e (so that e < f, e < ef under the
precedence order). We contradict the finiteness of S by constructing for every r > 1
aset A C S with r elements and the following properties, in which ¢ denotes the
greatest element of A:

(1) ec€cAandc< f;
(2) ea=a< faforallacA,
(3) let x <g¢;if fr = fa for some a € A, then ex = a; if fr ¢ fA then ex = fux.

If r =1, then A= {e} suffices.

Now let » > 1; assume that A C S has r elements, greatest element ¢, and
properties (1), (2), and (3). It follows from (2) that A and fA C fS are disjoint
and from (3) that a — fa is a bijection of A onto fA (since fb = fa implies
b=eb=a). Let o be the product of disjoint transpositions

g = HaEA (afa).
Let  <c If x =a € A, then ex = a, ox = fa, and

o 'm(oe,00) = o7 (fa) =a=m/(ex).
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If 2= fa € fA (with a € A), then ex = a by (3) and

o 'm(oe,00) = o7 (fa) =a=m(ex).

Ifx ¢ A,z ¢ fA and fo = fa for some a € A, then ex = a and

o 'm(oe,00) = o7 (fr) =a=m(e,x).

If finally « ¢ A, x ¢ fA, and fo ¢ fA, then fx = ex by (3), fx ¢ A (otherwise,
fr=ffxe fA), and

o tm(oe,0n) = o '(fr) = fzr=m/e,x).

Thus m, (e, z) = m(e, x) for all z < c. On the other hand,

o tm(oe,of) = o7 fe)=0"'f =e<mle,f).

Hence there is a least d € S such that m,(e,d) # m(e,d). By the above, d > c.
Since < is a precedence order, we have m,(e,d) > m(e,d); hence d # f. Thus
c<d< f,my(e,d) >m(ed), and my(e,x) = m(e,z) for all x < d.

We show that A’ = AU {d}, which has r + 1 elements and greatest element d,
has properties (1), (2), and (3). Property (1) is clear.

If a € A, then d # a since a < ¢ < d; d # fa, otherwise

o 'm(oe,0d) = o7 (fa) =a <c=-ec<mled)

by Lemma 1; fd # a, otherwise a = fa; and fd # fa, otherwise

o tm(oe,0d) = o7 (fd) =a <m(e,d).
Thus, d and fd belong neither to A nor to fA.
We now have
me(e,d) = o 'm(oe,0d) = o7 (fd) = fd.
Hence ed < fd. By Lemma 1, ¢ = ec < ed < d; in fact ¢ < ed, otherwise fd =
fed = fce fA. Now assume that ed < d. Then
ot m(oe,0(ed)) =m (e, ed) = ed.

Since ed # a for all a € A this implies m (ce,o(ed)) # ca = fa, o(ed) # a, and
ed # fa, for all a € A. Hence
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o m(oe,0(ed)) = o7 (fed) = o7 (fd) = fd,

contradicting fd > ed. Therefore ed = d. Then d = ed < fd and (2) holds for A’.
Finally let x < d. If x = d, then fx = fd and ex = d. Otherwise x < d and
me(e,x) = m(e,x). If z = fa or x = a for some a € A, then fx = fa, f-ox = fa,

ex = o ‘m(oe,ox) =0 (f o) =a,

and (3) holds. We may now assume z ¢ A and x ¢ fA. Then

ex = o ‘m(oe,ox) =0 (fx).
Also fx # fd, otherwise ex = 0~ !(fd) = fd > x, contradicting Lemma 1. If now
fz = fa for some a € A’, then a € A and ex = o~ !(fx) = a. If fx ¢ fA’, then
fr & A, since fr = a € A would imply ex = 0~ (fz) = fa and fz = fex = fa;
consequently ex = o~ (fx) = fz. This proves (3). [

Lemma 2 implies that e is a primitive idempotent of S. Then it follows (for
instance) from Hall’s J-class Theorem [2] that e is in the kernel K of S: since the
J-class of e lies above the regular J-class K (under the partial order on S/J), Hall’s
Theorem implies that e lies above some idempotent of K (under the Rees order);
since e is primitive, e € K. This proves our Theorem. []
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