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Abstract

In a finite semigroup, the least element under a precedence order is an idempotent
in the kernel.

The reader is referred to [4] for general semigroup concepts.
Precedence orders are defined as follows. When S is a set and < is a total

order relation on S, semigroup operations on S can be ordered lexicographically:
if m′,m′′ : S × S −→ S, then m′ < m′′ in case there exists a, b ∈ S such that
m′(x, y) = m′′(x, y) whenever x < a, m′(a, y) = m′′(a, y) whenever y < b, and
m′(a, b) < m′′(a, b).

If m is a semigroup operation and σ is a permutation of S, the permuted
operation and permuted dual operation mσ,m

∗
σ : S × S −→ S are defined by

mσ(x, y) = σ−1 m (σx, σy),m∗
σ(x, y) = σ−1 m (σy, σx)

for all x, y ∈ S. Thus σ is an isomorphism of S = (S,m) onto Sσ = (S,mσ)
and an antiisomorphism of S onto S∗

σ = (S,m∗
σ). Note that (mσ)τ = mστ and

(m∗
σ)τ = m∗

στ .
A precedence order on S = (S,m) is a total order < on S such that mσ ≥ m

and m∗
σ ≥ m for every permutation σ of S. (It is not assumed that m and < are

compatible.)
Precedence occurs naturally in computer lists of distinct finite semigroups, such

as [3], where the elements of S are in a fixed order < and multiplication tables are
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generated in lexicographic order. A semigroup (S,m) added to the list should not
be isomorphic or antiisomorphic to any of the previous semigroups. This means no
permutation σ such that mσ < m or m∗

σ < m; equivalently, the fixed order < on S

is a precedence order. This provides abundant finite examples of precedence orders.

Conversely, precedence considerations can be used to greatly reduce computa-
tion time in the enumeration of finite semigroups [1].

In general, a precedence order exists on every semigroup S = (S,m) or on the
dual (opposite) semigroup S∗; in particular, every commutative semigroup has a
precedence order. To see this, let < be any well order on S. Operations on S are
then well ordered lexicographically. Hence the set of all mσ and m∗

σ has a least
element. If mσ is the least element, then < is a precedence order on Sσ

∼= S;
ordering S by σx < σy yields a precedence order on S. If m∗

σ is least, there is a
similar precedence order on the dual semigroup S∗ ∼= S∗

σ.

From this argument we also see that precedence orders exist on both S and S∗

if and only if there is an antiautomorphism S ∼= S∗. Also the number of precedence
orders on S (if one exists) equals the number of automorphisms of S.

Our precedence theorem is:

Theorem

In a finite semigroup, the least element e under a precedence order < is an

idempotent in the kernel.

The easy part of the Theorem is that e is idempotent. Otherwise S = (S,m)
contains an idempotent f �= e. Since e2 �= e, the transposition τ = (e f) satisfies

τ−1 m (τe, τe) = τ−1(ff) = e < m (e, e).

Since e is the least element of S, this shows mτ < m, which cannot happen if < is
a precedence order.

The rest of the proof consists of two Lemmas.

Lemma 1

Under a precedence order, ex ≤ x for all x ∈ S, and x ≤ y implies ex ≤ ey.



A precedence theorem for semigroups 79

Proof. Assume ex > x for some x ∈ S. Let a ∈ S be the least such element, so that
ea > a and ex ≤ x for all x < a; in particular, e < a. Let τ = (a ea). When x < a,

τ−1 m (τe, τx) = τ−1(ex) = ex = m (e, x).

But

τ−1 m (τe, τa) = τ−1(ea) = a < m (e, a).

This is the required contradiction.
Similarly, assume that a < b satisfy ea > eb. Again e < a. Let τ = (a b). If

x < a, then ex ≤ x < a and

τ−1 m (τe, τx) = τ−1(ex) = ex = m (e, x).

But eb < ea ≤ a and

τ−1 m (τe, τa) = τ−1(eb) = eb < m (e, a). �

Lemma 2

Let f �= e be idempotent. If fe = f then ef = e.

Proof. Assume f2 = f �= e, fe = f , and ef �= e (so that e < f , e < ef under the
precedence order). We contradict the finiteness of S by constructing for every r ≥ 1
a set A ⊆ S with r elements and the following properties, in which c denotes the
greatest element of A:

(1) e ∈ A and c < f ;
(2) ea = a < fa for all a ∈ A;
(3) let x ≤ c; if fx = fa for some a ∈ A, then ex = a; if fx /∈ fA then ex = fx.

If r = 1, then A = { e } suffices.
Now let r ≥ 1; assume that A ⊆ S has r elements, greatest element c, and

properties (1), (2), and (3). It follows from (2) that A and fA ⊆ fS are disjoint
and from (3) that a 
−→ fa is a bijection of A onto fA (since fb = fa implies
b = eb = a). Let σ be the product of disjoint transpositions

σ =
∏

a∈A (a fa) .

Let x ≤ c. If x = a ∈ A, then ex = a, σx = fa, and

σ−1 m (σe, σx) = σ−1(fa) = a = m (e, x).
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If x = fa ∈ fA (with a ∈ A), then ex = a by (3) and

σ−1 m (σe, σx) = σ−1(fa) = a = m (e, x).

If x /∈ A, x /∈ fA, and fx = fa for some a ∈ A, then ex = a and

σ−1 m (σe, σx) = σ−1(fx) = a = m (e, x).

If finally x /∈ A, x /∈ fA, and fx /∈ fA, then fx = ex by (3), fx /∈ A (otherwise,
fx = ffx ∈ fA), and

σ−1 m (σe, σx) = σ−1(fx) = fx = m (e, x).

Thus mσ(e, x) = m(e, x) for all x ≤ c. On the other hand,

σ−1 m (σe, σf) = σ−1(fe) = σ−1f = e < m (e, f).

Hence there is a least d ∈ S such that mσ(e, d) �= m(e, d). By the above, d > c.
Since < is a precedence order, we have mσ(e, d) > m(e, d); hence d �= f . Thus
c < d < f , mσ(e, d) > m(e, d), and mσ(e, x) = m(e, x) for all x < d.

We show that A′ = A ∪ { d }, which has r + 1 elements and greatest element d,
has properties (1), (2), and (3). Property (1) is clear.

If a ∈ A, then d �= a since a ≤ c < d; d �= fa, otherwise

σ−1 m (σe, σd) = σ−1(fa) = a ≤ c = ec ≤ m (e, d)

by Lemma 1; fd �= a, otherwise a = fa; and fd �= fa, otherwise

σ−1 m (σe, σd) = σ−1(fd) = a ≤ m (e, d).

Thus, d and fd belong neither to A nor to fA.
We now have

mσ(e, d) = σ−1 m (σe, σd) = σ−1(fd) = fd.

Hence ed < fd. By Lemma 1, c = ec ≤ ed ≤ d; in fact c < ed, otherwise fd =
fed = fc ∈ fA. Now assume that ed < d. Then

σ−1 m (σe, σ(ed)) = m (e, ed) = ed.

Since ed �= a for all a ∈ A this implies m (σe, σ(ed)) �= σa = fa, σ(ed) �= a, and
ed �= fa, for all a ∈ A. Hence
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σ−1 m (σe, σ(ed)) = σ−1(fed) = σ−1(fd) = fd,

contradicting fd > ed. Therefore ed = d. Then d = ed < fd and (2) holds for A′.
Finally let x ≤ d. If x = d, then fx = fd and ex = d. Otherwise x < d and

mσ(e, x) = m(e, x). If x = fa or x = a for some a ∈ A, then fx = fa, f · σx = fa,

ex = σ−1 m (σe, σx) = σ−1(f, σx) = a,

and (3) holds. We may now assume x /∈ A and x /∈ fA. Then

ex = σ−1 m (σe, σx) = σ−1(fx).

Also fx �= fd, otherwise ex = σ−1(fd) = fd > x, contradicting Lemma 1. If now
fx = fa for some a ∈ A′, then a ∈ A and ex = σ−1(fx) = a. If fx /∈ fA′, then
fx /∈ A, since fx = a ∈ A would imply ex = σ−1(fx) = fa and fx = fex = fa;
consequently ex = σ−1(fx) = fx. This proves (3). �

Lemma 2 implies that e is a primitive idempotent of S. Then it follows (for
instance) from Hall’s J-class Theorem [2] that e is in the kernel K of S: since the
J-class of e lies above the regular J-class K (under the partial order on S/J), Hall’s
Theorem implies that e lies above some idempotent of K (under the Rees order);
since e is primitive, e ∈ K. This proves our Theorem. �
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