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Abstract

Let I be an ideal of a lattice L where 0, 1 ∈ L. Let I0 := I and let the n−th
meander In of I be defined recursively by In = {w ∈ L;∀t ∈ L w ⊕ t ∈
In−1 ⇒ t ∈ In−1}where w⊕t denotes w∧t for n odd and w⊕t = w∨t
for n even. Dually is defined the n−th meander Fn of a filter F. In this paper
we study the meanders of semiprime and prime ideals and we establish some
basic properties of meanders.

I. Introduction

Throughout this note L will denote a lattice having a 0 and a 1.
We assume that the reader is familiar with the standard results and terminol-

ogy of lattice theory as presented in the book [6] and we refer him to [2] for any
unexplained notation.

Let I be an ideal of a lattice L. The set

I1 := {b ∈ L;∀c ∈ L b ∧ c ∈ I ⇒ c ∈ I}

will be called the meander of I. Given a filter F of L, the meander F 1 of F is defined
dually by

F 1 := {d ∈ L;∀e ∈ L d ∨ e ∈ F ⇒ e ∈ F}.
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Recall (see [9], for instance) that an ideal B of a ring R is said to be essential in R

if B ∩ C �= 0 for any ideal C �= 0 of R. Hence B is essential if and only if it belongs
to the meander (0]1 of the ideal (0] in the lattice Id(R) of all the ideals in R.

An element a of a lattice L is said to be small (see [8]) if a ∨ c �= 1 for any
c �= 1. In our terminology is a small if and only if it belongs to the meander [1)1 of
the filter [1).

Let I be an ideal of a lattice L and let K ⊂ L \ I. An element t is called
K-essential with respect to I (see [1]) if it belongs to the set

EssI
L(K) = {t ∈ L \ I;∀k ∈ K t ∧ k /∈ I}.

An element t is therefore K−essential for K = L \ I with respect to I if and
only if it belongs to the meander I1 of the ideal I.

Other examples of meanders can be found in lattices of subalgebras or in lattices
of special subalgebras of an algebra.

The following notions and results will form the basis for our proofs so, for the
reader’s convenience, we list them here in detail.

If a ≤ b are elements of a lattice T, we denote the ordered couple (a, b) by b/a,

calling it a quotient of T. The set of all such quotients will be denoted by Q(T ).
If b/a and d/c belong to Q(T ) and are such that

b ∧ c = a & b ∨ c ≤ d,

we write b/a ↗w d/c. The special case where

b ∧ c = a & b ∨ c = d

is denoted by b/a ↗ d/c. The binary relations ↘w and ↘ are defined on Q(T )
dually.

If either b/a ↗w d/c or b/a ↘w d/c, we write b/a ∼w d/c.

A quotient b/a is said to be an allele of T, provided there exist quotients bi/ai ∈
Q(T ) (i = 0, 1, · · · , n) and d/c ∈ Q(T ) such that

b/a = b0/a0 ∼w b1/a1 ∼w · · · ∼w bn/an = d/c

and such that either b ≤ c or d ≤ a. Let A(T ) denote the set of all alleles in T and
let Ĉ(T ) be a binary relation defined on T in the following way: The couple (a, b)
belongs to Ĉ(T ) if and only if there exist bi+1/bi ∈ A(T ) (i = 0, 1, · · · , n) satisfying

a ∧ b = b0 ≤ b1 ≤ · · · ≤ bn+1 = a ∨ b.
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Figure 1

For example, in the pentagon N5 shown in Figure 1 we see that

c/a ↘w c/o ↗ i/b ↘ a/o

and so c/a ∈ A(N5).
With this notation in mind we now can formulate the following proposition.

Proposition 1.1

Let T be a lattice. Then

(i) [2, Theorem VI.1.6] the binary relation Ĉ(T ) is a congruence of T;

(ii) [3, Main Theorem] an ideal I of T is semiprime (see the definition 2.3) if and

only if there is no j/i ∈ A(T ) with i ∈ I and j /∈ I;
(iii) [4, Corollary 2 (i)] a principal ideal I = (i0] of T is semiprime if and only if

there is no j0/i0 ∈ A(T ) satisfying j0 /∈ I.

2. Meanders and semiprimeness

It is easy to verify the next lemma, which will play an essential role in the following.

Lemma 2.1

(i) If I is an ideal of a lattice L, then I1 is a filter of L.

(ii) If I is an ideal of L such that I �= L, then I ∩ I1 = ∅.
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Definition 2.2. Let H be an ideal or a filter of L. Put H0 := H and let Hn be
defined recursively by Hn = (Hn−1)1. The set Hn will be called the n−th meander
of H.

The following definition is due to Y. Rav [7].

Definition 2.3. An ideal I of a lattice T is called semiprime if the implication

(a ∧ b ∈ I & a ∧ c ∈ I) ⇒ a ∧ (b ∨ c) ∈ I

is true for any a, b, c ∈ T.

A semiprime filter of L is defined dually.

Definition 2.4. An ideal I of L is said to be semiprime of degree n if its n-th
meander In is semiprime.

Our first theorem in this section shows that the meanders preserve semiprime-
ness.

Theorem 2.5

Let I be a semiprime ideal of L. Then the meander I1 is a semiprime filter of L.

Proof. Assume that I1 is not semiprime. By the dual of Proposition 1.1 (i) there
exists an allele j0/h0 such that j0 ∈ I1 and h0 /∈ I1. Therefore, there is x ∈ L such
that

h0 ∧ x ∈ I & x /∈ I.

From j0 ∈ I1 we see that x∧j0 /∈ I. Now x∧j0/x∧h0 ↗w j0/h0. Since (h0, j0) ∈ Ĉ(L)
and since Ĉ(L) is a congruence of L, we conclude that (x ∧ h0, x ∧ j0) ∈ Ĉ(L).
Consequently, there are elements a0, a1, · · · , an ∈ L satisfying

I � x ∧ h0 = a0 ≤ a1 ≤ · · · ≤ an = x ∧ j0 /∈ I,

aj+1/aj being an allele of L for every j = 0, 1, · · · , n − 1. Hence there exists i

such that ai ∈ I and ai+1 /∈ I. By Proposition quoted above, the ideal I is not
semiprime. �

Theorem 2.5 has the following immediate

Corollary 2.6

Let I be a semiprime ideal of L. Then I is semiprime of degree n for every

n ∈ N.
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We briefly review notions that will frequently be used:
Definition 2.7. ([5], p.38). A lattice T satisfies the ascending chain condition,
(ACC), if it contains no infinite ascending chain x1 < x2 < · · · < xn < · · · .

A lattice T has no infinite chains if every chain in T is finite.

It is a well-known fact, see [5, 2.26 Lemma], that under the assumption of the
Axiom of Choice an ordered set P satisfies the (ACC) if and only if every non-empty
subset of P has a maximal element (the maximal condition, (MC)).

While the proofs of Theorems 2.8 and 3.2 given here formally rely on the (ACC),
it should be pointed out that the reader may prefer the (MC) to make some steps
in the proofs more transparent.

We have the following observation about the semiprime meanders.

Theorem 2.8

Let I be an ideal of a modular lattice satisfying the (ACC). If the meander I1

is semiprime, then I is also semiprime.

Proof. Without loss of generality, we may assume that L �= I = (i0]. Hence, by
Lemma 2.1 (ii), i0 /∈ I1.

Suppose that I is not semiprime. By Proposition 1.1 (iii), there exists j0 such
j0/i0 is an allele and j0 /∈ I.

We shall consider two cases.

Case I: j0 ∈ I1. Then I1 is not semiprime by the dual of Proposition 1.1 (ii), a
contradiction.
Case II: j0 /∈ I1. Put d0 := i0, s0 := j0, x0 := i0 and continue recursively: Suppose
that n ≥ 0 and that x0, x1, · · · , xn have been defined in such a way that the elements

dq :=
q∨

i=0

xi, sq := dq ∨ j0

(q = 0, 1, · · · , n) satisfy

(2.1) ∀q = 0, 1, · · · , n − 1 sq/dq ↗ sq+1/dq+1;

(2.2) ∀q = 0, 1, · · · , n (dq, sq) ∈ Ĉ(L);

(2.3) ∀q = 0, 1, · · · , n dq < sq;
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(2.4) s0 < s1 < · · · < sn;

(2.5) ∀q = 0, 1, · · · , n dq /∈ I1.

By (2.2), (dn, sn) ∈ Ĉ(L), and by (2.5), dn /∈ I1. It follows, by the dual of
Proposition 1.1 (ii), that

(2.6) sn /∈ I1.

Hence there exists yn+1 such that

(2.7) sn ∧ yn+1 ∈ I & yn+1 /∈ I.

Let xn+1 := yn+1 ∨ i0, sn+1 := sn ∨ xn+1 and dn+1 := dn ∨ xn+1. We need to
show that

(2.8) sn/dn ↗ sn+1/dn+1;

(2.9) (dn+1, sn+1) ∈ Ĉ(L);

(2.10) dn+1 < sn+1;

(2.11) sn < sn+1;

(2.12) dn+1 /∈ I1.

Indeed, by (2.7), sn∧yn+1 ≤ i0. By modularity and since sn ≥ j0 ≥ i0 it follows
that

sn ∧ xn+1 = sn ∧ (yn+1 ∨ i0) = (sn ∧ yn+1) ∨ i0 = i0.

We now claim that xn+1 /∈ I. For if this were not the case there would be
yn+1 ∈ I, which is impossible by (2.7). Therefore

(2.13) sn ∧ xn+1 = i0 = x0 ≤ dn & xn+1 /∈ I.
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Furthermore sn ∨ dn+1 = sn+1. By modularity and by (2.13),

sn ∧ dn+1 = (dn ∨ j0) ∧ (dn ∨ xn+1) = dn ∨ (sn ∧ xn+1) = dn.

Hence, (2.8) is true.
Note that s0 = j0, d0 = i0 and that the relation ↗ is transitive (cf. [2], Lemma

VI.1.1, p. 200). Together with (2.1) and (2.8) this yields

(2.14) j0/i0 ↗ sn+1/dn+1.

Since (i0, j0) ∈ Ĉ(L), we conclude from the same Lemma that (dn+1, sn+1) ∈
Ĉ(L), and so the assertion (2.9) must hold. Since i0 �= j0, (2.14) implies that
dn+1 �= sn+1; hence also (2.10) is true.

By (2.3) and (2.13), dn ∧ xn+1 ≤ sn ∧ xn+1 = i0. However, by (2.13) i0 ≤ dn

and, moreover, i0 ≤ xn+1, so that i0 = dn ∧ xn+1. Thus

(2.15) dn+1/dn ↘ xn+1/i0.

By (2.13), xn+1 /∈ I and it follows that i0 < xn+1. Applying (2.15), we have

(2.16) dn < dn+1.

Now, (2.8) is equivalent to sn+1/sn ↘ dn+1/dn. From (2.16) we, therefore, infer
that sn < sn+1; hence (2.11) holds.

Further, by (2.14), dn+1∧j0 = i0 ∈ I. But so we see that dn+1 ∈ I1 is impossible,
since it would imply j0 ∈ I. This proves (2.12).

The assumption that I is not semiprime implies therefore the existence of an
infinite ascending sequence s0 < s1 < · · · . This contradicts the hypothesis on L, and
establishes our assertion. �

From the above theorem one can deduce the following corollary.

Corollary 2.9

Let L be a modular lattice which has no infinite chains and let n ∈ N. Then an

ideal I of L is semiprime of degree n if and only if I is semiprime.
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Figure 2

Remark 2.10. A. Consider the lattice N5 of Figure 1 and choose I = (a]. Then
I1 = [i) is a semiprime filter but I is not semiprime. Hence the hypothesis of
modularity is essential in Theorem 2.8.

B. Let L be the lattice shown in Figure 2 and let I = {ai; i ∈ N}. Then I1 = {1}
is a semiprime filter but I is not semiprime. Therefore, the hypothesis (ACC) cannot
drop out in Theorem 2.8.

3. Meanders and primeness

The following results were motivated by Theorem 2.5 and Theorem 2.8.

Theorem 3.1

Let I be a prime ideal of a lattice L. Then I1 is a prime filter of L.

Proof. Let a, b ∈ L be such that a ∨ b ∈ I1, and suppose by way of contradiction
that

a ∈ L \ I1 & b ∈ L \ I1.

Then there are z, w such that

(3.1) a ∧ z ∈ I & z /∈ I; b ∧ w ∈ I & w /∈ I.
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Since I is prime, a ∈ I and b ∈ I. Consequently, a ∨ b ∈ I ∩ I1. By Lemma 2.1
(ii), we have I = L. But this violates (3.1). �

The next result provides a partial converse to Theorem 3.1:

Theorem 3.2

Let I be an ideal of a lattice L satisfying the (ACC). Then I is prime, provided

I1 is prime.

Proof. Suppose there are elements a, b ∈ L such that

a ∧ b ∈ I & a /∈ I & b /∈ I.

We then reason to a contradiction as follows.
It is not difficult to show that a ∨ b /∈ I1. Indeed, otherwise the primeness of

I1 implies that either a ∈ I1 or b ∈ I1. Say a ∈ I1. Then, by the definition of a
meander, b ∈ I, a contradiction.

Let s1 := a∨b and assume inductively that n ∈ N and that there exist elements
s1, s2, · · · , sn such that

(3.2) a ∨ b = s1 < s2 < · · · < sn

and

(3.3) si /∈ I1

for every i = 1, 2, · · · , n.

We shall produce an element sn+1 for which

(3.4) sn < sn+1

and

(3.5) sn+1 /∈ I1.

First, by (3.3) there exists q ∈ L such that

(3.6) sn ∧ q ∈ I & q /∈ I.

We claim that

(3.7) q /∈ I1.
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Were this false, we would have sn ∈ I by (3.6). Now, by (3.2), a ∨ b ≤ sn and,
therefore, a ∨ b ∈ I. But then a ∈ I, a contradiction.

Next we claim that sn+1 := q ∨ sn /∈ I1.

Suppose it is false. By (3.3), sn /∈ I1, and since I1 is a prime filter it follows
that q ∈ I1. This contradicts (3.7). Thus we get (3.5).

Moreover sn+1 = sn is impossible, since it would imply sn ≥ q, and, by (3.6),
I would contain the element sn ∧ q = q, contrary to (3.6). Therefore, sn+1 > sn,

proving (3.4).
The preceding arguments can be summarized in the statement that L contains

an infinite ascending chain s1 < s2 < · · · . This contradicts the (ACC) and proves
the theorem. �

Remark 3.3. A. The ideal I defined in Remark 2.10.B is not prime but the filter I1

is prime. Hence the (ACC) hypothesis cannot be dropped in Theorem 3.2.

B. We leave a more detailed study of the n−th meanders where n ≥ 2 for a
later note. Suffice it to say that they enjoy some very interesting properties.
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