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Abstract

This note contains a proof of the following result: Let E be a locally convex
space. Every absorbing absolutely convex CS-closed subset ofE is a neighbor-
hood of zero in E if and only if every sequentially closed linear map from E
into an arbitrary Banach space is continuous. Some consequences and remarks
are also given.

1. Introduction

Let E= (E, τ) be a Hausdorff locally convex topological vector space (lcs). Recall
that a lcs E is barrelled if every barrel in E (i.e. an absolutely convex absorbing and
closed set) is a neighborhood of zero in E. It is known (cf. e.g. [1] or [10]) that E is
barrelled iff every closed linear map (i.e. with closed graph) of E into an arbitrary
Banach space is continuous.
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The aim of this note is to obtain a similar characterization for locally convex
spaces E (called CS-barrelled) with “closed linear map” replaced by “sequentially
closed linear map”.

In [12] Snipes characterized locally convex spaces E (called C-sequential , cf.
also [4], [5] and [11]) for which every sequentially continuous linear map of E into
an arbitrary Banach space is continuous. He showed that (E, τ) is C-sequential
iff every convex sequentially open subset of E is open iff τ equals the sequential
topology τcs (for the definition of τcs see [15], p. 341). It is however unknown if
a similar characterization holds for Mazur spaces, i.e. lcs for which every sequen-
tially continuous linear functional is continuous; see [11] and [14] for information
concerning Mazur spaces. The class of CS-barrelled spaces is strictly included in the
class of C-sequential spaces; clearly every metrizable non-barrelled space provides
an example of a C-sequential space which is not CS-barrelled.

We have the following obvious implications: CS-barrelled⇒ barrelled,

CS-barrelled⇒ C-sequential⇒ Mazur.

By F(τ) or F(E) we denote the filter of all neighborhoods of zero in (E, τ).
A bounded absolutely convex subsets B of E will be called a disc. B is a Banach
disc if the linear hull EB of B in E endowed with the Minkowski functional norm
topology is a Banach space. Denote Q = {(tn) : tn ≥ 0,

∑
n tn = 1}. By a convex

series of elements of a subset A of E we will mean a series of the form
∑

n tnxn,
where xn ∈ A and (tn) ∈ Q, n ∈ N. A subset A of E will be called (cf. [8])
(i) CS-closed , if it contains the sum of every convergent convex series of its ele-

ments.
(ii) CS-compact , if every convex series of its elements converges to an element of A.

Besides the remarkable properties of CS-compact and CS-closed sets, these
concepts have been also used to simplify some of fundamental closed graph theorems,
cf. e.g. [7], [8].

Let us recall a few interesting properties of these sets; for details and more
information we refer to [6], [8], [9].
(1) Every CS-compact set is convex and bounded.
(2) Balanced CS-compact sets are Banach discs. Open or sequentially closed convex

sets are CS-closed.
(3) If E is metrizable and A is a CS-closed subset of E, then IntA = IntA, A ⊂ E.
(4) Let T : E → F be a linear map of E into a lcs F and A a CS-compact subset

of F . If T is sequentially closed, i.e. the graph of T is sequentially closed, then
T−1(A) is CS-closed in E.
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It is well-known, cf. e.g. [1], that if E is locally complete and bornological,
then E is ultrabornological (i.e. every absolutely convex set in E which absorbs the
Banach discs is a neighborhood of zero). If E is as above, then applying (3) one has
that every absorbing absolutely convex CS-closed subset of E (we call such a set a
CS-barrel) is a neighborhood of zero (since it absorbs any Banach disc of E). This
suggests the following definition.
A lcs E will be called CS-barrelled if every CS-barrel in E is a neighborhood of zero
in E.

Our main result of this note is the following

Theorem

A lcs E is CS-barrelled iff every sequentially closed linear map of E into an

arbitrary Banach space is continuous.

2. Proof of Theorem

The proof of Theorem follows from the following two propositions.

Proposition 1

Let E be a CS-barrelled space and F a lcs containing an absorbing absolutely

convex CS-compact set A. If T : E → F is a sequentially closed linear map, then T

is continuous as a map from E into FA.

Proof. Since A is CS-compact , then T−1(A) is a CS-barrel in E; hence T−1(A) ∈
F(E) and T : E → FA is continuous. �

In [9] Mahowald proved that E is barrelled if every closed linear map of E into
an arbitrary Banach space is continuous. We have also the following

Proposition 2

If every sequentially closed linear map of a lcs E into an arbitrary Banach space

is continuous, then E is CS-barrelled.
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Proof. Assume that U is a CS-barrel in E. Set Un = 2−nU , n ∈ N, and P =
⋂

n Un. Let q : E → E/P be the canonical map. Put Wn = q(Un), n ∈ N. Since
⋂

n 2−nq(U) = 0, then q(U) generates a normed topology β on E/P . Let H be the
completion of (E/P, β) and q again denotes the canonical map of E into H.

Observe that the graph of q is sequentially closed in E × H: Let (xn) be a
sequence in E such that xn → 0 and q(xn) → y in H. We have to show that
y = 0. For every k ∈ N there exists n(k) ∈ N such that q(xs − xp) ∈ Wk for all
s, p ≥ n(k). Put yk = xn(k+1) − xn(k+2), k ∈ N. Then yk ∈ Uk+1 +P ⊂ Uk, so there
exist uk ∈ U such that yk = 2−kuk, k ∈ N. Since U is CS-closed and xn(k+1) =
∑∞

m=k ym =
∑∞

m=k 2−mum = 2−k+1
∑∞

m=1 2−mum+k−1, then xn(k+1) ∈ 2−k+1U .
Therefore q(xn(k+1)) ∈ Wk−1, k ∈ N. Consequently, q(xn(k)) → 0 in (E/P, β).
Hence y = 0.

By assumption q is continuous. Hence q−1(q(U)) ∈ F(E). On the other hand

q−1(q(U)) = q−1(q(U) ∩ E/P ) ⊂ q−1(q(U) + q(U)) ⊂ 3U.

Hence U ∈ F(E) and E is CS-barrelled. �

3. Remarks and more properties

Using our Theorem one obtains the following

Corollary 1

Inductive limits of CS-barrelled spaces are CS-barrelled. Hausdorff quotients

of CS-barrelled spaces are CS-barrelled. In particular inductive limits of metrizable

barrelled spaces are CS-barrelled.

Note that there exist CS-barrelled spaces which are not the inductive limit of
a family of metrizable barrelled spaces, [3].

Since every CS-barrelled space is barrelled and for barrelled spaces the Banach-
Steinhaus theorem holds, our Theorem applies also to get

Corollary 2

A lcs E is CS-barrelled iff every pointwise bounded family of sequentially closed

linear maps of E into an arbitrary Banach space is equicontinuous.
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Recall that there exist metrizable and barrelled spaces which are not Baire, cf.
e.g. [1]; therefore CS-barrelled spaces which are not Baire exist. Clearly Baire lcs are
barrelled; there exist however Baire lcs which are not CS-barrelled, see Proposition
3. It is known also that a lcs which contains a dense barrelled (or Baire) subspace is
barrelled (Baire); for CS-barrelled (or C-sequential or Mazur) spaces a similar result
fails (comp. also [1], Proposition 6.2.16):

Proposition 3
Let (Es)s∈S be a family of metrizable and complete lcs, where cardS > ℵ0 and

E its topological product. Let E0 = {(xs) ∈ E : {s : xs �= 0} is countable}. Then
E0 endowed with the relative topology is Baire and CS-barrelled but no subspace L
of E such that E0 ⊂ L ⊂ E and 0 <dim(L/E0) <∞ is a Mazur space.

Proof. Using our Corollary 1 and Proposition 2 of [2] one deduces that E0 is CS-
barrelled. By Theorem 4.11 of [13] E0 is Baire; clearly E0 is dense and sequentially
closed in E. To complete the proof it is enough to show that for x0 ∈ E\E0, the
space L = E0 + lin{x0} is not a Mazur space. In fact, the functional x+ αx0 → α,
x ∈ E0, is sequentially continuous but not continuous. �

Hence the space R
R provides a simple example of a CS-barrelled Baire space

containing a dense subspace which is Baire but not CS-barrelled. The space
(l1, σ(l1, l∞)) is an example of a Mazur space which is not C-sequential (because
of the Schur property of l1); for another examples, see [11].

Nevertheless one obtains the following: If E is a lcs containing a sequentially
dense subspace which is CS-barrelled (or C-sequential or Mazur), then E is a space
of the same type, respectively.

Similarly as for barrelled spaces one has the following

Proposition 4
Let E be a CS-barrelled space and F its closed countable-codimensional sub-

space. Then F is CS-barrelled and every algebraic complement of F in E is a
topological complement and carries the finest locally convex topology.

Proof. Since E is barrelled, F is barrelled and any algebraic complement of F in E
is a topological complement and carries the finest locally convex topology, cf. e.g.
[1], Proposition 4.5.22. Now Corollary 1 applies to complete the proof. �

Another permanence properties of CS-barrelled spaces, their applications to
continuous function spaces C(X) will be given in a separate paper.

The authors wish to thank the referee for his remarks concerning this paper.
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